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Abstract. Since the pandemic spread of COVID-19, it has posed a unique public health concern 

worldwide due to its increased death rate all around the world. The pandemic disease is caused 

by the SARS-CoV-2, which is the main cause of Middle East Respiratory Syndrome (MERS) 

and severe acute respiratory syndrome  (SARS). Risk assessment is a vital action toward disease 

risk reduction as it increases the understanding of the risk factors associated with the disease and 

allows existing data to decide on adequate preventive and mitigation measures. Machine learning 

techniques have gained strength since 2000, as it has crucial role in data analysis and is really 

helpful to develop standard mortality models. This study aims to find the best model for data 

analysis using the Artificial Neural Network (ANN) and other risk factors, which contribute to 

the high mortality and morbidity associated with COVID-19 in Iran, to predict the risk of death 

for the people with different situation. A systematic review and meta-analysis were examined by 

using patient risk factor data from studies done by researchers to estimate COVID-19 death risk. 

Risk factors for the disease were extracted from an existing study. Using ANN, the best risk 

prediction for the disease is calculated. Assessment of a different number of hidden neurons with 

a different training function using the Bayesian Regularization algorithm, the best training 

function for the ANN model with 5 hidden neurons is found to have the most satisfying results. 

The coefficient of determination (R) and Root Mean Square Error (RMSE) was 9.99999e-1 and 

4.54201e-19 respectively. 

1. Introduction 

Since the emergence of the known coronavirus disease, it has been a great threat to both global health 

and a socio-economic in almost all countries around the world. A continuous occurrence of the virus 

was reported first in Wuhan City, Hubei Province, China, since December 12th, 2019 and it was linked 

to have originated from the South China Seafood Market [1]. On the December 29th, 2019, the first 4 

cases of COVID-19 were first reported all linking to the seafood wholesale market in Huanan (Southern 

China). Due to this occurrence, the World Health Organization (WHO) China Country Office was 

informed of a pneumonia of unknown cause, detected in the city of Wuhan in the Hubei province, China 

on the December 31st, 2019 [2]. The COVID-19 disease has been associated to a great number of 

morbidity and mortality among both young and old people worldwide but, the answer to the origin of 

this disease remains unknown. Human- to- human transition is one of the biggest challenges in curtailing 

this epidemic leading to the WHO on January 30th, 2020 to issue a worldwide health emergency warning 

notice. (COVID-19) is zoonotic virus belonging to a large family of positive-sense; single-stranded 

RNA viruses that can cause both mild and moderate upper respiratory tract illnesses with symptoms 

similar to that of the Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory 

Syndrome (MERS) infection such as common cold [3,4]. 
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COVID-19 has spread greatly to other countries including South Korea, Japan, Thailand, Singapore, 

Italy, US, UK, Spain and Iran, and on the March 12th, 2020, it was classified by the WHO as a pandemic 

[1]. As of October 22nd, 2020, based on the WHO reports, we had globally 41,104,946 confirmed cases 

with 1,128,325 deaths [5]. Iran has reported an increased number of cases of people infected with the 

virus in the Middle East and the highest cumulative number of deaths outside China. As of October 23rd, 

2020, there were 550,757 COVID-19 cases, including 31,650 associated deaths in Iran. About six 

neighbouring countries (Afghanistan, Bahrain, Kuwait, Iraq, Oman, and Pakistan) had reported 

imported cases from Iran [6]. According to recent statistics, Iran is ranked 13th in the number of deaths 

due to COVID-19 as reported as at October 23rd, 2020.  Multiple reports have shown that pre-existing 

illnesses, such as cardiovascular disorders, respiratory diseases, cancer, infectious diseases and 

substance abuse, can lead to increased morbidity and mortality of COVID-19. By the aid of existing 

data from China, cardiovascular disease, diabetes and hypertension are highly predominant among the 

patients. The disease can act as a factor to make the existing conditions worse and accordingly leading 

to death. To reduce the risk of this disease, risk assessment is important due to its help in understanding 

the risk factors associated with the disease and allows the opportunity to decide on adequate preventive 

and mitigation measures [7,8].  

In data analysis, since 2000, machine learning techniques have gained strength as they played a vital 

role in epidemiological data analysis by developing standard mortality models [3]. Artificial Neural 

Networks (ANNs) are statistical and relatively unique approaches for modelling complex non-linear 

relationships in spatial epidemiology. The technique is considered as one of the most efficient methods 

in processing large sets of data that can be analysed computationally to reveal trends, patterns, prediction 

forecasting etc.  

These techniques have been applied in a number of areas, including artificial intelligence, public health, 

epidemiology, economics, environmental science and agriculture [8,9]. ANN is a collection of a large 

number of units called neurons. Some of these neurons receives its information and sends the results to 

other neurons. The ANN structure is computer-based and consists of several basic parallel-operated 

processing elements. The most common ANN consists of a three-layer network, an input layer, one or 

more hidden layers, and an output layer. The input layer includes independent variables linked to the 

hidden layer for processing. The hidden layer consists of activation functions that helps calculate the 

weights of variables to examine the influence of predictors upon the dependent variables. The prediction 

process is completed in the output layer and the results are given with a small estimation error. Generally, 

a feedforward network is trained in a backpropagation algorithm. The back propagation algorithm learns 

relation between a defined set of input-output pairs in the training phase [10].  

Unfortunately, to date, there is no global and standard response to the COVID-19 pandemic and each 

country is facing the crisis based on their own possibilities, expertise and hypotheses. Thus, there are 

different criteria for testing, hospitalisation and estimating of cases making it difficult to estimate the 

number of people affected by the epidemic. Early screening and risk estimation of the disease can help 

reduce the death chances and improve survival rate [11]. This study therefore aimed to evaluate the 

ability of ANN-based method in accessing the risk factors associated with the high morbidity and 

mortality of COVID-19 and to also estimate the risk of a patient dying when infected. To this end, we 

compared results from the conventional method and ANN modelling. 

2. Methodology 

2.1. Conventional Method 

Data extracted from a journal represented a retrospective, epidemiological study that has been performed 

on hospitalized cases of COVID-19 in Baqiyatallah hospital in Tehran, Iran, for patients admitted from 

February 19th, 2020, to April 15th, 2020 [12]. The study variables were as follows: age, gender, final 

outcome (including death or survival), and type of comorbidities. The number of people infected and 

death cases varied per gender alongside the comorbidities. Descriptive analyses of the variables were 
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expressed with representation of the risk factors as LEL=100, MEL=100. LEL (lower energy level) 

included data for death cases of COVID-19 across their age and gender as stated in the journal (Table 1 

and Table 2). It was represented as: 

 

LEL = (Age + Gender) = 100                                                                                            (1) 

 

 

Table 1. Risk factors of the model [12]. 

S/N Low Energy Level (LEL) High Energy Level (HEL) 

1. Age 

Pre-existing medical conditions (Cancer, 

Hypertension, Chronic Respiratory disease, 

Diabetes, Chronic Kidney disease, Cardiovascular 

disorder). 

2. Gender - 

 

MEL included data for death cases of COVID-19 with pre-existing medical condition as also stated in 

the journal (Table1 and Table 2). It was represented as: 

 

MEL =  Diabetes +  Chronic Respiratory Disease +  Cardiovascular Disease 
+  Kidney Disease +  Cancer +  Hypertension Other Diseases)  
= 100 

 

Table 2. Cases with COVID-19 based on their gender, age, comorbidities and death rate in 

Iran [12]. 

(2) 

 
 

 Cases Died 

Gender 

Male 66 69.9 

Female 34 30.1 

Age Group 

0-10 0.07 0 

11-20 0.27 0 

21-30 3.27 0.42 

31-40 14.03 5.9 

41-50 15.25 5.4 

51-60 27.83 22.6 

61-70 20.98 29.7 

71-80 11.8 21.75 

> 80 6.5 15.5 

Comorbidities 

Cancer 5.2 0.4 

Hypertension 18.3 3.4 

Diabetes 35 4.6 

Cardiovascular Disorder 11.5 1.7 
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 Cases Died 

Chronic Respiratory 

Disease 
18.6 3.8 

Chronic Kidney Disease 5.6 1.3 

Other Diseases 5.9 0.8 

No comorbidities 89.1 84.1 

2.2. Artificial Neural Network (ANN) 

ANN was trained in MATLAB using the outputs of the conventional model predictions. To develop a 

machine learning model, a two-layer feed forward neural network was designed with input data of the 

age, gender, and comorbidities of covid-19 death cases in Iran as seen in (Table 2) and the target data 

(output of the conventional model). The network type used is the Feed-forward with a function of 

‘TRAINUM’ to train data in the MATLAB. A total of 35 data samples were used as the input 25 of 

which were used for training, 5 for validation and 5 for testing. The neural network structure is shown 

in (Figure 1) with a total of 9 input, 5 hidden neuron and 1 output. The algorithm Levenberg-Marquardt 

(LM) was applied to train the network. Transfer function of ‘TRANSIG’ for the hidden layer and linear 

were considered. Number of hidden layers, neurons, and training algorithms are all influential 

parameters in defining the best prediction model using ANN. 

 

 

Figure 1. Neural Network Design. 

 

3. Results 

3.1. Conventional Modelling Result 

According to Table 2, the probability that a patient would die if confirmed to have COVID-19 was 

generated. Probability of people dying of COVID-19 based on their age and gender is calculated as 

follows: 

 

𝐿𝐸𝐿 = (𝐴𝑔𝑒 + 𝐺𝑒𝑛𝑑𝑒𝑟) × 1.005    (3) 

 

Probability of people dying of COVID-19 based on their pre-existing medical condition is calculated as 

follows: 

 

𝑀𝐸𝐿 =  (𝐶𝑎𝑛𝑐𝑒𝑟 +  𝐶ℎ𝑟𝑜𝑛𝑖𝑐 𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 +  𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 
+  𝐶𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 +  𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛
+  𝐶ℎ𝑟𝑜𝑛𝑖𝑐 𝐾𝑖𝑑𝑛𝑒𝑦 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 +  𝑂𝑡ℎ𝑒𝑟𝑠)  ∗ 6.25 

(4) 

 

Total risk of dying when infected with COVID-19 is calculated as follows: 
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𝐷𝑒𝑎𝑡ℎ 𝑅𝑖𝑠𝑘% =  ((𝐴𝑔𝑒 +  𝐺𝑒𝑛𝑑𝑒𝑟)  ∗ 1.005 + (𝐶𝑎𝑛𝑐𝑒𝑟 
+  𝐶ℎ𝑟𝑜𝑛𝑖𝑐 𝐾𝑖𝑑𝑛𝑒𝑦 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 + + 𝐷𝑖𝑎𝑏𝑒𝑡𝑒𝑠 + 𝐻𝑦𝑝𝑒𝑟𝑡𝑒𝑛𝑠𝑖𝑜𝑛 
+  𝐶ℎ𝑟𝑜𝑛𝑖𝑐 𝑅𝑒𝑠𝑝𝑖𝑟𝑎𝑡𝑜𝑟𝑦 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 +  𝐶𝑎𝑟𝑑𝑖𝑜𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟 𝐷𝑖𝑠𝑒𝑎𝑠𝑒 
+  𝑂𝑡ℎ𝑒𝑟𝑠)  ∗ 6.25  

(5) 

 

In conventional method by the aid of all information extracted from previous studies (Table 2), an 

algorithm was written to have probability of each disease based on prediction of the various risk factors. 

The algorithm dedicated one possible answer for the probability that a patient will die of COVID-19 

depending on their age, gender and pre-existing medical conditions repeating the method 35 times (see 

Appendix A). With prediction made, the probability for 35 samples was calculated using the MATLAB 

software. 

3.2. Artificial Neural Network (ANN) Result 

The training has been considered for a total of 35 data sample. 9 inputs have been in the data with 5 

hidden neuron and 1 output neural network structure. The ANN was optimized using the Bayesian 

Regularization algorithm. For the training function 25 samples were taken. A Mean Squared Error 

(MSE) of 4.54201e-19 with a regression value of 9.99999e-1 were obtained. For the validation function, 

5 samples were gotten, MSE of 0.00000e-0 with regression value 0.00000e-0 and for the testing 

function, 5 samples were gotten with MSE of 8.89662e-0 and regression value of 9.94067e-1. The MSE 

is the average squared difference between outputs and targets. Lower values are better and zero means 

no error. Regression R values measure the correlation between outputs and targets. An R value of 1 

means a close relationship, 0 a random relationship. The result of the training is showed in Figure 2. The 

algorithm typically requires more time, but can result in good generalization for difficult, small or noisy 

datasets. The training stopped according to adaptive weight minimization (regularization). 

 

 

Figure 2. Result of Trained Network. 

 



ICACSE 2020
Journal of Physics: Conference Series 1964 (2021) 062117

IOP Publishing
doi:10.1088/1742-6596/1964/6/062117

6

4. Discussion 

Comparing this study to other similar ones, Assaf et al. [13] used three different methods such as Neural 

Network, Random Forest, and Classification and Regression Decision Tree (CART) to predict patient 

deterioration. They reached 88.0% sensitivity, 92.7% specificity and 92.0% accuracy in predicting 

critical COVID-19. A study by Dhamodharavadhani et al. [3] employed Statistical Neural Network 

(SNN) models such as Probabilistic Neural Network (PNN), Radial Basis Function Neural Network 

(RBFNN), and Generalized Regression Neural Network (GRNN). They showed that the PNN and 

RBFNN-based MRP model had the best performance between all models for COVID-19. Another study 

by Clift et al. [14] to derive and validate a risk prediction algorithm to estimate hospital admission and 

mortality outcomes from COVID-19 in adults. The models were fitted in the derivation cohort to derive 

risk equations using a range of predictor variables. Although, the risk prediction model QCOVID 

population-based risk algorithm performed well, showing very high levels of discrimination for deaths 

due to covid-19; the algorithm will be regularly updated as the understanding of COVID-19 changes, as 

more data are provided. This study could expand to other diseases to help the healthcare system respond 

more effectively during an outbreak or a pandemic especially with most countries currently having a 

second wave of COVID-19. 

5. Conclusion 

In this study, we aimed to assess the utility of machine-learning models for predicting a high mortality 

rate for patients infected with COVID-19 based on their gender, age group and pre-existing medical 

condition. Machine Learning (ML) models enabled assessment of the relations between input and output 

of complex processes. ML models generated better performance than traditional prediction models, 

owing to their ability to reveal nonlinear associations, superior optimization of multi-factorial. Data 

analysed was just a few numbers with case study only in Iran therefore, extended studies with larger 

sample size of the variables and their relationship with the disease could provide more accurate 

information for COVID-19 monitoring. With the huge number of mortalities associated with COVID-

19 especially for people with pre-existing medical conditions. The proposed method can help medical 

facilities, hospitals, and caregivers in deciding who needs to get attention first before other patients, 

especially when there is a lot of patients to be attended to. It can also help eliminate delays in providing 

the necessary care in order to reduce the risk of a patient with COVID-19 dying. 
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Appendix A 
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