
RESEARCH Open Access

Curve25519 based lightweight end-to-end
encryption in resource constrained
autonomous 8-bit IoT devices
Shafi Ullah* and Raja Zahilah

Abstract

Robust encryption techniques require heavy computational capability and consume large amount of memory
which are unaffordable for resource constrained IoT devices and Cyber-Physical Systems with an inclusion of
general-purpose data manipulation tasks. Many encryption techniques have been introduced to address the
inability of such devices, lacking in robust security provision at low cost. This article presents an encryption
technique, implemented on a resource constrained IoT device (AVR ATmega2560) through utilizing fast execution
and less memory consumption properties of curve25519 in a novel and efficient lightweight hash function. The
hash function utilizes GMP library for multi-precision arithmetic calculations and pre-calculated curve points to
devise a good cipher block using ECDH based key exchange protocols and large random prime number generator
function.

Keywords: Cyber-physical systems, IoT, Resource constrained IoT devices, Lightweight encryption, End-to-end
encryption, Elliptic curve cryptography, Curve25519

Introduction
Useful tiny autonomous IoT machines that work end-
lessly, are used in our daily lives such as smart refriger-
ator, smart air-condition, smart TV, smart health
devices and smart parking. Number of such devices are
estimated to reach 50 Billion by 2025 (Song et al. 2017).
Most devices share sensitive information over the inter-
net with each other via pre-programmed tasks and make
critical and nearly accurate decisions when required.
These devices are usually cheap, tiny and retain little
computational and memory capabilities, known as IoT
devices, machine type communication (MTC) devices
and cyber physical systems (CPS).
The data shared among such devices can be extremely

sensitive, both for user and operational purposes. Since
the devices do not possess security of their own, it is
provided either externally or physically by embedded

applications (which is not feasible for all devices) within
the entire network as the purpose of such devices is to
work remotely and autonomously with constrained re-
sources (Rajesh et al. 2019). However, due to low com-
putation and memory capabilities, standard security
protocols (as of internet) cannot be applied (Song et al.
2017). Consequently, the devices are only equipped with
software-based security in a network for secure oper-
ational communication applications. The data shared be-
tween the devices must be integrated in its original form
without mutation and must also maintain secrecy of the
device that sends data. Whereas a network can contain
numerous connected devices and every data block that
is transmitted from a device, must ensure integrity of
data. It is achieved by applying end-to-end encryption.
We propose curve25519 based end-to-end encryption

with a novel lightweight hash function. The proposed el-
liptic curve cryptography (ECC) based end-to-end en-
cryption method enables computational and memory
exhaustive IoT devices to communicate securely with

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

* Correspondence: ullah.shafi@graduate.utm.my
School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia,
81310 Johor Bahru, Johor, Malaysia

CybersecurityUllah and Zahilah Cybersecurity (2021) 4:11
https://doi.org/10.1186/s42400-021-00078-6

http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-021-00078-6&domain=pdf
http://orcid.org/0000-0003-2070-6011
http://creativecommons.org/licenses/by/4.0/
mailto:ullah.shafi@graduate.utm.my

efficient memory consumption and affordable computa-
tion because of curve25519 that possess strong security
(Bernstein 2006) and occupies comparatively smaller key
sizes in memory. While most ECC based encryption
techniques utilize RSA, AES and Elgamal (Banerjee and
Patil 2018) type hash functions to encrypt data based on
a private keys and consequently resulting in exhaustive
computational power, our proposed method introduces
a pre-calculated curve points strategy that proves to be
more efficient in computational performance and mem-
ory consumption. Moreover, it retains strong 192-bit se-
curity with 128-bit encrypted keys. The proposed
method is tested on an AVR ATMega2560 microcon-
troller with ECDH based 128-bit secret keys. Further-
more, the use of GMP library improved scaler
multiplication performance and large prime number
generation costs. The proposed technique is applicable
on all AVR machines with minimum 32Kbytes of flash
memory.

Related work on ECC
Elliptic curve over a finite field F is a one-way function
and its’ inverse is incomputable (Moosavi et al. 2018a).
An elliptic curve over a field is denoted by Fg(a, b) where
g is a prime number where g > 3. g represents x, y set of
coordinate points such that g = (x, y) where (x, y∈ Fg(a,
b)) that satisfies the equation y2 = x3 + ax + b (mod p)
where 0 < = x < = p . Size of p in a curve, governs the es-
sence of n-bit security. The performance efficiency of
ECC relies on computing a fixed-point or scalar-point
multiplication, given the product points x, y. Perform-
ance cost of scaler multiplication mainly depends on two
curve operations i.e., PA (Point Addition) and PD (Point
Doubling). PA refers to the addition of two similar curve
points (x1, y1) and (x2, y2) on curve in a field f such that
x1 = x2 and y1 = y2 . Whereas PD refers to a Double-
&-Add algorithm, used for two different points on curve
such that x1 ≠ x2 and y1 ≠ y2. The resulting curve point
from PA and PD will be a random point on curve that
cannot be calculated reversely. Additionally, PA and PD
operations cost computational power if large prime
numbers are used. Furthermore, ANSI X9.63 and IEEE
P1363 provide the public key cryptography (PKC) stan-
dards for ECC based lightweight cryptography. These
standards offer randomness and robustness per bit com-
pared to the current PKC encryption schemes based on
RSA, DES and Elgamal.
Düll et al. (2015) initiated ECDH (Elliptic Curve

Diffie-Hellman) key exchange protocol by applying a
fixed basepoint and a variable curve point on AVR
ATmega, MSP-430X and ARM Cortex-M0 microcon-
trollers using curve25519. The variance in bandwidth
upgraded the robustness of curve including reduction in
cost of clock cycles by 18%. Previous methods applied by

Liu et al. (2014), Hutter and Schwabe (2013), Hinter-
wälder et al. (2014), De Clercq et al. (2014), Wenger
et al. (2013), Gouvêa et al. (2012), Aranha et al. (2010)
and Gura et al. (2004), utilized identical hardware con-
figured IoT devices with different types of elliptic curves
where each type resulted in different computational cost
and memory consumption. However, the results indi-
cated that these resource constrained computing capable
IoT devices handled encryption computational tasks in
reasonable time and inexpensive memory. Oualha and
Nguyen (2016) applied pre-computation techniques
using ECC by discarding scalar point multiplication tasks
and resulted in consuming lesser energy. While the tech-
nique is computationally efficient but it demanded for
large memory. Fujii and Aranha (2018) also instigated
curve25519, targeted for ARM Cortex-M4 type micro-
controllers that relied on a digital signature (ECqDSA).
Moosavi et al. (2018b) worked on developing a refined
IoT network structure to achieve optimal security in a
three-layer architecture with ECC centered private key
generation on random time points using ECG of a pa-
tient by calculating difference in two crusts with com-
bination of Fibonacci linear feedback shift register.
Numerous applications of ECC discussed in Liu and
Ning (2008), used AVR ATmega and targeted low costs
with high security. Whereas TinyECC library applied
ECDSA, ECDH, and ECIES for 128, 160 and 192-bit se-
curity using SECG curves, respectively. Szczechowiak
et al. (2008) applied another similar and smaller type of
curve called Nano-ECC and used NIST K-163 curve.
Though improving cost efficiency in terms of computa-
tion and memory, is still a challenging task as recent
ECC applications on AVR ATmega machines applied
comparatively unsafe curves. Another type of twisted
Edwards curves presented in Chu et al. (2013), applied
80-bit and 96-bit security levels for performance en-
hanced implementation of ECC. De Santis and Sigl
(2016) used implemented × 25519 curve on ARM
Cortex-M4 device to improve key generation computa-
tion. Similarly, Fujii and Aranha (2018) aimed to
minimize modular multiplication by 50% on ed25519
curve using ARM Cortex-M4 device. Moreover, a soft-
ware implementation on Intel’s AVX2 Haswell proces-
sors which are equipped with vector instruction set
architecture for prime number arithmetic in ECC opera-
tions (Faz-Hernández et al. 2019). They computed digital
signatures algorithms with reduction of 19% and 29% for
ed25519 and ed448 in comparing with execution time of
× 25519 and × 448, respectively.

Proposed curve25519 based lightweight
encryption in resource constrained IoT devices
In the context of Related work on ECC section, resource
constrained IoT devices still lack in efficient encryption

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 2 of 13

algorithm that can deliver robust security against power-
ful computational statistical attacks. We propose a novel
approach in implementation of end-to-end encryption in
this section. The section also describes related functional
parts of our technique. An example illustrated in Fig. 1
elaborates proposed novel hash function and a pseudo
code of encryption and decryption procedures is also
presented in Algorithm 1&2, respectively.
The proposed method implements curve25519 based

encryption on an AVR ATMega2560 machine through a
pre-calculated curve points strategy. The method is de-
signed to accommodate 46 characters (a-z, 0–9 and spe-
cial characters) to minimize memory usage. Each
character (ci) is allocated a unique large random prime
number (LRPN), considered as a generator number point
(G) on curve. A generator number point (G) represents
the number of times a curve performs PA and PD curve
operations from a starting point 1G (i.e., 9x,6278y in our
technique). Thus, each character has a particular gener-
ator number representing unique curve points. These
curve points are then fed to a hash function that en-
crypts the characters. Moreover, every proceeding char-
acter will influence the next character’s curve points
during encryption, explained briefly in Hash function of
the proposed method section.

GMP (GNU multiple precision) arithmetic library
32–64-bit large prime numbers and signed integers have
limited compiler support in constrained IoT devices. To
use minimum code size, we adopted GMP library that
has embedded support libraries for arithmetic operations
of 32–64 bits large-signed integers. GMP library is free-
ware and used for arbitrary multiple precision based
arithmetic calculation on singed integers, floating points
and rational numbers. It is equipped with fast and

precision capable algorithms. Furthermore, it supports C
and C++ platform with most inner loops coded in as-
sembly language (depending on CPUs) to deliver speedy
calculations.
We used gmp-6.2.0 version that comes with a mini-

gmp sub library. This sub library can be used for ma-
chines from AVR family to use minimum code size and
functionality for all arithmetic operations related to el-
liptic curves.

Elliptic curve (Curve25519)
Adoption of a particular form of curve is very crucial in
elliptic curve cryptography. The proposed technique tar-
gets a curve that should perform speedy calculations and
consume the least possible memory in addition to robust
encryption. In this regard, we chose curve25519 as it re-
tains our targeted features during the curve operations.
The curve25519 is a 255-bit based curve with preceding
standard curves (NIST P-256 and NIST K233 of 128-bit)
that offers up to 256-bit key security with fastest ECC
curves. The curve was introduced by Bernstein (2006)
and designed particularly for ECDH key agreement
schemes. The research in Bernstein (2006), implemented
the curve on a public domain software using Intel Pen-
tium III, 4, M and AMD Athlon CPUs and concluded
that the curve is fast, retains short secret and public
keys, and is free of key validation. Another research in
Bernstein and Lange (2014), represented a thorough se-
curity and performance analysis of several ECC based
curves where the curve25519 is said to gain indistin-
guishable security and showed resilience against ladder
attack, side channel attack, twist attack and exhibited
completeness from random strings attacks. Thus, it is
considered a safe curve as it repels all known curve
attacks.

Fig. 1 Hash function mutation of curve points (example)

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 3 of 13

Curve25519 equation
The curve equation y2 = x3 + 486662x2 + x mod(p) is a
Montgomery curve (Montgomery 1987) over Fg prime
field wheremod (p) is defined by 3 < p ≤ 2255 − 19, with a
based-point of x = 9. The curve also uses compressed x-
axis coordinate points to allow use of Montgomery lad-
der in utilizing X, Z coordinates. In our work, we used
three (32,43 and 62-bit) p values and secret key sizes at
30,43 and 51-bit to limit cost affordability of computa-
tion and memory.

Secret key (SK) generation
Secret key (SK) plays vital role in the proposed hash
function. SK is primarily adopted to further mutate
curve points to improve encryption robustness. It is gen-
erated during runtime; hence size of the secret key must
be considerably kept as a tradeoff between robustness
and computational efficiency. We tested three SKs for
every mod(p) as shown in Table 1. Additionally, SK can
be generated by any of the following two means

1. SK can be resultant key provided by ECDH based
key exchange protocols.

2. SK can be generated via large prime positive integer
through random number generator function
(RNGF) with seed value applied from a built-in
timer function in AVR Atmega2560.

SK in Table 1 is generated by ECDH based key ex-
change protocols, treated as a starting generator value
(1G) with specific curve points. The SK generator’s exe-
cution cost is evaluated through curve operations (PA &
PD) during scalar multiplication. It is an efficient way to
calculate large curve points on a curve (i.e. If a bit is 1
then PA is applied, and PD is applied if the bit is 0).
Similarly, the number of operations (i.e., PA and PD) de-
pends on number of generator (G) bits.

Table 1 shows several SKs, generated against three
mod(p) values on runtime in constrained IoT device
where scalar multiplication and computational costs are
also mentioned. The execution time (ET) increases with
larger mod(p) value due to increase in the curve opera-
tions. Note that PD has lesser arithmetic operations than
PA. We calculated that PA takes 1.5-2x more execution
time than PD.

Reference table (RFTAB)
Reference table (RFTAB) contains the list of ASCII char-
acters which will be used to encrypt message where each
character contains a unique curve point. Unlike secret
key (SK), the corresponding curve points in RFTAB are
pre-calculated to limit runtime computation. The pro-
posed method utilizes only 46 ASCII characters in
RFTAB including a-z, 0–9 and 10 special characters.
Other ASCII characters such as capital letters and spe-
cial characters are excluded to reduce memory usage
and simplify messages. Every character is assigned a
large random prime integer which is considered as a
generator curve point (G) (as shown in Table 2). These
curve points are pre-calculated through scalar multipli-
cation starting from a pre-set generator value (1G). The
starting point (1G) can also be set as a network
dependent generator number, a public key or specified
through constant change on certain timestamps. Fur-
thermore, the RFTAB is flexible enough to incorporate
all ASCII and Unicode characters depending upon
developers.
Table 2 represents a unique generator number, pre-

calculated through large random prime integer function
for every ASCII character. Generator numbers are fur-
ther applied on a curve to calculate its corresponding
unique (x, y) curve points, generated from a starting
curve point at 1G (9x, 6248y) with mod (p) =
1019532643. Note that the starting curve point (1G) and
mod(p) are developer dependent values and must be

Table 1 Secret key generation performance in the proposed technique

mod(p) G SK SK
size

PA PD ET
(ms)

E

x y

30-bit 484,924,606,752,301 826,625,966 80,435,164 30-bit 25 48 1087 0.1087

2,938,674,132,359,780,000 136,996,696 68,348,709 28-bit 31 62 1406 0.1406

160,949,512,909,771 497,086,896 418,609,960 29-bit 24 48 1062 0.1062

43-bit 484,924,606,752,301 198,854,107,681 1,226,705,872,672 38-bit 25 48 1891 0.1891

2,938,674,132,359,780,000 1,323,613,420,771 2,788,657,789,809 42-bit 31 62 2349 0.2349

160,949,512,909,771 2,741,618,876,124 974,370,806,151 42-bit 24 48 1811 0.1811

62-bit 484,924,606,752,301 775,724,248,908,631,391 3,753,518,844,464,014,710 62-bit 25 48 2623 0.2623

2,938,674,132,359,780,000 685,910,647,662,771,392 3,518,772,554,951,183,129 61-bit 31 62 2907 0.0290

160,949,512,909,771 1,295,578,424,185,598,538 933,837,696,196,791,576 60-bit 24 48 2523 0.2523

PA Point addition, PD Point doubling, ET Execution time, E Energy consumption

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 4 of 13

Table 2 Reference table in proposed hash function

ci ASCII LPRN.G Curve Points (x, y)

1 a 1114995945582353G 694,337,436, 703,285,746

2 b 288921697093859G 370,473,331, 984,017,275

3 c 276838389415067G 759,555,548, 617,465,919

4 d 675280302129893G 658,744,261, 842,278,155

5 e 936876179746217G 183,110,606, 110,227,174

6 f 41384689890461G 179,809,473, 782,626,044

7 g 439822307637991G 189,560,000, 939,147,020

8 h 701422480221611G 920,636,675, 800,025,404

9 j 770835426621577G 73,536,773, 384,990,209

10 k 497156241326461G 21,051,887, 664,479,360

11 l 285860567224847G 114,911,791, 95,276,802

12 m 410623294644557G 370,347,429, 177,948,275

13 n 852327385733039G 207,177,991, 1,001,485,169

14 o 441810755274013G 435,796,402, 461,746,467

15 p 230515081172399G 369,263,203, 616,366,034

16 q 945894062588701G 449,183,440, 200,940,412

17 r 535381727096971G 548,976,276, 16,443,194

18 s 796981899680591G 619,312,283, 712,899,022

19 t 163086287441159G 402,748,439, 455,269,340

20 u 26248842277249G 18,422,723, 6,605,984

21 v 14169829565753G 903,414,998, 482,785,657

22 w 138932556985463G 605,945,868, 891,747,116

23 x 2095111821553G 325,942,946, 742,935,628

24 y 779857604431357G 863,486,555, 856,002,957

25 z 400528434601787G 498,942,518, 278,185,069

26 0 83582775965719G 269,100,618, 153,886,684

27 1 892541319139571G 82,566,882, 973,636,287

28 2 755695284041069G 1,010,214,883, 564,478,933

29 3 133882979480429G 225,964,606, 644,839,968

30 4 849266255864027G 558,176,893, 301,038,469

31 5 165074735077181G 326,619,521, 923,466,984

32 6 750654296470627G 2,978,693, 455,928,598

33 7 23192007375533G 106,943,196, 864,459,202

34 8 769762744388587G 701,927,624, 293,508,906

35 9 147950439827947G 222,120,950, 201,464,481

36 @ 851254703500049G 647,033,442, 905,238,490

37 # 534309044863981G 735,000,937, 247,572,192

38 : 889480189270559G 653,569,343, 260,941,402

39 ^ 1052464107493483G 303,172,155, 284,207,106

40 & 20130877506521G 8,074,164, 890,475,165

41 * 735514153890119G 915,720,122, 487,163,851

42 . 629868464322961G 208,512,143, 934,037,045

43 , 723439436145919G 23,290,126, 528,271,011

44 _ 89543823906487G 413,027,496, 974,898,543

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 5 of 13

kept secret. Moreover, change in single bit of starting
curve point will result in totally different values in
Table 2.

Hash function of the proposed method
Hash function includes a secret key (SK) described either
from a random number function of hardware machine
(discussed in Security analysis section) or from resultant
key of ECDH key exchange protocols. We assume gener-
ating SK from random number generator. The random
number generator function takes seed value provided by
a timer. The timer starts when the hardware is powered
on and the value is taken in microseconds. In the ex-
ample, the random number function outputs 484,924,
606,752,301 value which is considered as a SK generator
value (G). Secret key generated at 484924606752301G
contains curve points at SKx = 369,200,743 and SKy =
723,310,002. The hash function incorporates two more
following variables.

Ω ¼ SKx − SKy ; if SKx > SKy

SKy − SKx ; if SKx < SKy

�
ð1Þ

Θ ¼ SKx⊕SKy ð2Þ
Consequently, Ω and Θ are said to be 354,109,259 and

1,025,334,229, respectively from Eqs. 1 & 2. Ω is added
to x1 and y1 in the first-round while θ is subtracted from
resulting values in the second-round. Similarly, we as-
sume encrypting a message that contains five characters
(abc58), with referenced curve points shown in Table 3.
Figure 1 illustrates the further mutation of x and y coor-
dinates into referenced curve points from Table 2. The
purpose of this mutation is to increase permutation and
range so that the real curve points are kept secret. The
decryption process is similar and inverse of the encryp-
tion function as described in Algorithm.1 (encryption)
and Algorithm.2 (decryption).

Experimental results
This section represents analysis of results taken from
implementation of the proposed technique on an IoT re-
source constrained device. The technique is evaluated in
terms of avalanche effect and memory consumption with
existing similar encryption techniques. Additionally,
computational and memory costs are also presented in
the preceding sections.

Experimental setup
This subsection describes the specifications of a resource
constrained IoT device’s hardware in terms of processing
power, availability of internal memory (RAM) and code

Table 2 Reference table in proposed hash function (Continued)

ci ASCII LPRN.G Curve Points (x, y)

45 – 171035783017949G 377,335,563, 513,671,840

46 space 34198337854039G 438,328,264, 902,839,215

Points are generated with mod(p) = 1019532643
Points are generated from a starting curve point of 1G i.e. 96,248

Table 3 Hash function encryption (example)

ASCII a b c 5 8

CP x1 y1 x2 y2 x3 y3 x4 y4 x5 y5

CP before
Encryption

694,337,
436

703,285,
746

370,473,
331

984,017,275 759,555,548 617,465,
919

326,619,
521

923,466,984 701,927,624 293,508,
906

CP after Encryption 945,913,
466

32,060,776 473,006,
560

2,009,351,
504

1,705,469,
014

649,526,
695

799,626,
081

2,932,818,
488

2,407,396,
638

943,035,
601

CP (Curve Points) of characters are taken from Table 1 (Reference Table)
Example can be redirected to Fig. 1

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 6 of 13

size (ROM). The proposed method is implemented on
an AVR ATmega2560 machine with the following
specifications.

� CPU - AVR ATmega2560 with frequency (crystal
oscillator) of 16MHz

� 256 KB of flash memory
� EEPROM of 4 KB
� SRAM of 4 KB
� 20 mA average current ratings
� 5 V of operating voltage

The ATmega2560 machine is tested on three (32, 43
& 63-bit) mod(p) , containing 1,019,532,643, 5,171,003,
929,967 and 4,434,155,615,661,930,479 values, respect-
ively. Every p value is further tested against three (30, 43
and 51-bit) SKs with the respective curve points at
(640280610x, 817170226y) – (5067356135643x,
223330964472y) and (2527499838244584x,
1675273799655845y), respectively. In total, nine message
blocks (3 mod(p) values against 3 SKs) are encrypted,
each containing all the ASCII characters shown in Table
2. Similarly, these encrypted message blocks are then
decrypted. Computational cost, memory and energy con-
sumptions are evaluated during the encryption and de-
cryption processes, as mentioned in Table 4.

Avalanche effect
Avalanche effect is known as the computational time
taken during encryption and decryption of data block
and change in bits before and after encryption. Since sig-
nificant change in bit pattern does not apply on ECC as
all the resulting curve points are not random values but
rather the exact curve points. However, the change of bit
difference before and after the encryption can be ex-
plained in the following example.

Example.1
If a single bit is changed in encrypted block by the ad-
versary. The decryption process will apply SK ’ s round 1
& 2 as described in Algorithm 2. The final value will be
formed into two different large random prime integers
for x and y coordinates. We assume that the bit change
resulted as exact points on curve. In this case, the re-
sulted points for one character must be same as assigned
in Table 2 (RFTAB). Similarly, the adversary will have to
change bits for all characters in encrypted message block
which is statistically extremely difficult and computa-
tionally exhaustive to predict. In addition, the hash func-
tion is designed in a way that change in one character
will affect the entire preceding message block. Hence,
the entire message will be decrypted as null characters if

single bit change in the encrypted message is found
wrong.
Execution time (ET) costs during encryption and de-

cryption of 46 characters in different mod(p) values and
SK sizes, are shown in Table 4. It is observed that the
execution time shows significant increase with the in-
crease in SK size. However, there is slight difference in
encryption time and energy usage between 32-bit and
62-bit mod(p) values with similar SK size.

Memory consumption
Resource constrained IoT devices possess very small in-
ternal memory. Encryption techniques must address effi-
ciency in terms of memory cost in these devices.
Efficient memory usage is one of the main features of
the proposed method. Furthermore, the technique en-
abled such devices with 192-bit security in consuming
comparatively smaller internal memory. According to
Table 4, 17% of the dynamic memory is occupied (1420
bytes out of 8192 bytes) for 128-bit SK and ≈ 192-bit se-
curity, leaving rest of the memory for other general-
purpose usage. It is also observed that memory con-
sumption mainly depends on the size of SK. Similarly,
program memory (coded in C) occupied 7% (20,044
bytes out of 253,952 bytes) of total available memory.
Hence, the method can be stored and implemented in
small computing capable IoT devices that contain mini-
mum 64Kbytes of internal memory.
Figure 2 illustrates nine tests of computational and

memory performance in encryption and decryption of
46 ASCII characters. Encryption process appears to con-
sume most of the CPU power while the decryption
process utilizes almost uniform CPU power. Further-
more, 51-bit SK costs nearly similar computation time in
all three mod(p) values which confirms that the consid-
erate size of SK plays important role for computational
efficiency in the proposed technique. Hence, the size of
SK can be considered a tradeoff between retaining good
security and computational affordability in resource con-
strained IoT devices, in the proposed method.

Security analysis
This section describes security robustness of the pro-
posed technique. Elliptic curve-based encryption security
mainly depends on the keys and the hash function that
encrypts data block founded on the devised keys. Hence,
these keys must exhibit extreme sensitivity and random-
ness in devising good ciphers.

Key sensitivity
Key sensitivity means if a single bit change occurs in a
key, then the whole encrypted block should also change.
In our technique, the change will lead to a non-curve
point and the overall output will also change during

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 7 of 13

round operations. Furthermore, scope of curve points
in curve25529 are mainly limited to positive integers
with maximum value of p = 2255 − 19. However, our
technique expands the scope of values to both posi-
tive and negative integers. This scope expansion im-
proves permutation range from +2255 − 19 to − 2255 +
19 which vastly improve immunity against several
statistical attacks. Additionally, the method is primar-
ily dependent on manipulation and generation of se-
cret key (SK) devised from ECDH key exchange
protocols or a large prime random number generator
function whose seed value changes every 4 microsec-
onds (limited to AVR ATmega family). Thus, one

microsecond change in seed value will lead to differ-
ent curve points during key predicting statistical at-
tacks. Additionally, ECC curve points are statistically
proven to be non-reversible. It is extremely difficult
and huge computation costly to accurately calculate
or predict previous curve points (Moosavi et al.
2018a). Curve25519 is faster and can withstand tim-
ing, side channel, twists on curve, ladder and statis-
tical attacks (Dong et al. 2018). However, SK size
used in our proposed method achieved only 192-bit
security which is kept limited because of the afford-
ability in resource constrained autonomous IoT de-
vices (Table 5).

Table 4 Computational and memory performance of the proposed technique

Mod(p)
bits

SK
(bits)

Encryption time
(μs)

Encryption Energy
(mJs−1)

Decryption time
(μs)

Decryption energy
(mJs− 1)

SRAM
(bytes)

Code Size
(bytes)

43 30 300,484 30.0484 79,200 7.92 1386 20,018

43 292,672 29.2672 76,216 7.6216 1386 20,018

51 419,908 41.9908 84,700 8.47 1420 20,044

32 30 246,304 24.6304 74,900 7.49 1386 20,018

43 280,260 28.026 75,496 7.5496 1386 20,018

51 420,268 42.0268 84,792 8.4792 1420 20,044

62 30 293,284 29.3284 76,020 7.602 1386 20,018

43 290,720 29.072 75,608 7.5608 1386 20,018

51 420,428 42.0428 84,692 8.4692 1420 20,044

Fig. 2 Computation and memory performance of the proposed technique

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 8 of 13

PDF and cross correlation
An efficient encryption method should ensure high level
of uniformity, recurrence, and independence to exhibit
strong immunity against statistical attacks. In Uniform-
ity, encrypted key must be correlated in size, bit-pattern
and exhibit existence probability near 1

n (Noura et al.
2018). To assess uniformity of encrypted data, it is justi-
fied visually through the PDF (Probability Density Func-
tion) graph. Figure 3 plots PDF graph where horizontal-
axis shows original message in ASCII and vertical-axis
shows PDF value against every encrypted ASCII. 1, 2
and 3 corresponds to 43, 30 and 51-bit SKs, respectively.
Similarly, 43, 62 and 32 corresponds to the respective
size (in bits) of mod(p) values. In case of uniformity, Its
observable in PDF plot that every encrypted character
exhibit existence probability close to 1

n.
Recurrence refers to a well scattered data in PDF plot

and strict correlation between curve points for robust
encrypted blocks. It can be seen in Fig. 3 that the PDF

values are well scattered and the average PDF value is
also close to 1

n . Furthermore, Table 6 shows strict cross
correlation between the curve points in all three mod (p)
values. The values for 43-bit SK are strictly correlated
while showing non uniform strict cross correlation for
30 and 51-bit SKs. This non uniformity in cross correl-
ation indicates randomness between the curve points.
Moreover, Avg.PDF of all tested variations is near 1

n

which proves that the keys used in our technique are ro-
bust and has high level of randomness. The strict cross-
correlation and well scattered PDF values increase the
level of permutation due to long random signed integer
values which are devised through mutation in the hash
function, as shown in Fig. 1.

Computational performance analysis
This section deals with performance analysis of the pro-
posed technique with similar ECC based techniques.
The analysis is presented in terms of curve operations

Table 5 Cross correlation of encrypted and non-encrypted data and average PDF values

SK Coordinates mod(5171003929967) mod(4434155615661930000) mod(1019532643)

43-bits x −0.62307341 −0.697613234 − 0.667615167

Y −0.608143659 −0.741037992 − 0.701866233

Avg.PDF 0.071 0.46 0.067

30-bits X −0.176503123 −0.48110427 − 0.468270225

Y −0.171319621 −0.573184911 − 0.46253257

Avg.PDF 0.064 0.063 0.065

51-bits x 0.019286371 0.019283871 0.019284215

y 0.019286496 0.019284471 0.019284614

Avg.PDF 0.049 0.049 0.048

Fig. 3 Probability density function plot

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 9 of 13

and CPU execution time cost in constructing 128-bit
encrypted keys.

Curve operation cost
Robust elliptic curve key generation determines the effi-
ciency of performance due to its heavy computation.
Curve operations are executed on large random prime
numbers with maximum size of 255-bits. These opera-
tions consist of fixed-point multiplication, scaler multi-
plication, point addition, point doubling, multiplicative
inverse and verification. Point addition and point doub-
ling are the main computational exhaustive curve opera-
tions and other operations are subparts of these
operations. Additionally, Table 6 shows cost compari-
sons of our technique with similar techniques where all
mentioned techniques used comparatively more compu-
tational power capable CPUs. Research carried out by
Faz-Hernández et al. (2019) and Chou (2015) used ad-
vanced curve operations in relatively more powerful
CPUs with advance instruction set architectures which
cannot be afforded by 8-bit CPUs. That is why our
work’s CPU expense is slightly higher than Faz-
Hernández et al. (2019) and Chou (2015). Moreover,
Fig. 4 illustrates the comparison shown in Table 6 where
it is observable that our proposed technique utilizes

efficient curve operations in creating 128-bit encrypted
keys.

Encryption cost analysis
This section is based on cost analysis of the proposed
technique in terms of execution time (clock cycles) dur-
ing encryption of 128-bit keys. Table 7 summarizes com-
parative cost analysis of encryption performance of
existing techniques where the techniques utilized similar
curve types (Montgomery) and hardware (AVR family)
to generate encrypted keys over 160-bit field. The tech-
niques adopted different libraries and features to im-
prove encrypted keys’ security and performance. Liu
et al. (2016) used optimal prime field (OPF) library to
optimize scaler multiplication process and compared
with former implementation on Gallant-Lambert-
Vanstone technique on twisted Edward curves. Hutter
and Schwabe (2013) applied networking and cryptog-
raphy library (NaCl) and used Salsa20 encryption
method. The method utilized significant clock cycles,
whereas use of memory was efficient. Düll et al. (2015)
coded in assembly language to reduce CPU cycles by
factor of 1.6x comparing to Hutter and Schwabe (2013)
in several microcontrollers including AVR ATmega2560
and ATmega128. Inter-pulse interval (IPI) and ECG

Table 6 Curve operation performance comparison for 128-bit key generation

Work CPU Curve Key Generation

De Santis and Sigl (2016) ARM Cortex M4 @ 48 MHz X25519 1563.8 (pa + pd)

Oliveira et al. (2017) Teensy 3.1 @ 48 MHz ECqDSA 614 (pa + pd)

Fujii and Aranha (2018) ARM Cortex M4 @ 48–72 MHz Ed25519 & Ed448 353 (pa + pd)

Faz-Hernández et al. (2019) Intel Haswell (AVX2) processors X25519 & X448 18pa + 12pd

Chou (2015) Intel Ivy bridge Curve25519 31pa + 4pd

This Work ATmega2560 @ 16MHz Curve 25,519 25pa + 48 pd

pd Point doubling (Point Multiplication), pa Point addition & subtraction

Fig. 4 Curve25519 based curve operation cost comparison of 128-bit encrypted key generation with similar existing techniques

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 10 of 13

based key generation methods were developed by Altop
et al. (2015) and Zhang et al. (2011) through mixing IPI
random intervals with other features such as physio-
logical parameter generation (PPG), blood pressure and
biometric binary sequences (BSS). The keys were gener-
ated over finalizing 16 sequential samples of IPI. Fur-
thermore, Moosavi et al. (2017) generated 128-bit
encrypted key for body area network (BAN) through
similar IPI and ECG based features. IPI feature of ECG
executed 188 ms for one sample. In total 16 consecutive
cycles of IPIs and Fibonacci linear feedback shift register
(LFSR) based pseudo random number samples were col-
lected to generate a single key. We utilized GMP library
and introduced a novel hash function that achieved bet-
ter performance in encrypting 128-bit keys with 96-to-
192-bit security provisions. Moreover, Fig. 5 illustrates
comparison of execution time cost in microseconds. It
can be concluded that our work generated 128-bit
encrypted keys with affordable internal memory

consumption and enabled 8-bit CPUs in achieving ellip-
tic curve based robust end-to-end encryption.

Discussion
There have been several in-depth studies and implemen-
tations on elliptic curve cryptographies as the functional-
ity and applications of autonomous resource constrained
devices grew. Table 8 provides the summery of similar
implementations of elliptic curve cryptography in IoT
devices, achievable milestones and weaknesses. Apart
from AVR family, ARM machines are comparatively
more expensive and cannot be categorized as resource
constrained IoT devices for stream/block ciphers be-
cause these machines possess 32-bit computation power
and high memory capacity. As a result, with faster CPUs,
advanced encryption algorithms (that require more
memory and clock cycles) can easily be applied.
The novelty in our work is the utilization of GMP li-

brary for related arithmetic calculations in retaining

Table 7 Encryption cost comparison with existing technique in AVR hardware

Techniques Field Support library / feature Hardware Execution Time (ET) RAM

Liu et al. (2016) 160-bit OPF lib ATmega128 5.53 s n/a

Liu et al. (2014) 160-bit OPF / GLV Atmega128 5.5 s n/a

Hutter and Schwabe (2013) 160-bit NaCL Atmega128 22.8 677

Düll et al. (2015) 160-bit Assembly ATmega2560 14.15 s 510

Altop et al. (2015) 160-bit IPI / PPG / BP ATmega128L 225*16 = 3.6 s n/a

Zhang et al. (2011) 160-bit IPI / BSs ATmega128L 0.278*16 = 2.8 s n/a

Moosavi et al. (2017) 160-bit IPI / LSFR PRNG ATmega128L 0.1884*16 = 3 s n/a

Our work a 160-bit GMP / Hash ATmega2560 2.623 s 812

Our work b 1.08 s 812
a192bit security provision
b96bit security provision

Fig. 5 128-bit encrypted key generation performance comparison

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 11 of 13

almost similar security levels and robust encrypted
blocks with 8-bit CPU that consumed only 1-2Kbytes of
RAM. The GMP library enabled our work for faster exe-
cution of the curve operations in generating 128-bit keys
and large random prime integers. Furthermore, tech-
niques mentioned in Table 8 applied different ciphering
methods such as RSA, AES and PRNG. Whereas our
novel hash function performed faster executions during
encryption due to pre-calculation strategy and provided
affordable 192-bit security.

Conclusion
The proposed method is mainly designed to provide ro-
bust ECC based 96-to-192-bit affordable security to re-
source constrained MTC, CPS and IoT devices. The
curve25519 is applied to provide faster execution for
generating secret keys with support from GMP library.
Furthermore, hash function consumed affordable com-
putational and memory consumption in providing good
encryption. Additionally, the proposed method proves to
retain good security level (described in Security analysis
section) with efficient consumption of internal memory.
Moreover, generating keys at very large prime integers,
cost computation that might not be affordable as these
CPUs are cheap and possess less computation capabil-
ities. It can be elaborated from Table 6 that curve25519
used in our method has generated robust secret keys (as
summarized in Table 8) with statistically proven good ci-
pher blocks and costing less computation (as shown in

Table 7). The proposed technique can be applied on all
AVR ATmega 8-bit machines with capability of 32-
64Kbytes internal memory. However, the method is
dependent on GMP (GNU Multiple Precision) arith-
metic library in handling large prime random integers
during scaler multiplication. Devices that lack support
from GMP library will have to use alternative libraries
that can differ in performance.

Supplementary Information
The online version contains supplementary material available at https://doi.
org/10.1186/s42400-021-00078-6.

Additional file 1.

Additional file 2.

Acknowledgments
We acknowledge that the work is not funded by any funding.

Authors’ contributions
Shafi Ullah: Concept and Design of Work, Experiments. Dr. Raja Zahilah: Data
analysis and interpretation. The author(s) read and approved the final
manuscript.

Competing interests
The authors concur that there are no competing interests related to this
research artical.

Table 8 Comparison with existing ECC techniques in resource constrained IoT devices

Article Protocol Curve Hardware Achievement Weakness

Liu and Ning (2008) ECDSA,
ECIES

SECG Curves ATmega - @ 16
MHz

Low security levels (80–96 bits) limited for small MTCDs

Düll et al. (2015) ECDH Curve25519 ARM Cortex M0 @
48 MHz

Robustness
Cost effective

Consume 2x computation due to heavy
curve

De Clercq et al. (2014) ECDLP Mixed
curves

MSP430X
ARM Cortex

Resource constrained device
afforded computation

Side channel attacks horizontal attacks

Liu et al. (2015) ECDSA,
ECDH

NIST P-192 ATmega328P @ 16
MHz

Resource constrained device
afforded computation

Ineffective security, Side channel Threat

Fujii and Aranha
(2018)

ECqDSA Curve25519 ARM Cortex-M4 @
48 MHz

Up to 50% optimized Operations Inefficient implementation technique

Devi et al. (2015) ECDH NIST P-256 3GPP Low execution requirements Database related threats and
optimization

Moosavi et al. (2018b) ECDH ECG based
IPI-PRNG

WLAN
Configuration

Large prime random curve points Secure authorization and effective
authentication of all devices

De Santis and Sigl
(2016)

ECqDSA X25519 ARM Cortex M4 @
48 MHz

Efficient DSA Heavy Curves and computation cost

Oliveira et al. (2017) ECqDSA Ed25519 Teensy 3.1 @ 48
MHz

Improved DSA computation Heavy point arithmetic

Fujii and Aranha
(2018)

ECqDSA Ed25519 ARM Cortex M4 @
48–72 MHz

Efficient Key generation Heavy curve and multi point arithmetic

This Work ECDH /
LPRN

Curve25519 ATmega2560 @
16MHz

Strong curve & extremely low
memory and exec. cost

Performance efficiency depends on
Secret key’s size

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 12 of 13

https://doi.org/10.1186/s42400-021-00078-6
https://doi.org/10.1186/s42400-021-00078-6

Received: 19 November 2020 Accepted: 7 February 2021

References
Altop DK, et al (2015) Towards using physiological signals as cryptographic keys

in body area networks. 2015 9th International Conference on Pervasive
Computing Technologies for Healthcare (PervasiveHealth), IEEE

Aranha DF, Dahab R, López J, Oliveira LB (2010) Efficient implementation of elliptic
curve cryptography in wireless sensors. Adv Math Commun 4(2):169–187

Banerjee S, Patil A (2018) ECC Based Encryption Algorithm for Lightweight
Cryptography. International Conference on Intelligent Systems Design and
Applications, Springer

Bernstein DJ (2006) Curve25519: new Diffie-Hellman speed records. International
Workshop on Public Key Cryptography, Springer

Bernstein, DJ, Lange, T: SafeCurves: choosing safe curves for elliptic-curve
cryptography. 2014. https://safecurves.cr.yp.to. Accessed 1 Dec 2014.

Chou T (2015) Sandy2x: new Curve25519 speed records. International Conference
on Selected Areas in Cryptography, Springer

Chu D, et al (2013) Twisted Edwards-form elliptic curve cryptography for 8-bit
AVR-based sensor nodes. Proceedings of the first ACM workshop on Asia
public-key cryptography, ACM

De Clercq R, et al (2014) Ultra low-power implementation of ECC on the ARM
Cortex-M0+. 2014 51st ACM/EDAC/IEEE Design Automation Conference
(DAC), IEEE

De Santis F, Sigl G (2016) Towards side-channel protected X25519 on ARM
Cortex-M4 processors. In: Proceedings of Software performance
enhancement for encryption and decryption, and benchmarking, Utrecht,
The Netherlands, pp 19–21

Devi GU, Balan EV, Priyan M, Gokulnath C (2015) Mutual authentication scheme
for IoT application. Indian J Sci Technol 8(26):15

Dong J, et al (2018) Towards High-performance X25519/448 Key Agreement in
General Purpose GPUs. 2018 IEEE Conference on Communications and
Network Security (CNS), IEEE

Düll M, Haase B, Hinterwälder G, Hutter M, Paar C, Sánchez AH, Schwabe P (2015)
High-speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers. Des
Codes Crypt 77(2–3):493–514

Faz-Hernández A, López J, Dahab R (2019) High-performance implementation of
elliptic curve cryptography using vector instructions. ACM Trans Math Softw
45(3):1–35

Fujii H, Aranha DF (2018) Efficient Curve25519 implementation for ARM
microcontrollers. Anais Estendidos do XVIII Simpósio Brasileiro em Segurança
da Informação e de Sistemas Computacionais, SBC

Gouvêa CP, Oliveira LB, López J (2012) Efficient software implementation of
public-key cryptography on sensor networks using the MSP430X
microcontroller. J Cryptogr Eng 2(1):19–29

Gura N, et al (2004) Comparing elliptic curve cryptography and RSA on 8-bit
CPUs. International workshop on cryptographic hardware and embedded
systems, Springer

Hinterwälder G, Moradi A, Hutter M, Schwabe P, Paar C (2014) Full-size high-
security ECC implementation on MSP430 microcontrollers. In: International
conference on cryptology and information security in Latin America.
Springer, pp 31–47

Hutter M, Schwabe P (2013) NaCl on 8-bit AVR microcontrollers. International
Conference on Cryptology in Africa, Springer

Liu A, Ning P (2008) TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks. Proceedings of the 7th
international conference on Information processing in sensor networks, IEEE
Computer Society

Liu Z, Seo H, Großschädl J, Kim H (2015) Efficient implementation of NIST-
compliant elliptic curve cryptography for 8-bit AVR-based sensor nodes. IEEE
Trans Inf Forensics Secur 11(7):1385–1397

Liu Z, Weng J, Hu Z, Seo H (2016) Efficient elliptic curve cryptography for
embedded devices. ACM Trans Embed Comput Syst 16(2):1–18

Liu Z, et al (2014) MoTE-ECC: Energy-scalable elliptic curve cryptography for
wireless sensor networks. International Conference on Applied Cryptography
and Network Security, Springer

Montgomery PL (1987) Speeding the pollard and elliptic curve methods of
factorization. Math Comput 48(177):243–264

Moosavi SR, Nigussie E, Levorato M, Virtanen S, Isoaho J (2018a) Low-latency
approach for secure ECG feature based cryptographic key generation. IEEE
Access 6:428–442

Moosavi SR, Nigussie E, Levorato M, Virtanen S, Isoaho J (2018b) Performance
analysis of end-to-end security schemes in healthcare IoT. Procedia Comput
Sci 130(C):432–439

Moosavi SR, Nigussie E, Virtanen S, Isoaho J (2017) Cryptographic key generation
using ECG signal. In: 2017 14th IEEE annual consumer communications &
networking conference (CCNC). IEEE, pp 1024–1031

Noura H, et al (2018) Efficient and secure physical encryption scheme for Low-
Power wireless M2M devices. 2018 14th International Wireless
Communications & Mobile Computing Conference (IWCMC), IEEE

Oliveira T, et al (2017) How to (pre-) compute a ladder. International Conference
on Selected Areas in Cryptography, Springer

Oualha N, Nguyen KT (2016) Lightweight attribute-based encryption for the
internet of things. 2016 25th International Conference on Computer
Communication and Networks (ICCCN), IEEE

Rajesh S, Paul V, Menon VG, Khosravi MR (2019) A secure and efficient
lightweight symmetric encryption scheme for transfer of text files between
embedded IoT devices. Symmetry 11(2):293

Song T, Li R, Mei B, Yu J, Xing X, Cheng X (2017) A privacy preserving
communication protocol for IoT applications in smart homes. IEEE Internet
Things J 4(6):1844–1852

Szczechowiak P, et al (2008) NanoECC: Testing the limits of elliptic curve
cryptography in sensor networks. European conference on Wireless Sensor
Networks, Springer

Wenger E, et al (2013) 8/16/32 shades of elliptic curve cryptography on
embedded processors. International Conference on Cryptology in India,
Springer

Zhang G-H, Poon CC, Zhang Y-T (2011) Analysis of using interpulse intervals to
generate 128-bit biometric random binary sequences for securing wireless
body sensor networks. IEEE Trans Inf Technol Biomed 16(1):176–182

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Ullah and Zahilah Cybersecurity (2021) 4:11 Page 13 of 13

https://safecurves.cr.yp.to

	Abstract
	Introduction
	Related work on ECC
	Proposed curve25519 based lightweight encryption in resource constrained IoT devices
	GMP (GNU multiple precision) arithmetic library
	Elliptic curve (Curve25519)
	Curve25519 equation

	Secret key (SK) generation
	Reference table (RFTAB)
	Hash function of the proposed method

	Experimental results
	Experimental setup
	Avalanche effect
	Example.1

	Memory consumption

	Security analysis
	Key sensitivity
	PDF and cross correlation

	Computational performance analysis
	Curve operation cost
	Encryption cost analysis

	Discussion
	Conclusion
	Supplementary Information
	Acknowledgments
	Authors’ contributions
	Competing interests
	References
	Publisher’s Note

