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Abstract — In remote sensing and environmental mapping, 

Unmanned Aerial Vehicle (UAV) has been used extensively to 

capture images. For many years, digital maps are generated 

by using a method called image stitching. It is a method of 

combining multiple images to produce a segmented 

panorama. Since this method has been commonly used, many 

users produce an accurate map by using commercial software. 

However, a downside of this commercial software is a long 

computational time which is not appropriate for immediate 

mapping activities at chaos areas in particularly during rescue 

missions. This paper proposes a method to speed up the 

process of map generation by using a revised real-time image 

stitching algorithm including the qualitative assessments. In 

this research, the images are extracted from a video taken by 

a drone that flies in a dedicated flight path. These videos are 

then immediately transmitted to a ground station for further 

image processing and computation. The overlapping images 

are stitched and later undergoes features extraction process to 

identify the common features between the images. These 

common features are used to compute homography matrix 

which beneficial for image wrapping. The finding of this study 

suggests that ORB and AKAZE are the most suitable 

descriptors to be used in real-time image stitching because of 

their fast computational speed at adequate level quality. For 

instance, at 5 number of skip frame, ORB is at least 2-fold 

faster than AKAZE and goes up to 10-fold faster than BRISK. 

Keywords— image stitching, UAV, detection, real-time.  

 

I. INTRODUCTION 

 
Image stitching is a process of combining several sets 

of overlapping images into a single and broader image 
known as panorama [25]. This image stitching technique is 
not only limited in constructing panorama images but it is 
also used in other fields such as 3-D image reconstruction 
[3], architecture [6], remote sensing, underwater survey and 
mapping  as well as forensics [18]. It is also known that 
image stitching is intensively involved in mapping the 
disaster-affected areas such as floods, landslides, and 
earthquakes [7, 9].  

 

 However, a major problem of these traditional methods 
of image stitching embedded in commercial software 
requires a lengthy processing and computation time [7]. 
Previous studies confirmed that the volatile processing time 
depends on the quantity of the image, size of the area, and 
precession level [14]. Earlier findings also found that these 
stitched images produced drift error and impair its 
horizontal positional accuracy [10]. Furthermore, there is a 
need for real-time image stitching for immediate rescue 

missions which requires elimination of the lengthy 
post-processing procedures with better accuracy [7, 9].  

 

 

Fig. 1: The workflow of image stitching where the overlapping 
images are stitched into a large image containing seam. 

 

This study discusses the background on feature-oriented 
image stitching in SECTION II. The methodology of 
feature-oriented real-time image stitching algorithm and 
procedures for the experimental setup in SECTION III. This 
study revised, reformulated the earlier real-time image 
stitching algorithm, and finally assessed the quality of 
stitched image using a quantifiable method. The 
experimental setup outcomes are discussed in SECTION IV 
and the conclusion remarks in SECTION V.  

 

II. . BACKGROUND 

 
As shown in Fig. 1, image stitching is composed of 

image registration, reprojection, and stitching, which later 
can be classified further into 2 categories which are area-
based method and feature-based method [8]. The 
overlapping images can be registered either in region-based 
or feature-based methods [13]. The region-based method 
tries to minimise the percentage of error based on the 
difference of overlapping in a respective image to a 
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reference image by iteration. Although this method is 
highly accurate, it is associated with high computational 
cost because of the iteration process in its algorithm. 
Meanwhile, feature based detection impose on the feature 
points which are established in the photos, however, the 
established corner points are widely used to stitch images 
[25]. In this study, we used feature-based stitching 
algorithm to combine the overlap regions. 

 

A. Image Registration 

 
For feature-based registration, previously there were 

several approaches used such as Kanade-Lucas-Tomasi 
tracker (KLT) [13], matching of Harris corners [8], Features 
from Accelerated Segment Test (FAST) [8], Scale Rotation 
Invariant (SIFT) [8, 17] and SURF [20]. If the overlapping 
images cannot be matched because of motion blur in 
pictures or poor homographic, Random Sample Consensus 
(RANSAC) algorithm is used to stitch these images [13]. In 
addition, an algorithm known as features detector will detect 
the feature available in the images. The detected features are 
described using feature descriptor (float or binary point 
descriptor). 

In recent years, there is an increasing number of 
literatures describing some feature detectors and descriptor 
for real-time purposes. There are several descriptors 
invented by the pioneering studies such as;  

i. Oriented FAST and Rotated Brief (ORB) has a 
binary feature detector. The application of ORB as 
a real-time feature detector has been extensively 
used by many researches for especially real-time 
image stitching [5]. Essentially, ORB is a modified 
and refined feature detector of Features from 
Accelerated Segment Test (FAST) and Binary 
Robust Independent Elementary Feature (BRIEF). 

ii. Binary Robust Invariant Scalable Keypoints 
(BRISK) algorithm is an invariant to rotation and 
scaling. Even though most of the feature detection 
method uses float detectors, BRISK is a binary 
feature detector. BRISK and integrated FAST as 
filtering system can easily detect the corner points 
using AGAST algorithm. This method has been 
used intensively for real-time stitching in 
underwater [11]. 

iii. Scale-Invariant Feature Transformation (SIFT) 
was initially introduced by Lowe (2004) has 4 
major steps which are scale-space extrema 
detection, keypoint localization, orientation 
assignment, and defining keypoint descriptors 
[17]. This method is invariant to scaling, rotation, 
and translation transformation [8]. It was used 
previously for real-time image stitching by Rizk 
and the co-workers [21].   

iv. KAZE is a two-dimensional (2D) feature detection 
algorithm and not widely used because of its 
computational time and not suitable for real-time 
application [16]. Hence, the upgraded AKAZE 
algorithm was introduced, which is an accelerated 
form of KAZE. Besides, AKAZE is binary 
descriptor whereas KAZE is a float descriptor [24].   

B.  Image Reprojection    

 

Image transformation can be divided mainly into 2 
subcategories, which are two dimensional to two 
dimensional (2D-2D) and two dimensional to three 
dimensional (2D-3D) [23]. There are several types of 2D 
transformation which include translation, Euclidean, affine, 
and projective Fig. 2. To date, projective and affine 
transformation is the most common type of reprojection in 
image stitching [15]. For affine transformation, all parallel 
lines will be preserved whereas, for projective 
transformation, all straight lines will be kept [2, 15, 23]. It 
was decided that this study will focus on 2D transformation 
which valid for image stitching.   

 

 
 

Fig. 2: Basic example of 2D image transformation [23] 

 

III. METHODOLOGY  

 

There are two subdivisions in this section, (A) 
prerequisites, which discuss in detail the material and setup 
of the experiment and (B) algorithm, which examine in-
depth the algorithm development process for real-time 
image stitching. 

A. Image processing device  

 

In this study, we used a computer Intel i7-1070F, 
16 GB RAM, and 8 GB memory graphic processor as an 
image processing tool. All the image processing is executed 
at a ground station where the computer is placed. Besides, 
we filmed the aerial images using a multicopter DJI Mini 2 
at altitude 50 meters from the ground using its build-in 
camera (1/2.3” CMOS, 12 megapixel, 2720×1530 video 
resolution, mp4 format, SZ DJI Technology Co., Ltd., 
China). As the aim of this study is to formulate the real-
time image stitching algorithm, the video transmission 
device was excluded. In this study, the image stitching is 
considered real-time when the algorithm produces near-
instantaneous output with very short latency requirements 
while still continuously streaming the input images [4]. 
Multicopter flew at the specified altitude, recorded, and 
stored the aerial footages in a SD card, before manually 
transferred to the image processing computer (Fig. 3).  
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Fig. 3: Image stitching workflow 

 

B. Development of revised algorithm  

 

 
 

Fig. 4: Image stitching using the earlier versions of algorithm. See Fig. 5 
to see the revised algorithm. 

 
The algorithm used in this study was synthesized based 

on the pioneering studies, which include SIFT, ORB, 
BRISK, and AKAZE to detect features in every frame of 
prerecorded video [1, 4]. In this study, we used different 
descriptors to investigate and further identify the most 
appropriate feature detector for real-time image stitching. In 
the most recent studies, most of the researchers have tended 
to focus on ORB as a feature detector compared to KAZE 
and BRISK [4]. The process began with feature detection of 
the first frame I� and second frame as I��� of the video, then 
followed with estimation of a homography using the 
RANSAC algorithm (exclude bold frame lines, Fig. 5). The 
homography matrix was computed using  I���  as reference 
and image  I� was wrapped according to the computed 
homography into  I� (s stands for stitch). Then, both I� and 
I��� were stitched together to form I�. Finally, the stitched 
image, I� was assigned as I� then it continues the iterative 
process until all the frames in the video fully computed (See 
Fig. 4 for the final output image).  

So far, it was discovered that earlier algorithm 
(unrevised SIFT) uses a longer computational time (2-fold 
slower compared to the present algorithm, see Fig. 6), and 
the final stitch image is in the perspective of the last frame 
of the video as shown in Fig. 4. The stitched image has poor 
quality with a longer computational time because of the new 

frame, I��� was chosen as the reference frame to compute 
the homography matrix. The earlier algorithm produced 
distorted images because it changed the perspective along 
with the video (Fig. 4 as an exemplary case). In addition, the 
first frame of the video is not much visible because the 

stitched image wraps according to the new frame 
respectively. 

 

 

Fig. 5: Improvised image stitching flowchart. The grey blocks describe the 
additional and revised process. 

 
Therefore, the earlier algorithm was later improved 

whereby the homography matrix was computed using frame  
I���  to  I� (Fig. 5). Then, the homography matrix was used 
to wrap I��� in respective I� to form I�	. After that, the 
wrapped image I�	 was stitched with I� and formed  I�. 
I��� was then set as  I� and finally, the homography matrix 
was added continuously to ensure the new frame wraps 
according to the initial reference frame of the video.  

 

 

C. Qualitative assessment 

 
SSIM is a measurement of structural similarity between 

the reference image and target image [22]. The value of 
SSIM ranges from 0 to 1 (1 indicates that both images have 
the same structural similarity and 0 the vice versa). In 
addition, SSIM can detect the loss of information between 
images, but it requires a reference image to identify the 
structural similarity [22]. The SSIM is calculated using 
various windows 
 and � in the target image and reference 
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image. The following is the mathematical equation of 
SSIM: 

 

( )
( )( )

( )( )
1 2

2 2 2 2

1 2

2 2
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x y x y

c c
SSIM x y

c c

µ µ σ

µ µ σ σ

+ +
=

+ + + +
 (1) 

Where, 

x yµ µ   Mean value for the window 
 and � 

,x yσ σ   Variance value of window 
 and � 

xyσ     Covariance of window x and y 

c1, c2      Product of dynamic range of pixel value (8-bit 
image pixel value is 255) with a coefficient 
(c1 0.01 and c2 0.03) 

 
PNSR is a ratio between the maximum signals to the 

noise present [9, 27]. If the value of PNSR is high, it 
indicates less noise is present in the image and vice versa if 
the value is low. PNSR does not have a set of range values 
like SSIM. Its value can range from 0 up to infinity [27]. 
However, PNSR requires a reference image to evaluate the 
target image. Following is the formula of PNSR: 

 

2

1010log
MAX

PNSR
MSE

 
=  

 
   (2) 

 
Where MAX is the maximum pixel value in both images. 
For example, an 8-bit image will have a maximum pixel 
value of 255. MSE is the means square error between two 
images. The following is the formula for MSE: 
 

( ) ( )( )
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 
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= −  (3) 

 
Where MN refers to the size of image. I refer to the 

reference image, and K is the target image that contains 
noise. 

 
RMSE is derived from the formula of MSE. RMSE 

indicated the root-mean-square error in between the target 
image and reference image. Similarly, RMSE requires a 
reference image to evaluate the target image. Following is 
the formula for RMSE: 

 
 

 

( ) ( )( )
21 1

0 0

1
, ,

M N

x y
MSE I x y K x y
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− −
 
= =

= −  (4) 

 
‘MN’ refers to the size of the image, ‘I’ refers to the 

reference image and ‘K’ refers to the target image.  
 

BRISQUE is preferred to evaluate the 2D plane image 
quality because it is specifically designed for 2D image 
features [12]. Vaidya and co-workers found that BRISQUE 
has one of the suitable methods to identify distortion in the 

image [26]. BRIQUE model uses natural scene statistics to 
determine the image quality. If there is a presence of 
distortion in the target image the value of BRISQUE would 
be high and the lower BRISQUE score will represent no 
distortion [19]. The model of BRISQUE score has been 
trained with a distorted image with such as blur and noise 
[19, 26].  

 

IV. RESULT AND ANALYSIS    

 

A suitable feature detector is needed to be identified for 
this real-time image stitching algorithm. Thus, the 
researchers performed the computation using the 
improvised algorithm explained in Fig. 5 to detect the 
detector. The experiment was executed by varying the 
number of skipped frames versus the average computation 
(seconds) using 5 different detectors. 

 

 
 

Fig. 6: Computational time at a different number of the skipped frame. 
BRISK, SIFT, AKAZE, and ORB are revised-algorithm whereas 
unrevised SIFT is the earlier version of algorithm. The number of 
skipped frames (NSF) was calculated by dividing the total frames 
of drone video with frames used. For example, the NSF value is 1, 
which means all frames were used accordingly. 

 
Typically, the computational time of all detectors was 

significantly reduced as the number of the skipped frame 
numbers increase (Fig. 6). ORB had the fastest 
computational time compared to other detectors. ORB 
detectors have binary descriptors with a faster 
computational time, while SIFT detectors use float 
descriptors during computation. Meanwhile, AKAZE 
which also use binary descriptor demonstrated fast 
computation equivalent to ORB. However, this fast 
computational time has an undesirable implication in 
reducing the stitching quality which might fail to meet the 
mapping requirement. 

Image quality evaluation has a major problem because 
human eyes-based assessment is very subjective and tends 
to differ from person to person [9]. Until recently, little 
attention has been paid to discuss the stitch image quality 
assessment [22]. In this study, we adopted the assessment 
methods for the stitched images invented by the pioneering 
research [1, 22]. During the assessment, the last frame was 
used as a reference image to evaluate the cropped part of the 

RMSE 
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stitched image. Then, the images were evaluated in the 
prospect of Root Mean Square Error (RMSE), Signal-to-
Noise Ratio (PNSR), and Structural Similarity Index 
Measurement (SSIM). In addition, the BRISQUE score is 
also identified as one of the methods to access the quality of 
image even without a reference image. 

 

 

Fig. 7: The representative snapshot of a stitched image using AKAZE, 
BRISK, ORB and SIFT when NSF is 5. See 
https://bit.ly/2SySv85 for the output of the improvised algorithm. 

 

According to the plotted results (Fig. 8), RMSE values 
increase with the increasing values of NSF. According to 
RMSE values, the most efficient stitching quality occurred 
when the NSF value ranged from 1 to 5. By compromising 
the computational time and the noise present in the stitched 
image, the maximum number to skip frame is 5, because 
most of the intersection point is in between 1 to 5 NSF 
values. Despite having a 5% more RMSE value than other 
detectors, ORB showed a high-quality stitch image with a 
faster computational time compared to other feature 
detectors (ORB  6 -fold faster than SIFT, 10-fold faster than 
BRISK, and 2-fold faster than AKAZE). The PNSR values 
reduce as the number of skipped frames (NSF) increased 
and the highest PNSR value achieved by the BRISK 
algorithm. BRISK formulation produces relatively good 
quality images with minimum distortion or visible seams. 
Stitched images using ORB formulation have the lowest 
PNSR value compared to other feature detectors. Notably, 
there was no significant difference in the plotted SSIM 
values except for ORB because it has the least structural 
similarity compared to the other detectors (1% lower than 
SIFT, and 2% lower than AKAZE and BRISK), and it has 
the least structural similarity compared to the other 
detectors. ORB algorithm, on the other hand, has the lowest 
computational time and high structural similarity. 
According to the BRISQUE score, ORB has the most 
distortion in its stitched image compared to other detectors 
(13% higher than AKAZE, 21% more than BRISK, and 
12% higher than SIFT), but it computation time is relatively 
low compared to other detectors. 

 

 

 

Fig. 8: The number of skip frames versus RMSE, PNSR, SSIM, and 
BRISQUE SCORE. A higher value of PNSR values explains less noise is 
present in the image compared to the reference image. The SSIM value 
ranges from 0 to 1, to describe the structural similarity between both images 
where 1 denotes a similar image is detected. Besides, higher values of 
BRISQUE score denotes more distortion is present in the stitched image. A 
higher PNSR value reveals less noise existed in the image compared to the 
reference image. 

 

 

Authorized licensed use limited to: UNIVERSITY TEKNOLOGI MALAYSIA. Downloaded on June 01,2022 at 03:25:59 UTC from IEEE Xplore.  Restrictions apply. 



 

 

V.  CONCLUSION  

 

In conclusion, real-time image stitching is a needed 
solution, especially in remote sensing and rescue mission 
purposes. ORB and AKAZE are suitable descriptors to be 
used in real-time image stitching because of their fast 
computational speed. As a future recommendation, parallel 
processing is suggested to reduce the computational time. In 
addition, high-resolution aerial images are suggested to be 
used in image stitching to improve the spatial quality of the 
stitched image. Finally, the geometrical quality of the 
stitched image can be improved by applying geo-
referencing procedures which progressively warp and fits 
the image to a geographic location.  
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