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a b s t r a c t 

The study quantitatively assesses the ability of five Global Circulation Models (GCMs) in 

the fast track of Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) to repro- 

duce the observed precipitation climatology over the Gongola river basin of Nigeria for 

the period 1982 −2004. The recent occurrences of recurrent flooding episodes in the basin 

is alarming. Hence, the models’ present-day precipitation is evaluated relative to Global 

Precipitation Climatology Centre (GPCC) observational datasets based on spatial analysis, 

statistical measures and climate indices at annual, monthly and daily cycles to identify the 

most appropriate GCM for impact model in the basin. The results show that climate mod- 

els replicate the annual precipitation pattern well, both spatially and in magnitude with 

varying margins. Moreover, the GCMs captured the orographic pattern in the Jos plateau 

and the general decreasing precipitation trend towards the basin’s northeast. amongst the 

GCMs, IPSL-CM5A-LR better captured the rainy season in the basin extents from April to 

October and May to October respectively over the Jos plateau and other regions, with max- 

imum rainfall occurring in August, exhibiting a unimodal pattern. The HADGEM2-ES how- 

ever, better represented the most occurring rainfall intensity in the basin (5 to 50 mm 

hr −1 ) in most regions. The degree of pattern correspondence was found highest for IPSL- 

CM5A-LR with a correlation coefficient of 0.73. Only HADGEM2-ES was able to capture 

the spatial variability of maximum consecutive dry days over the study domain, increas- 

ing from 150 days around the Jos plateau to 200 days over Uba plain. In any case, the 

HADGEM2-ES appeared to be the most promising model for simulating the extreme con- 

ditions over the Gongola basin and can therefore be selected for the application of hydro- 

logical impact model for adaption strategy. 
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Introduction 

The role of precipitation on Earth’s hydrological cycle is vital, hence well documented in the literature. It constitutes one 

of the most commonly used climate variables in hydrological impact assessments [7 , 12] . In the timeline of African Union’s

Agenda 2063, the need to develop strategies to mitigate risks and threats arising from both natural and human disturbances 

were emphatically stressed, particularly the climate change impacts. By the way, improved understanding on the current and 

future hydrological conditions of the region can help realise the set goals. Climate scientists rely mainly on GCM outputs 

to estimate present/future precipitation globally [2 , 9] . However, the GCMs are well known for their coarse spatial scales

with attendant uncertainties [28] , which must be downscaled to suit local scale hydrological impact studies. Dynamical and 

statistical downscaling techniques are used to transfer coarse GCM simulations to finer resolution for impact assessments 

[14 , 16] . 

Statistical downscaling has some limitations [10] , which include; temporal stationarity of the models’ correction func- 

tions for future periods, alteration of the physical consistency of climate models and, notably inability of the downscaling 

methods to account for uncertainties in the reference observation datasets [23] . Therefore, dynamical downscaling is of- 

ten suggested for reliable downscaling of climate projections. However, the dynamical downscaling approach is known for 

its high computational cost. Moreover, the RCMs take inputs from the GCMs which remained the driving model. Thus, a 

poorly performed GCM can significantly affect the performances of the RCM [1] . As a consequence, many researchers have

to recourse to the use of statistical downscaling methods as effective alternatives to dynamical downscaling. 

Statistical downscaling (i.e. disaggregation method) uses bias correction (BC) approach to correct model output, resulting 

in lesser systematic errors. A quite number of BC methods have evolved and had been used by different authors including,

quantile mapping [5 , 20] , histogram matching [27] , mean monthly factor [11] , local intensity scaling [30] , gamma-gamma

transformation [33] and delta change method [14–16] . Statistical downscaling has several advantages, including low com- 

putational cost, flexibility and ease of use [16 , 23] . Recently, trend preserving bias correction methods have been developed

to keep the original climate change signal of GCMs in future projections. Therefore, it can provide reliable projections of 

climate like dynamical downscaling models [16] . 

In recent years, there have been accelerated research efforts amongst climate scientists to improve the spatial resolutions 

of GCMs through downscaling to suit studies at a regional scale. For example, the Inter-Sectoral Impact Model Intercom- 

parison Project (ISI-MIP) and Coordinated Regional-climate Downscaling Experiment (CORDEX). ISI-MIP is an international 

project founded to provide easy access to information necessary to better assess global climate change impacts and enhance 

regional climates’ understanding ( [13 , 19] ). The ISI-MIP provides statistically downscaled projections of five CMIP5 GCMs at a

global scale. Outputs of the models are available in high resolution, as they have been downscaled to 0.5 ° x 0.5 ° spatial res-

olutions with a temporal scale of a standard Gregorian calendar [16] . The ISI-MIP approach premised on a trend-preserving

statistical bias correction method, which uses a constant offset for air temperature or multiplicative correction factor in the 

case of precipitation to correct the observed and simulated anomalies datasets in the historical period irrespective of the 

timescale. For these advantages, ISI-MIP models have been widely used for impact assessment studies in different regions 

of the globe. Though the performance of ISI-MIP GCM simulations has been found good globally, it does not guarantee their

performance in every region as different regions of the world have a particular climate [22] . This indicates the need for

performance assessment of bias-corrected GCMs at a local scale before their use in impact assessment. 

Different researchers have used various metrics in different regions of the world to evaluate GCMs. For instance, in a 

comparative analysis of 14 GCMs of CMIP3 and CIMP5 over China for ten years, Sun et al. [35] found that the GCMs from

the two projects captured the observed patterns of the probability density functions (PDFs) well in all regions. Although 

models from both projects showed improvements in simulating mean daily temperatures than precipitation, CMIP5 showed 

better results, consistent with the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR5) 

[18] . However, there are no improvements whatsoever in CMIP5 mean daily precipitation simulations over its counterpart. 

Also, Zebaze et al. [39] assessed Africa’s historical climate in the multimodel mean (MMM) of 28 CMIP5 GCMs for the period

1975–2005. They showed the highest correlation coefficients with respect to CRU data. Although the RMSE were minimal, 

the MMM showed weak warming over most regions, and they lack the skills to capture the sign and magnitude of the

observed precipitation trends. Akinsanola et al. [4] compared outputs of nine dynamically downscaled CMIP5 models over 

west Africa with Global Precipitation Climatology Project (GPCP) datasets for 25 years period (1980 to 2005). They used 

various statistical measures for the evaluations and demonstrated that all the GCM simulations agree to a large extent with 

GPCP spatial patterns over the study domain. They, however, noted weak performance over the Guinea coast. Shiru et al. 

[34] assessed the similarities in 20 CMIP5 models with reference to GPCC precipitation observations and CRU temperature 

datasets during 1961–2005. They selected the best four performing models for future drought projections over the region. 

Furthermore, Hassan et al. [14] evaluated the performances of 26 CMIP5 models for the common period 1980–2005 with 

CRU observational daily precipitation and temperatures using symmetrical uncertainty (an entropy-based) method over the 

Niger Delta region of Nigeria. They also selected the four best performing models for future climate projections. 

The focus of most evaluations in previous studies had been on annual, seasonal, monthly and even interannual time 

scales, with only a few assessments on a daily scale [35] . In this regard, several researchers (e.g. [26 , 35] ) argued that biases

inherent in a daily dataset might be concealed if aggregated to monthly, seasonal or longer averages. They further opined 

that mean and standard deviations do not allow thorough assessments of the entire data distribution. To overcome this 

shortcoming, some researchers have emphasised the need to use continuous distribution functions (CDFs) and some ex- 
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Fig. 1. The topography and physiographic units of the study area. 

 

 

 

 

 

 

 

 

 

 

treme climate indices to explore the capability of GCMs in simulating the features of daily precipitation and extreme events 

( [36 , 32] ). 

In this study, the authors seek to assess the Coupled Model Intercomparison Project Phase 5 (CMIP5) outputs in ISI-MIP 

in replicating historical precipitation indices in the Gongola basin, northeast Nigeria. Different climatological descriptions, 

statistical indices, including CDFs and few selected climate indices with emphasis on a daily time scale, were used to select

the most appropriate model for hydro-climatological impact assessments over the region. The Gongola basin provides water 

resource to several communities in the northeast of Nigeria, spreading across the Jos Plateau, Bauchi, Gombe, Borno and 

Adamawa States. The basin is well known for its major contribution to the annual runoff volume of river Benue (to the

tune of 60 billion m 

3 ) [21] , owing to its large size, estimated to be approximately 56,0 0 0 km 

2 . The basin is vulnerable to

extreme weather conditions due to large seasonal and spatial variabilities, with attendant natural and human-induced dis- 

asters. Despite these tendencies, evaluation of the General Circulation Model (GCM) precipitation outputs necessary to drive 

hydrologic models in the basin for mitigating negative impacts are non-existence, which leaves a wide research vacuum that 

should be filled. The present study is perhaps the first of its kind in the basin as far as literature search is concerned. It is

therefore obvious that studies to extensively evaluate these much-needed climate variables as basis for vulnerability assess- 

ments in the basin and perhaps provide the possible outlook of future changes in climate is lacking. Consequently, the detail

evaluation on a daily timescale in this study provides useful information on GCMs simulations’ capability to replicate rainfall 

extremes and their skills in capturing convective storm in the Gongola basin. Besides, the spatial analysis allows thorough 

assessments of the GCMs in replicating rainfall variability due to geographical variation and topographical heterogeneity in 

the basin. The output from this study is useful for selecting most appropriate GCM for future precipitation projections and 

can serve as input data for impact modelling especially in hydrology and environmental management. Lastly, the evaluation 

procedure proposed can be adopted for better assessment of GCM performance for various tailored hydro-climatic studies 

in any region. 

Study area and dataset 

The study area 

The topography and major physiographic units of the Gongola basin are shown in Fig. 1 . The Gongola river emerges from

the Jos Plateau (western region) at an elevation of approximately 1750 m above mean sea level (amsl), which later flow

passed the high Bauchi plains over basement complex formations where the elevation drops to about 600 m amsl. Inciden- 

tally, there exist isolated inselbergs that rise abruptly about 300 m above the surrounding plains. Consequently, the river 

flows northeast to Dindima, where it plunges to a highly porous Kerri-Kerri sandstone plateau, consisting of less relief than 

the Bauchi plains. The river became perennial after Nafada and advanced eastward towards Dadin Kowa. The physiography 

at this region consists of mixed cretaceous sediments comprising of plains of clays, shales and limestones and ranges of 

sandstone hills. Biu plateau and high ground exist to the south of the river, consisting of undulating plains of approximately

900 m amsl, which formed the major left bank tributary – the Hawal. The middle and lower reaches of Hawal lie over base-

ment complex rocks as well, consisting of several inselbergs. The combined flows of the Gongola and the left bank tributary

finally debauches into River Benue at Numan, Adamawa state at 130 m amsl. 
3 
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The Gongola is particularly a large river basin in the northeast of Nigeria that covers a drainage area of about 56,0 0 0

km 

2 with the main river length of approximately 570 km. It is the largest flow contributor to Benue at the right arm, with

an estimated annual runoff volume of 60 billion m 

3 [21] . The basin lies in two climatic zones: The Northern Guinea zone

and the Sudan zone. The difference in climate between the zones is significant and therefore controls the micro-climate of 

the basin. For instance, the mean annual rainfall varies from 1200 mm around the Jos plateau to about 700 mm somewhere

at the northern boundary of the mixed cretaceous sediment zone. The rainfall distribution premise in the five summer 

months, May to September inclusive. The basin’s annual temperature is 26 °C [21] though to be lower on the plateaux. 

The basin is blessed with abundant water resources and vast arable lands for both irrigated and rain-fed agriculture. It 

thus has the potential to boost the local and national economies. Sylla et al. [36] has projected the likely occurrences of

more frequent and high-intensity precipitation events over West Africa and Sahel, particularly over the Guinea Highlands 

and Cameroun Mountains, including the Jos plateau, during May and June. The effects of these extreme conditions are 

evident in the basin in recent years. Consequently, the Gongola river overflowed its bank in summer 2019, leaving one 

person dead. Over 100 houses were destroyed, including several farmlands in Dindima and several other communities along 

its banks in Bauchi state, rendering many homeless [8] . Despite these adverse conditions, studies to assess the capability

of CMIP5 models in the basin are still minimal, and a clear picture of possible future incidence is lacking, which remained

a challenge. 

Present-day observed climatology 

Like most other regions of Africa, one of the key challenges in evaluating the performances of GCM simulations over 

Nigeria, including the Gongola basin, dwells in paucity of high-quality ground-based observations at appropriate spatiotem- 

poral scales. Consequently, this study chooses the GPCC v.2018 precipitation dataset as reference data due to its acceptable 

performance in previous studies and quantitative accuracy [22] . Studies in recent literature where GPCC dataset had been 

used for climate model evaluations include Ahmed et al. [2] over the sub-Himalayan region of Pakistan, Agyekum et al. 

[1] over the Volta basin in west Africa, Homsi et al. [17] over Syria, Nikulin et al. [24] over Africa domain, and Shiru et

al. [34] over Nigeria. The data is gauge-based precipitation product freely available at 0.5 ° grids over the entire global land

surface for the period 1982 −2016. The GPCC receives data from over 35,0 0 0 weather stations per month worldwide [40] . In

addition, the GPCC dataset undergoes rigorous quality control checks, which include visual and semi-automatic processes. 

The GPCC utilises the SHEREMAP interpolation method and concentrates on anomalies interpolation over the global surface 

rather than interpolating absolute values, leading to improved accuracy of the datasets [31] . This accounts for why the GPCC

can accurately reproduce precipitation pattern and amount over rough terrain [3 , 31] . 

Climate models 

Five CMIP5 GCMs were selected in the fast track of Inter-Sectoral Impact Model Inter-comparison Project (ISI-MIP; 

https://www.isimip.org ): GFDL-ENSM2M, HADGEM2-ES, MIROC-ESM-CHEM, IPSL-CM5A-LR and NoerENS1-M for this study 

(Table SM1 gives the overview of the models). The features and limitations of CMIP5 models are well documented and 

extensively studied as compared to CMIP6 in many literatures. The motivation for the selection of a given sets of climate

models are guided by the type of study and the purpose of the research. Moreover, the ultimate choice of GCMs for a partic-

ular application lies in identifying the best models from the pools of available GCMs [6 , 28] . Also, Anandhi et al. [6] debated

that the selection of GCM models are primarily based on three general approaches including; the use of all available climate

models, multimodel ensemble mean selected from a particular set of GCMs and selecting a subset of climate models which 

are considered most appropriate for specific impact models. Based on these facts, five GCM outputs are selected from CMIP5 

database in this study as contained in the fast track of ISI-MIP for evaluation. A detailed description of the method is given

in Hempel et al. [16] . The fidelity of the CMIP5 climate models to simulate the present-day climatology was investigated for

a common period of 1982–2004. 

Methodology 

The capability of the GCMs to replicate the observed climatology over the six physiographic units and the whole Gongola 

basin are analysed relative to observational data. The climate models were directly compared with the GPCC datasets for 

the annual, monthly and daily timescales since both data have been the same horizontal spectral resolution of 0.5 ° lon/lat. 

Fig. 1 presents the location map of the Gongola basin, including the six physiographic units. The annual scale analysis 

considers the climatological description using the spatial description of the study’s rainfall pattern. The area-averages of the 

annual cycle for the six physiographic units and the whole Gongola basin were computed to examine the models’ skills in

replicating the precipitation patterns. 

Because of the importance of model performance in daily timescale in hydrological impact assessment, more detailed 

statistical analyses were carried out to select models having better skills according to Cumulative Distribution Function 

(CDF), Taylor diagrams, and some other statistical indices along with few climate indices generally used for characterisation 

of daily rainfall and extreme events. The use of CDFs for performance evaluation of climate models has become popular in

recent literature (e.g. [4] ) due to its ability to assess the datasets’ entire distribution thoroughly. The Taylor diagram, on the
4 
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Fig. 2. Flowchart of the methodology adopted for this study. 

 

 

 

 

 

 

 

one hand, presents the basic statistics such as; the correlation (r), root mean square difference (RMSD), and the deviations 

(σ ) , which measures the temporal patterns, errors and variabilities, that summarise the relative importance of assemblage 

of various models [38] , while the statistical indices, on the other hand, considers the refined index of agreement ( d re f ) 

[25] , mean bias error (MBE), and mean absolute error (MAE) to further assess consistency in simulations [2] . Table SM2

summarises the few selected climate indices. 

The extreme climate dataset quality was checked using R ClimDex (1.0) – a source code in R software packages, as 

contained in Zhang and Feng (2004). Also, the climate indices’ evaluations considered the use of the same software package 

as utilised by Zhang et al. (2012; 2019). This detects outliers and excludes them from the dataset before analysis. The CDD,

CWD and the PRCPTOT were analysed using the same software package. 

Results and discussions 

The CMIP5 climate models’ skills in replicating the observed precipitation in annual, monthly and daily timescales over 

the study domain are hereby presented and discussed. 

Mean annual climatology 

The spatial distribution of the climatological mean of annual total wet-day precipitation (PRCPTOT) over the Gongola 

basin is shown in Fig. 2 for GPCC, the GCMs and their ensemble mean. On a general note, the GCMs rainfall climatology is

consistent with the GPCC dataset, though with varying levels of accuracies. Nonetheless, the highest amount of precipitation 

was noted over the Jos Plateau. The rainfall maximum observed over this region has a value of 1200 mm/a, which persis-

tently decreases towards the northeast, where the value is about 575 mm/a around Uba plain in the Sudan Savannah region.

The high annual rainfall recorded over the Jos plateau was due to orgraphic effects which is known to play an important

role in the West Africa precipitation patterns consistent with Akinsanola et al. [4] . All the models well replicate the general

north to south gradient of precipitation. Interestingly, all the GCMs replicate the Jos plateau’s orographic pattern well but 

generally overestimated the observed rainfall amounts over most parts of the study domain. GFDL-ESM2M has the best 

replica of the observed precipitation, followed by IPSL-CM5A-LR, with HADGEM2-ES being the least. 

It was observed that no single model consistently outperforms individual models in the subregions and over the whole 

study domain, except the ENSMEAN, which recorded the lowest bias in all ramifications. However, GFDL-ESM2M and 

HADGEM2-ES showed better performance in most cases and are found to outperform ENSMEAN over Uba plain. 
5 
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Fig. 3. Spatial distribution of mean annual rainfall over the Gongola River Basin for the period 1982 −2004 for (a) GPCC, (b) GFDL-ENSM2M, (c) HADGEM2- 

ES, (d) IPSL-CM5A-LR, (e) MIROC-ESM-CHEM, (f) NoerENS1-M, and (g) ENSMEAN (h) GPCC minus Models. 

 

 

 

 

 

 

 

Annual cycle of monthly climatology 

The ability of CMIP5 GCMs and their multimodel ensemble mean to reproduce the annual precipitation cycle relative 

to GPCC over the subregions and the entire Gongola basin is investigated as shown in Fig. 3 (a-h). Over the Jos plateau,

the rainy season’s length spreads across six summer months, usually from April to October, with peak rainfall of 245 mm

in August, having a distinctive unimodal peak. The tendencies of the models to accurately simulate precipitation patterns 

depend largely on their ability to effectively simulate the meridional movement of the intertropical convergent zone (ITCZ) 

[1] , which controls spatial distribution of rainfall over Africa [39] . The models replicated this trend. However, they overes-

timated the peak rainfall amount in all cases. The Bauchi high plain exhibits similar characteristics to the Jos Plateau but

with a relatively less peak rainfall of 235 mm. Here, the models have a better match during the onset and retreat than over

the Jos plateau. 

Furthermore, the GPCC observation indicates the length of the rainy season to stretch between May and October in other 

subregions, having its peak rainfall amount in August. These features are well captured by all the models, except that they

all overestimated the highest rainfall amounts as noted in Jos and Bauchi, though with varying magnitudes. The northward 

propagation and gradual retreat of rainfall in the basin concur with West African Monsoon’s identifiable feature [4] . Despite

the overestimation, the IPSL-CM5A-LR outperformed the individual models, including the ENSMEAN, to replicate the annual 

precipitation cycle. 

The Guinea mountains, Cameroun highlands and the Jos plateau are three orographic regions of the West Africa (WA) 

with identifiable precipitation maxima and temperature minima which greatly influence the micro-climate of the re- 

gion. On the whole, the rainfall variability over West Africa (WA) are particularly influenced by the major climatological 

feature known as the West African Monsoon (WAM). Consequently, the monsoon variability itself is controlled by a num- 

ber of factors such as the continental landsurface conditions, sea surface temperatures (SSTs) and atmospheric circulations. 

The rainfall producing systems are themselves encompassed in the region’s atmospheric circulation schemes consisting of 

African Easterly Jets (AEJ), Africa Easterly Waves (AEWs), ITCZ and Tropical Easterly Jets (TEJs). In any case, the amount 
6 
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as well as the variability of rainfall over the region are modulated by the position and the intensity of these atmospheric

features signifying the importance of the interactions between these elements on the WAM [36] . Apart from the well es-

tablished orographic rainfall over the Jos plateau, convective storms prevails over other regions particularly as one moves 

towards the northern fringes of the basin. Convective storms are characterised with high intensity and short duration which 

often combine with the high orographic rainfall in the basin to cause recurrent floodings. Thus, accurate representations of 

the complex interactions between the WAM over the basin requires modelling for improved knowledge on the region’s cli- 

mate to global warming has remained a haculian task. Nonetheless, the computational requirements of GCMs to accurately 

represent these complex features over a long period often affect their skills. In any case, the systematic bias generated by

the RCMs along with those inherited from the parent GCMs are identified as the major sources of errors, which are due

to difficulties in predicting natural variability, imperfection of model physical parameterizations, spatial scale mismatch and 

perhaps observational uncertainties. However, the skills of the bias corrected GCMs in the study to replicate the precipi- 

tation maxima over the Jos plateau due to orography and the convective storm at the northern fringes of the basin along

with mutual agreement of the models in terms of mean annual cycle demonstrate the skills of the models to reproduce the

precipitation of the Gongola basin and the larger WAM features such as AEWs, AEJs and TEJs. 

Evaluation of daily precipitation 

Assessing the fidelity of daily rainfall climatology becomes necessary owing to its relevance in hydrologic impact studies. 

This account for the sole reason why more attention was being paid to the assessment in this research. The CDFs of daily

rainfall between the observational data and the models, including their ENSMEAN are presented in Figure SM1 (a)-(g) to 

show the relative frequency of rainfall occurrence. The majority of the rainfall in the basin occurs at the rate 5 mm hr −1 to

50 mm hr −1 (hereinafter referred to as ’most occurring rainfall"). This places the rainfall into light-moderate (5 to 10 mm

hr −1 ), low heavy (10 to 20 mm hr −1 ) and high heavy rainfall (20 to 50 mm hr −1 ). This is the interval where the rainfall is

noted to either be under- or overestimated. There is an almost perfect match for rainfall less than 5 mm in all the subregions

and the whole basin. However, the region of extreme rainfall ( > 50 mm hr −1 ) differs considerably from region to region

and are particularly difficult to interpret. 

Over the Jos Plateau, the probability of having 20 mmhr −1 rainfall intensity and below in HADGEM2-ES and ENSMEAN 

was measured to be 0.90 indicating a close match with the observed probability which recorded 0.86. Thus, these two 

models measured the observed frequency closely and captured the most occurring rainfall amount reasonably well, though 

with slight underestimations. Other models either under- or overestimate the rainfall amount. The discrepancies are more 

in Bauchi plains between the models and the observational data. Although the datasets exhibit similar trends, even the 

best performing model (HADGEM2-ES) substantially overestimate the observed frequency of the most occurring rainfall. An 

improved representation of the observed rainfall by MIROC-ESM-CHEM over Kerri-Kerri sandstone plateau and Biu plateau 

were noted with probability of 0.80 for the model and the observed CDFs for the rainfall intensity of 20 mm. However, all

the climate models underestimate the observed pattern of the rainfall distribution in these regions. The rainfall distribution 

of ENSMEAN showed strong performance over the whole Gongola basin along with GFDL-ENSM2M. They have probability 

of 0.96 for rainfall intensity less or equal to 20 mm placing them as the most closely matched dataset to the observed CDF

with probability of 0.92. However, the performances of MIROC-ESM-CHEM, HADGEM2-ES and NoerESM1-M appear to be 

relatively weak over most regions. Overall, the ENSMEAN provide the best fit over the entire study domain with encouraging 

results. 

Further evaluations of the daily precipitation dataset consider the use of Taylor diagrams to assess the models’ skills and 

their ENSMEAN since the acceptable performance of GCMs at annual, seasonal and monthly timescales may not imply good 

performance on a daily timescale. The Taylor diagram provides statistical outputs of the degree of correspondence between 

the models, and the reference observed data in terms of temporal pattern, error and variability [38] as shown in Fig. 4 .

On a general note, the models’ overall performances in the subregions and the whole Gongola basin are similar. However, 

some models perform better than others in replicating the observed patterns with differing margins. Over the Jos plateau, 

the models capture the reference observation with some degree of accuracy, with correlation coefficient varying between 

0.60 and 0.68, deviations of 4.20 to 7.41 mm and RMSD of 6.64 to 8.86 mm. MIROC-ESM-CHEM has the smallest r value.

The highest error and deviations turnout to be the worst model in reproducing the observed precipitation pattern, while 

ENSMEAN is rated the best of all. Like the Jos plateau, the ENSMEAN consistently outperformed the individual models in all

other subregions and the entire study domain with r values ranged between 0.65 and 0.73. IPSL-CM5A-LR exhibited better 

performance over the individual models in most subregions, placing it next to the ENSMEAN. In contrast, GFDL-ENSM2M 

and MIROC-ESM-CHEM are weak due to their consistent least performances everywhere in the study area. Over the mixed 

cretaceous sediment of the Gongola valley, the models’ performances are generally weak in capturing the GPCC observation, 

with relatively low r values (0.44 to 0.52). However, IPSL-CM5A-LR and ENSMEAN recorded r values, 0.50 and 0.52, which 

further reveal these models’ strengths. 

Statistical performance 

In furtherance to the CDFs and Taylor diagrams used for assessing the daily precipitation datasets in this study, additional 

three statistical indices including Wilmott refined index of agreement ( d re f ) , mean bias error (MBE) and mean absolute error
7 
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Fig. 4. Annual cycle of monthly total precipitation for the common period, 1982–2004. 

 

 

 

 

(MAE) were considered. The results are shown in Table 1 , where the boldened values and those with asterisk signify the

most suitable models. The d re f provides the degree of pattern correspondence between two independent datasets, similar 

to the correlation coefficient. Its choice in this study was guided by the fact that d re f weights errors and differences, which

prevents exaggeration of squared values as it is the case in r, thereby producing outputs that are less sensitive to outliers.

The d re f generally varies between 0.50 and 0.63. The IPSL-CM5A-LR consistently outperformed individual models in the 

subregions including the ENSMEAN by recording the highest d re f and having the lowest errors, though with little margins. 

The ENSMEAN turnout to be the best performing model over the larger Gongola basin. The MBE of the models varies

from −0.01 to 0.88 mm. The positive and negative values indicate over- and underrepresentation of the models. Based 

on this, it is clear that most of the GCMs, including the ENSMEAN systematically overrepresented the observed rainfall 

amounts throughout the study site. While the IPSL-CM5A-LR was remarkable compared to the other models in this mea- 
8 
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Fig. 5. Taylor diagrams for mean daily precipitation. 

 

 

sure, HADGEM2-ES appeared to be the weakest in capturing the observed rainfall pattern over the subregions and the entire 

basin. The performance of the GCMs in terms of error and level of correspondence with the ground reference observations 

concur to a large extent with previous reports over the West Africa domain by Akinsanola et al., [4] ; Agyekum et al., [1] ; and

Zebaze et al., [39] . 

Evaluation based on extreme precipitation 

The results of the four selected indices from the Expert Team on Climate Change Detection and Indices (ETCCDI) are 

presented in Figs. 2 , SM2, SM3 and SM4 to test the efficacy of the CMIP5 GCMs in replicating extreme precipitation events

over the study domain. The indices include PRCPTOT, CDD, CWD and Rx1day. While the first three indices emphasised the 

frequency of precipitation, the last index premised on evaluating the precipitation intensity between the observational data 

and the models. PRCPTOT has been extensively discussed in section 4.1. The maximum annual consecutive dry days (CDD) 
9 
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Table 1 

Performance Evaluations of GCMs using Statistical Metrics. 

Model Jos Plateau High Bauchi Plains Kerri-Kerri Sandstone Plateau 

MAE MBE d ref MAE MBE d ref MAE MBE d ref 

GFDL-ENSM2M 3.63 0.13 0.60 ∗ 3.27 0.17 0.59 ∗ 2.90 0.24 0.58 ∗

HADGEM2-ES 3.57 −0.13 0.60 ∗ 3.66 0.54 0.54 ∗ 3.07 0.55 0.55 ∗

IPSL-CM5A-LR 3.54 0.13 0.61 ∗ 3.18 0.16 0.60 2.83 0.24 0.59 

MIROC-ESM-CHEM 4.12 0.25 0.54 ∗ 3.75 0.34 0.53 ∗ 3.28 0.46 0.52 ∗

NoerENS1-M 3.81 0.22 0.58 ∗ 3.75 0.34 0.53 ∗ 3.00 0.35 0.56 ∗

ENSMEAN 3.49 0.12 0.61 3.27 0.31 0.59 ∗ 2.82 0.37 0.59 ∗

Model Mixed Cretaceous Sediment of the 

Gongola Valley 

Biu Plateau Uba Plains 

MAE MBE d ref MAE MBE d ref MAE MBE d ref 

GFDL-ENSM2M 3.63 −0.11 0.58 ∗ 2.74 −0.01 0.59 ∗ 2.72 0.36 0.56 ∗

HADGEM2-ES 4.08 0.37 0.52 ∗ 3.25 0.47 0.52 ∗ 3.24 0.88 0.48 ∗

IPSL-CM5A-LR 3.59 −0.11 0.58 2.72 0.00 0.60 2.69 0.39 0.57 

MIROC-ESM-CHEM 3.89 0.08 0.55 ∗ 3.01 0.17 0.55 ∗ 3.01 0.53 0.52 ∗

NoerENS1-M 3.73 0.03 0.56 ∗ 2.93 0.08 0.57 ∗ 2.94 0.45 0.53 ∗

ENSMEAN 3.65 0.05 0.57 ∗ 2.72 0.14 0.60 ∗ 2.76 0.55 0.56 ∗

Model Whole Gongola Basin 

MAE MBE d ref 

GFDL-ENSM2M 2.58 0.21 0.61 ∗

HADGEM2-ES 2.91 0.52 0.56 ∗

IPSL-CM5A-LR 2.50 0.21 0.62 ∗

MIROC-ESM-CHEM 3.04 0.38 0.54 ∗

NoerENS1-M 2.67 0.30 0.60 ∗

ENSMEAN 2.49 0.33 0.63 

Bold – most suitable; ∗suitable 

 

 

 

 

 

 

 

 

 

in GPCC dataset is 150 days around the Jos plateau, as shown in Figure SM4 (a), which continue to increase exponentially

as one move towards the northeast region of the basin until it reaches a maximum of 200 days around Uba plain. This

area is known for its least rainfall amount owing to its geographical location, which lies in the Sudan Savannah region.

This trend was reasonably captured by the models, including their ensemble median (ENSMEDIAN) over the entire Gongola 

study domain, though with varying magnitudes. However, the HADGEM2-ES was observed to be skilful in replicating the 

observed features both spatially and in magnitude, and was therefore found to be most suitable in replicating the observed 

CDD patterns over the subregions and the entire basin, as shown in Figure SM4 (c). 

The CWD of GPCC, the CMIP5 GCMs and their multimodel ensemble median are shown in Figure SM2(a)-(g). The CWD 

generally varies between 6 and 9 days, with maximum value observed over Jos Plateau, and the minimum around Uba 

plain. The GCMs in their entirety are, however, noted to be dubious in capturing the observed pattern of the CWD, but

rather grossly overestimate the number of wet days. For instance, the IPSL-CM5A-LR recorded a maximum CWD of 160 

days over Jos Plateau, GFDL-ENSM2M recorded 99 days, while NeorENSI-M, HADGEM2-ES, MICRO-ENS-CHEM indicate a 

maximum value of 73, 60 and 24 days, respectively. These values are impracticable anywhere in the catchment, as they are

unrealistically high. Moreover, the ENSMEDIAN aligned with the individual models to provide high CWD values over the 

entire basin. 

GCM’s ability to replicate rainfall intensity is also evaluated owing to the influence of rainfall intensity on floods over 

the Gongola basin. The Jos Plateau witnessed a median maximum rainfall of 85 mm over the period, which increase pro-

gressively until it reaches 120 mm at the most northern axis of the basin (Figure SM3 (a)). Other regions with less annual

rainfall total exhibit higher rainfall intensity than the Jos plateau. This feature can be attributed to convective storm, which 

according to Sylla et al. [37] , dominates over the West African monsoon region. This type of precipitation often attains

higher intensity within a period than frontal and orographic storms [29] , resulting from local or mesoscale convective sys- 

tems. Nevertheless, the Jos plateau is characterised by exceptional precipitation maximum in the region due to orographic 

effects. Consequently, the individual GCMs, including the ENSMEDIAN failed to capture the observed pattern. They either 

overestimate or underestimate the precipitation occurrences everywhere in the basin, except HADGEM2-ES, which, to some 

extent, replicate reasonably well the observed pattern, as shown in Figure SM3 (b). 

Conclusions 

This study evaluates the performance of five CMIP5 GCMs in the fast track of ISI-MIP in reproducing the mean precip-

itation climatology over the Gongola basin for the common period of 1982–2004 relative to GPCC observations based on 

insight from literatures. Climatological descriptions, statistical analyses and few selected climate indices were used to test 
10 
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the models’ efficacy in replicating present-day observed climatology, considering annual, monthly and daily timescales. The 

geographical distribution of mean annual climatology of the total wet-days showed that the individual models, including 

their ENSMEAN replicated reasonably well the observed precipitation pattern over the six subregions and the entire study 

area. Based on our findings, the following conclusions are drawn: 

(1) The GFDL-ESM2M and IPSL-CM5A-LR were noted to be the most outstanding in capturing the observed pattern of the 

annual total wet days. 

(2) The ENSMEAN and HADGEM2-ES performed remarkably well in capturing the observed daily distribution in CDF 

curves. 

(3) Good relationships between the models and the reference observed data were found, with pattern correlation varying 

between 0.5 and 0.73 at daily timescale, suggesting a good match. 

(4) Ultimately, the ENSMEAN and IPSL-CM5A-LR have less variability, errors and bias with the highest correspondence 

pattern. This shows that the two GCMs measure the precipitation estimates closely, with overall better performances. 

(5) Furthermore, the spatial representation of the models and their ENSMEDIAN revealed HADGEM2-ES to be the only 

model with an accurate representation of the measured extreme rainfall over the entire Gongola study domain. 

(6) Considering the individual models, IPSL-CM5A-LR is the most outstanding model for daily simulations along with 

ENSMEAN, while HADGEM2-ES is the best model for modelling extreme conditions. 

(7) Adaptation strategies to climate risk and natural disasters remained one of the focal points of Agenda 2063 of the 

African Union, thus this study provides useful information to a large extent on the level of accuracy and dependability

of the climate models in the region which are the most powerful tools available to experts and policy makers for

decisions on current and future hydrological conditions. 

On the whole, the ENSMEAN provide an improved representation of precipitation over the entire basin except for ex- 

treme conditions. In essence, the precipitation field evaluated in this study can be used for impact modelling in hydrology 

and environmental management at both regional and local scales. Future work that will consider dynamical downscaling 

approach with much higher resolution for better assessments of the present-day and future precipitation conditions in the 

Gongola basin is warranted for improved adaptation strategies. 
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