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ABSTRACT This paper proposes an improved cuckoo search (CS) algorithm combining nonlinear inertial
weight and differential evolution algorithm (WCSDE) to overcome the shortcomings of the CS algorithm,
such as low convergence accuracy, lack of information exchange within the population, and inadequate
local search capabilities. Compared with other CS variants, two strategies are proposed in this paper to
improve the properties of the WCSDE. On the one hand, a non-linearly decreasing inertia weight with the
number of evolutionary iterations is employed in theWCSDE to improve the update method of the bird’s nest
position, enhance the balance between the exploration and development capabilities, and strengthen the local
optimization capability. On the other hand, the mutation and cross-selection mechanisms of the differential
evolution (DE) algorithm are introduced to make up for the lack of the mutual relationship between the
populations, avoid the loss of practical information, and increase the convergence accuracy. In the experiment
part, 13 classic benchmark functions are selected to execute the function optimization tasks among the
standard CS, the WCSDE, and other four CS variants to verify the effectiveness of the proposed algorithm
from two aspects. The results and corresponding statistical analysis reveal that the proposed algorithm has
better global search ability and strengthener robustness.

INDEX TERMS Cuckoo search algorithm, differential evolution algorithm, nonlinear inertia weight,
adaptive adjustment strategy, function optimization.

I. INTRODUCTION
Swarm intelligence (SI) algorithm is a new optimization
method to obtain the optimal solution of complex optimiza-
tion problems by simulating social animals’ group behavior
and utilizing the information transmission and cooperation
among individuals in the population. Cuckoo search (CS)
algorithm is a novel SI algorithm, proposed by Yang and Deb,
to simulate the cuckoo’s nest parasitic brooding behavior
combined with the Levy flight behavior [1]. Compared with
other SI algorithms (such as the genetic algorithm (GA) [2],
the ant colony optimization (ACO) algorithm [3], the particle
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swarm optimization (PSO) algorithm [4]), the CS algorithm
has some unique advantages, like self-organization and paral-
lelism, strong generality, simple operations, few parameters,
and strong global searchability. At present, the applications of
CS algorithm have gone deep into various disciplines and
fields, such as NP-complete problem [5], [6], engineering
design (mainly including three aspects of process plan-
ning [7], [8], parameter estimation [9] and prediction recog-
nition [10]), power energy [11], machine learning [12], image
processing [13] and other fields.

To overcome the inherent bottlenecks of CS, such as low
convergence accuracy, poor local optimization ability, and
easy to fall into local optimization, a series of improve-
ment measures have been used to improve the performance
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FIGURE 1. The entire CS flowchart.

of standard CS. Zhang et al. propose a modified adap-
tive cuckoo search (MACS) to adjust the search range of
different stages and obtain more information in the solu-
tion space through utilizing the group and parallelize the
population strategy, incentives mechanism, and adaptive
step-size method. Through nine benchmark functions to ver-
ify the algorithm’s performance, MACS is better than the
basic CS algorithm on most test problems and has application
potential in practical problems [14]. Walton et al. [15] use
an adaptive value to replace the step factor of Levy flight
to ensure the step size will decrease while the number of
iterations increases, the local search capability in the later
stage of the algorithm has been remarkably enhanced. The
algorithm is easy to execute by adjusting two parameters
and owns a high convergence speed. Valian et al. propose
a modified CS using an adaptive step size scaling factor
that changes with iterations to optimize complex engineering
problems. The algorithm has been tested on four well-known
reliability optimization problems, and the simulation results
are better than othermethods [16]. To converge to the globally
optimal solution, Xue and Deng [17] amend an improved CS,
which sorts the population into three subgroups with different
flight scales due to the average fitness value of the individuals
in the population. Simulations show that the algorithm has
good optimization performance. Mlakar et al. give a hybrid
adaptive CS, which uses the adaptive control parameters and
the linear reduction of the population size to broaden the
original CS. The algorithm has been tested on 30 benchmark
functions in the cec2014 test set, and the effect is comparable

FIGURE 2. The entire DE flowchart.

to some powerful variants of CS [18]. The above methods
all improve the relevant parameters of the CS. It can be seen
from the experimental results that it has a certain effect, but
there is still much room for improvement. For example, only
dynamic adjustment of the parameters cannot make up for
the CS algorithm’s lack of information exchange and other
problems.

Rani et al. employ a linear weight coefficient to enhance
the standard CS. Experimental results reveal that the
proposed algorithm also far exceeds other modern EA
competitors, including standard CS, PSO, and GA [19].
Tuba et al. display a novel CS framework, which replaces one
of the randomly selected individuals in the random transfer
operator formula with one of the individuals sorted according
to the fitness value matrix. The optimization experiments of
eight benchmark functions show that the results are better
than the basic cuckoo search algorithm [20]. Cheng et al.
present a revised CS by adding a random movement operator
and adjust the parameters by an improvement rate to the
standard CS for dynamical selecting and updating the rules
of the population. It has been tested with six CS variants
on 42 benchmark functions over different dimensions, and
the results show that the proposed algorithm is a compet-
itive method [21]. Li et al. [22] introduce the orthogonal
learning strategy to improve the local search ability of the
cuckoo search algorithm, and 23 benchmark functions are
used to verify the method’s performance. Nguyen strengthens
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FIGURE 3. The entire WCSDE flowchart.

the local search performance and increases the diversity of
the solution of the standard CS through generating some
new candidate solutions at the current optimal solution and
apply the modified algorithm to the reconstruction of the
distribution network. The calculation results from the simple
distribution network to complex distribution network show
that compared with other improved CS, this algorithm can
efficiently and accurately find the global optimal solution
and the total power loss is smaller [23]. Li et al. designed a
CS-differential evolution (DE) framework by introducing the
mutation operator, crossover operator, and selection operator
and creating two novel mutation rules based on a random
number and best individual to enhance the diversity of the
population. The accuracy and performance of the proposed
method are evaluated through 18 classic benchmark functions
and the cec2013 test suite. The results show that the proposed
algorithm can balance the exploration and development of the
algorithm [24]. Zhang et al. execute a hybrid algorithm by
combining CS and DE (CSDE) to resolve constrained engi-
neering problems. The proposed hybrid algorithm divides
the population into two subgroups and uses CS and DE for
these two subgroups. This strategy can complement their

shortcomings, avoid premature convergence, and quickly find
the globally optimal solution [25]. Wang et al. propose a
new quantum chaotic CS algorithm (QCCS) to reinforce the
global search capability and accelerate search speed using
the chaotic mapping for population initialization and the
non-homogeneous quantum update technology. Experimen-
tal results on six well-known real-life data sets show that the
proposed QCCS is significantly better than the recent eight
well-known algorithms, including hybrid cuckoo search, dif-
ferential evolution, and hybrid K-means, etc. [26]. Liu and Fu
mix the CS and the shuffled frog-leaping algorithm (SLFA)
to expedite the speed and raise convergence accuracy by
using the local search mechanism of the SLFA. In addi-
tion, the algorithm proved to be convergent [27]. Inspired
by the particle swarm algorithm (PSO), Li and Yin suggest
a novel CS variant by adding neighborhood information to
the new population provides multiple candidate solutions
for increasing the diversity of the algorithm. Thirty bench-
mark functions are selected in the literature, and the results
are significantly better than CS and PSO [28]. In addition,
Lim et al. raise a hybrid cuckoo search-genetic algo-
rithm (CSGA) by employing the reproduction behavior and
the evolution strategy and applying it to optimize the hole
processing process. The results show that CSGA is better
than ACO, PSO, immune-based algorithm, and CS [29]. The
above methods show that the method of mixing multiple
algorithms has a good convergence effect and has gradually
become a mainstream method. Combining the advantages of
a specific algorithm into the CS algorithm to compensate for
the inherent shortcomings of the CS algorithm can effectively
improve the algorithm’s performance.

Compared with the traditional CS, the mentioned CS vari-
ants have better performance and more precise convergence
accuracy to a certain extent. Nevertheless, these variants still
have some drawbacks, such as weaker local search ability
and deficient information exchange among the populations.
Inspired by the findings above, an improved CS algorithm
combining a nonlinear inertia weight and differential evolu-
tion (WCSDE) is proposed to enhance the effective informa-
tion interaction and strengthen the local search ability based
on the following motivations.

On the one hand, the nonlinear inertia weight mechanism is
applied to modify the bird’s nest update formula for dynami-
cally adjusts the extent of flight movement. With the increase
of iterations, the inertia weight will continuously reduce the
extent of movement to ensure the balance between develop-
ment and exploration and strengthen the local optimization
ability in the later stage of the algorithm.

On the other hand, the mutation and cross-selection mech-
anisms of DE are selected to perform mutation operation on
its position after updating the bird’s nest and then seeking the
optimal fitness value using the cross-select operation.

This proposed WCSDE makes up for the shortcomings of
information exchange between populations in the standard
CS algorithm and enhances information utilization to obtain
better convergence accuracy. In experimental part, 13 classic
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TABLE 1. 13 selected benchmark functions.

TABLE 2. Parameter settings of each CS variant and standard CS.

benchmark functions are selected to execute function opti-
mization tasks using the standard CS [1], the WCSDE, and
other four CS variants (ECS [32], MCS [33], DECS [25],
and SDCS [34]) for verifying the optimization ability of
the WCSDE algorithm. Experimental results show that the

performance of the WCSDE algorithm is much better than
other variants after numerical and statistical analysis.

The rest parts of this article are organized below.
Section 2 recalls the standard CS and the standard DE
briefly. Section 3 illustrates the main implementation steps
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FIGURE 4. Performance comparison on F1.

FIGURE 5. Performance comparison on F2.

and explores the time complexity of the WCSDE in detail.
Section 4 analyzes the performance of the proposed algorithm
by testing 13 classic benchmark functions from different
viewpoints. Section 5 summarizes the whole manuscript.

II. STANDARD CS AND DE ALGORITHMS
This section brief recalls the basic principles of the standard
CS and DE algorithms, respectively.

A. THE STANDARD CS
The CS algorithm is a kind of natural initiation algorithm that
simulates the cuckoos’ reproductionmode and combines with
the Levy flight behavior to seek the potential optimal solution
to industrial problems. In a CS algorithm, each individual rep-
resents a feasible solution in the search space, and the moving
process of the individual position represents searching for the
optimal solution. On the one hand, the Levy flight and random

migration mechanisms are used to explore the entire solution
space and quickly find the globally optimal solution. On the
other hand, the CS can effectivelymaintain the diversity of the
population in the search domain by controlling the balance
between exploration and exploitation.

The standard CS, proposed by Yang and Deb in 2009,
includes the following steps.

Step 1: Parameters initialization. The corresponding values
of objective function f (x), population size N , dimension D,
search domain range [LB, UB], discovery probability Pa, step
factor α and maximum iteration times are defined in this step.
Equation (1) is the population location initialization formula.

x0 = LB+ rand (D)× (UB− LB) (1)

where rand(D) represents the 0-1 random number in the
D dimension; x0 is the initial nest position.
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FIGURE 6. Performance comparison on F3.

FIGURE 7. Performance comparison on F4.

Step 2: Population updating. In the population renewal
step, the birds’ nests are migrated after initialization, the Levy
flight mechanism is used to obtain the new birds’ nests, and
the fitness values are calculated and compared, and the best
ones will be retained. The position of the ith nest in the t+1
generation x t+1i can be calculated by (2).

x t+1i = x ti + α ⊗ Levy (λ) , i ∈ [1,N ] (2)

where x t+1i and x ti represent the positions in the t+1, t iter-
ation of the bird’s Nest i, respectively; α is the step size
scaling factor in the updating process (α > 0); ⊗ represents
point-to-point multiplication; Levy(λ) represents the random
searching path of a Levy flight, whose flight direction obeys
a uniform distribution, and whose walk length conforms to
the Levy distribution by (3).

Levy ∼ u = t−λ, 1 ≤ λ ≤ 3 (3)

Since the probability density function of Levy distribution
has no fixed form, the Mantegna algorithm [30] is widely
used to simulate Levy flight, and the formula for generating
step size is illustrated by (4) below.

sL =
µ

|v|
1
β

, 1 ≤ β ≤ 2 (4)

where µ and ν are normal distributed random numbers: µ ∼
N (0, δ2µ), v ∼ N (0, δ2v ), δv = 1. The calculation formula of
parameter δµ is given by (5).

δµ =

{
0 (1+ β) sin (πβ/2)

0
[
(1+ β)

/
2
]
2(β−1)/2 β

}1/β

(5)

Step 3: Random migration. A random number r ∈ (0, 1)
followed by a uniform distribution is generated and compared
with the probability of being searched Pa of cuckoo. If r>Pa,
the current nest is discarded, the position of the nest is updated
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FIGURE 8. Performance comparison on F5.

FIGURE 9. Performance comparison on F6.

using (6), and the fitness value is calculated, and the position
of the nest with the optimal fitness value is retained. Other-
wise, the position of the nest remains unchanged.

x t+1ij = x tmin,j + rand (0, 1)×
(
x tmax,j − x

t
min,j

)
(6)

where x tmin,j and x
t
max,j represent the lower and upper bound

of an individual in the jth dimension, respectively; rand(0,1)
represents an uniformly distributed random number.

Step 4: Preferential Selection. Retain the solution with
the better fitness value, and update the population and the
globally optimal solution by comparing the fitness value of
the candidate solution with the current solution.

Step 5: Terminate condition. To judge whether the cur-
rent iteration number fulfills the maximum iteration num-
ber. If yes, output the optimal solution; Otherwise, move
to Step 2.

The flowchart of the CS algorithm is illustrated as shown
in Figure 1:

B. DIFFERENTIAL EVOLUTION ALGORITHM
DE algorithm is a population-based heuristic parallel global
search algorithm proposed by Store and Price in 1997 [31].
Similar to the GA, the DE mainly includes initialization,
mutation, crossover, selection, and other operations. The DE
algorithm has been widely used because of its fast conver-
gence, fewer control parameters, and strong robustness. Due
to the random and changeability of mutation and crossover,
the flexible update strategy of DE further effectively utilizes
the characteristics of a population distribution to improve
searchability. The perturbation of DE to the evolutionary
individual is reflected by the different strategies between
multiple individuals, which avoids the deficiency of mutation
methods in GA. However, the DE still has some defects,
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FIGURE 10. Performance comparison on F7.

like easily falling into the local optimum at the end of the
iteration.

The flowchart of the DE algorithm is discussed as shown
in Figure 2:

III. THE PROPOSED WCSDE ALGORITHM
In standard CS algorithm, the fixed search step size leads
to the imbalance between the exploration and development
operations, which lacks a significant movement in the early
stage to find the globally optimal solution and a slight move-
ment to refine the accuracy of the optimal solution in the
later stage. Hence there is an information waste and slow
convergence phenomena in the search process in the later
period of the standard CS due to the execution of the evalua-
tion independently and lack of adequate information-sharing
mechanism within the population.

Because of the above problems, a hybrid WCSDE algo-
rithm is discussed in this section to obtain higher convergence
accuracy, increase the information interaction between indi-
viduals, and strengthen the local search ability by combining
nonlinear inertial weights and DE in detail.

A. NONLINEAR INERTIA WEIGHT STRATEGY FOR
CAPTURING THE RANDOM FLIGHT PATH
It is necessary to employ a large inertia weight in the early
search stage to quickly find the globally optimal solution and
avoid falling into the local optimal solution. Considering the
need to accelerate the convergence speed and improve the
local search ability later, it requires a smaller inertia weight in
the later phase. Combined with this finding and the nonlinear
inertia weight, an improved method of gaining a random
flight path is proposed, as shown (7).

x t+1i = ω ∗ x ti + α ⊗ (x tj − x
t
i )⊗ Levy (λ) , i ∈ [1,N ]

(7)

where j ∈ (0,N ) and j 6= i, x tj is the individual position in
the jth population, w0 is a positive real number, t the number
of current iterations, t0 is a given positive integer, and w is
calculated by (8).

w =


w0, t ≤ t0

(
1
t
)0.3, t > t0

(8)

B. MUTATION AND CROSS-SELECTION STRATEGY BASED
ON THE DE ALGORITHM
The basic CS algorithm immediately discards and chooses the
best after updating the bird’s nest’s position with Levy flight.
This method has not established an information exchange
mechanism between populations and fully exploited the
information. Therefore, themutation of theDE is employed in
the WCSDE to enhance the inner-information-sharing mech-
anism among populations. The nest position is mutated by
difference calculation, and then the cross-matching is carried
out according to the given probability. Finally, the fitness
value is calculated and the better one will be selected for
preservation.

After updating the nest’s location by (7), the difference
vector of two individuals will be randomly selected from
the population is used as the Source of random variation
of the third individual. Then, the weighted difference vector
combined with the individual will be mutated using (9).

V t+1
i = x tr1 + F(x

t
r2 − x

t
r3 ) (9)

where i 6= r1 6= r2 6= r3, F is the scaling factor, x ti represents
the ith individual in the population of the tth generation. Each
‘‘gene’’ in the ‘‘chromosome’’ must be judged whether it
is within the set search range in the evolution process. If it
is beyond the range, the ‘‘gene’’ will be regenerated by the
initialization operation.
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FIGURE 11. Performance comparison on F8.

FIGURE 12. Performance comparison on F9.

After the mutation intermediate
{
V t+1
i

}
is obtained

through (9), the cross operation is conducted between tth and
the t+1th generation population

{
x ti
}
.

ut+1j,i =

{
V t+1
j,i , if rand(0, 1) ≤ CR or j = Jrand

x tj,i, otherwise
(10)

where CR is the crossover probability, j represents a dimen-
sion, and Jrand is a random integer in [1, 2, . . . ,D]. It is
necessary to ensure that at least one ‘‘gene’’ in each ‘‘chro-
mosome’’ of the mutation intermediate is inherited to the next
generation, and cannot be replaced by the ‘‘gene’’ in x ti for
exchanging information between individuals effectively.

Finally, the greedy algorithm is adopted to select better
individuals to enter the next generation using (11).

x t+1i =

{
ut+1i , if f (ut+1i ) ≤ f (x ti )
x ti , otherwise

(11)

C. HIGHLIGHTS OF THE PROPOSED ALGORITHM
According to formula (8), the inertia weight changes with the
number of iterations. The greater the number of iterations,
the smaller the inertia weight to be used later in the search.
Move the range to find the best, and improve the ability of
local search. Secondly, combined with the advantages of the
DE algorithm, according to formula (9), the obtained solution
is mutated, the diversity is increased, and the information
exchange between the populations is established. The optimal
solution is selected through formula (10) and formula (11),
enhancing WCSDE Searchability.

D. FLOWCHART OF THE WCSDE ALGORITHM
According to the above two improvements, the presented
WCSDE algorithm includes the following steps:

Step 1: Problem modeling and parameters initializa-
tion. Define the objective function f (x), population size N ,
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FIGURE 13. Performance comparison on F10.

FIGURE 14. Performance comparison on F11.

problem dimension D, discovery probability Pa, step
size α, scaling factor F , crossover probability CR, inertial
weight w, maximum iteration times T , and search domain
range [LB, UB].
Step 2: Population initialization. Initialize the population

and the initial position using (1).
Step 3: Population updating. The value of inertia weight

w is obtained by (8), and the population position is updated
by (7).

Step 4: Population mutation operation. The mutation inter-
mediate

{
V t+1
i

}
is obtained by the individual variation

through (9).
Step 5: Cross operation. Implement the crossover operation

between individuals by (10), and judge whether the mutation
intermediate needs to inherit to the next generation due to the
crossover probability CR.

Step 6: Select operation. The greedy algorithm is used
to select the best individual, and the fitness of the parent
generation individual and the offspring individual is com-
pared through (11). The solution with better fitness value will
remain, and the population and globally optimal solution are
updated.

Step 7: Random migration. After executing the mutation
and cross-selection operations, the new generation of indi-
viduals is discarded to generate a random number r ∈ (0, 1)
with uniform distribution. Then, the obtained random number
will be compared with the probability of cuckoo being found
Pa. If r > Pa, the current nest is discarded, the position of
the nest will be updated by (6), and the fitness value will be
re-calculated. The nest position of the optimal fitness value
will remain after comparing the fitness value of the candidate
solution and the current solution. Otherwise, it remains the
exited solution.
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TABLE 3. Experimental results with a fixed number of iterations.

Step 8: Terminate condition. Determine whether the cur-
rent iteration number reaches the maximum iteration number.
If so, the optimal solution will be output, otherwise, go to
Step3.

According to the above steps, the flowchart of theWCSDE
algorithm is revealed as shown in Figure 3.

E. TIME COMPLEXITY ANALYSIS
Time complexity is an essential theoretical criterion to mea-
sure the performance of the proposed algorithm by calculat-
ing time. The time complexity of the proposed WCSDE is
given based on the mentioned steps above.

Firstly, the time complexity of the WCSDE under
each iteration could be calculated from the following
phases.

Assume the dimension of the objective function f as Dim
and the population size asN , respectively. The time complex-
ity of the initial stage and the time complexity of evaluating
the objective function of each individual in the population are
O(N × Dim) and O(f (Dim)), respectively.
According to (7), the time complexity of the random

flight path update stage is O(N × (Dim + O(Levy)), where
O(Levy) is a random number following the Levy distribution.
Hence, the order of its computational complexity is a constant
order denoised as O(1). Furthermore, the time complexity is
O(N × Dim) while updating the population.
In (9)-(11), the time complexity of optimization using

mutation and cross-selection operation is O(N ×Dim); In the
random walk stage, another new nest is built using (6), and
the corresponding time complexity is O(N × Dim).
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TABLE 4. The wilcoxon test results of the experimental results with a fixed number of iterations.

To sum up, the worst time complexity of theWCSDE under
each iteration is approximately as

O(N × Dim)+ O(N × (Dim+ f (Dim))+ O(N × (Dim

+ f (Dim))+ O(N × (Dim+ f (Dim))

≈ O(N × (Dim+ f (Dim)).

Therefore, the entire time complexity of the WCSDE is
O(Tmax ×N × (Dim+ f (Dim)) while reaching the maximum
number of iterations Tmax .

IV. FUNCTION OPTIMIZATION USING THE WCSDE
In this part, 13 benchmark functions are selected to verify
the feasibility and correctness of function optimization ability
of the proposed WCSDE. The entire experiment includes
two modules. In the first part, the number of iterations is
used as a criterion to illustrate the feasibility of the proposed
algorithm. In the second part, the number of function eval-
uations (FEs) is employed as an indicator to highlight the
characteristics of the WCSDE. The computer used in the
experiment is Intel R© Core TM i5 - 9300H CPU@ 2.40 GHz,
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FIGURE 15. Performance comparison on F12.

FIGURE 16. Performance comparison on F13.

16GB memory, the Windows 10 operating system and other
environments. The programming language Python 3.7 is used
to realize the functional code.

Details of the selected ten test functions are listed
in Table 1.

The optimizations among the 13 benchmark functions are
implemented utilizing the standard CS, the WCSDE and
other four CS variants (enhance Cuckoo Search (ECS) [32],
modified Cuckoo Search (MCS) [33], a hybrid optimization
algorithm based onDifferential Evolution and Cuckoo Search
(DECS) [25], and Snap-drift cuckoo search (SDCS) [34].
In the first experiment, 1000 iterations were set as the cri-
terion, and each algorithm was run independently 30 times.
In the second experiment, the number of function evaluations
was set as 40,000 times, and each algorithm was run indepen-
dently 30 times. By referring to the relevant literature of the

selected algorithm, the related parameter settings are shown
in Table 2.

Figures 4-29 are a set of random running results in 30
experiments. Functions F1-F13 are the benchmark functions,
and the test dimensions are 30 and 50, respectively.Moreover,
figures 4-29 (a) record the convergence curve of the six
CS algorithms of 30 dimensions. Figures 4-29 (b) are the
convergence curve of the six CS algorithms of 50 dimensions.
Figures 4-16 are the first part of the experimental convergence
curve.

It demonstrates that WCSDE and SDCS have significant
advantages over other algorithms in terms of convergence
performance.

The WCSDE can quickly converge to the globally opti-
mal value within 150 iterations when optimizing F2, F3,
F4, F6, and F10. Similarly, the SDCS provides faster
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FIGURE 17. Performance comparison on F1.

FIGURE 18. Performance comparison on F2.

FIGURE 19. Performance comparison on F3.

VOLUME 9, 2021 161365



C.-X. Zhang et al.: Improved CS Algorithm Utilizing Nonlinear Inertia Weight and Differential Evolution

FIGURE 20. Performance comparison on F4.

FIGURE 21. Performance comparison on F5.

convergence speed and accurate globally optimal values for
these problems, especially for functions F2, F3, F6, F7,
and F13. It indicates that WCSDE achieved better overall
performance than the other five algorithms in function F4,
converging to the theoretical optimal value.

In the case of function F10, although ECS, DECS,
and SDCS can also converge to the global optimum, the
convergence efficiency is not as good as the WCSDE
algorithm.

Secondly, the WCSDE can converge to the globally opti-
mal solution within the maximum number of iterations
while optimizing the functions F1, F5, F8, F9, F11, and
F12 while ECS, MCS, and DECS algorithms are insuffi-
cient in the downward trend, especially MCS and DECS
stopped in-depth search in the early stage. It further reveals
that the WCSDE has more vital convergence ability, better
adaptive ability, and more exact convergence accuracy than

other variants. Thirdly, when optimizing the 50-dimensional
F2, F3, and F6 problems, the performance of ECS is
severely restricted, which is significantly lower than the
30-dimensional search capability.

In addition, in the functions F1, F4, F5, F8, F9, F11, and
F12, it shows that SDCS has efficient convergence efficiency
within 200 iterations, but the WCSDE exhibits more substan-
tial local search capabilities in subsequent iterations. It also
means that the non-linear inertia weight moves smaller in
the later search process, which quickly improves the search
accuracy of the algorithm.

To sum up, the WCSDE shows outstanding convergence
performance while optimizing the above 13 functions under
two different dimensions. Significantly, theWCSDE achieves
ideal optimization results with similar 30-dimensional and
50-dimensional conditions and can handle high-dimensional
data. Hence, the WCSDE has a robust adaptive ability to
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FIGURE 22. Performance comparison on F6.

FIGURE 23. Performance comparison on F7.

FIGURE 24. Performance comparison on F8.
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FIGURE 25. Performance comparison on F9.

FIGURE 26. Performance comparison on F10.

optimize unimodal and multimodal functions and obtain
higher convergence accuracy.

The average value and standard deviation are used to judge
the superiority of the standard CS and improved CS algo-
rithms’ performance in Tables 3 and 4. In these tables, the
best value is shown in bold black font, and the robustness of
these algorithms is determined based on the average value and
standard deviation. If the global optimal solution’s value is
calculated more accurately, the corresponding global conver-
gence and the algorithm’s stability are better and more robust,
respectively.

Table 3 shows that the WCSDE algorithm can find the
theoretically optimal solution except in the optimization of
the F7 and F13 functions. Especially in optimizing F4, F5
and F11, we have achieved better mean and standard devia-
tion results than the other five CS algorithms. However, when
optimizing the F7 and F13 functions, the SDCS algorithm

has a more robust search capability. It can be seen from
the above table that WCSDE shows an excellent ability
to deal with high-dimensional problems, gives full play to
the global optimization ability, quickly jumps out of the
local optimal state, and obtains high convergence accu-
racy. In addition, in optimizing the F7 and F13 functions,
the mean and standard deviation obtained by WCSDE are
also smaller than the other three variants. By analyzing
the mean and standard deviation data obtained by statisti-
cal analysis, it is concluded that WCSDE has better opti-
mization performance than the different five algorithms as a
whole.

A non-parametric Wilcoxon signed-rank test is
performed to determine whether there is a significant dif-
ference among the results obtained by the algorithms. Sta-
tistical tests are performed on the average results obtained
by 30 runs of each algorithm to reveal the performance
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FIGURE 27. Performance comparison on F11.

FIGURE 28. Performance comparison on F12.

FIGURE 29. Performance comparison on F13.
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TABLE 5. Experimental results of fixed function evaluation times.

and feasibility of WCSDE. In the Wilcoxon test, the
‘+’ means that the proposed algorithm is superior to the
selected algorithm, ‘−’ means the opposite, ‘=’ implies
that the two algorithms get the same result, and the
Rank column is the accuracy ranking of their average
solutions.

Table 4 illustrates that the performance of the WCSDE
algorithm is much better than that of other CSs, except that
the performance is slightly inferior to SDCS in optimizing the
F7 and F13, and the best results are obtained when processing
other functions. In addition, the Wilcoxon rank-sum test is
used to verify the performance comparison ranking results
of the improved CS algorithm in different dimensions. The
performance of the WCSDE algorithm ranks first compared
with other variants, showing the superiority of the algorithm
performance.

Figures 17-29 are the second part of the experimental
convergence curve. These figures show that WCSDE and
SDCS still have excellent performance when the number
of function evaluations is used as the criterion. WCSDE
can quickly converge to the global optimal value within
3000 times of function evaluation when optimizing F2, F3,
F4, and F6. In the case of function F4, CS, MCS, DECS,
and SDCS all fall into the local optimum, which leads to
the stagnation of the search. Only the WCSDE jumps out
of the local optimum and finds the global optimum. In the
unimodal function F10, although the DECS and ECS also
can see the global optimal value within the limited standard,
the search efficiency of WCSDE is higher, and the optimal
solution is obtained in fewer function evaluation times. When
optimizing F1, F5, F8, F9, F11, and F12, the WCSDE has a
faster downward trend than the SDCS, and the convergence
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TABLE 6. The wilcoxon test results of the experimental results fixed function evaluation times.

efficiency is higher. However, in functions F7 and F13, the
performance is not as good as SDCS, especially F7 also falls
into the local optimum.

Table 5 shows that the WCSDE has a slight lack of per-
formance in optimizing the F7 and F13 functions, and the
theoretical optimal solution is found in the other functions.
In addition, theWCSDE has better convergence and can reach
the global optimum, but the different five CS algorithms
cannot converge while optimizing the functions F1, F4, F5,
F8, F9, F10, F11, and F12. The ECS is affected by high
dimensionality in processing 50-dimensional F1, F4, F5, F6,
F8, F9, and F13, and the performance is reduced, while

WCSDE shows better high-dimensional performance. The
comparison of Table 5 and Table 3 concludes that a large
number of function evaluation times in the second experiment
show the advantage of the WCSDE nonlinear inertia weight
in the later stage of narrowing the optimization stride. It can
find the theoretical optimal solution through powerful local
search searchability.

Table 6 depicts that the WCSDE algorithm is better than
MCS, DECS, ECS, and SDCS, especially compared with the
standard CS algorithm, which has a significant improvement.
The performance is slightly inferior to SDCS in the optimized
F7 and F13 functions. The best results are obtained when
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processing other functions. Finally, by ranking the Rank
average, it is also evident that WCSDE has an excellent
performance in optimizing the above functions.

By verifying two experiments, the WCSDE highlights
powerful searchability, strong local searchability, adaptive
ability, and robustness. This remarkable effect can be
obtained due to use the nonlinear inertia weight to dynami-
cally adjust the search range, enhance the adaptive capacity
of the algorithm, and improve the later local searchability.
The information exchange among populations is established
to enhance the searchability of WCSDE by combining it with
the advantages of the DE algorithm.

V. CONCLUSION
This paper presents a novel hybrid algorithm WCSDE to
make up for the inherent defects of the standard CS and
significantly improve the optimization performance based on
the following two points. On the one hand, a nonlinear inertial
weight strategy during the bird’s nest position update stage
is employed to seek the balance between exploration and
development, and to enhance the global optimization ability
in the early stage and the local optimization ability in the
later stage. On the other hand, after updating the position
of the population, the mutation and cross-selection strate-
gies are used to effectively improve the search accuracy by
combining the gradient information of the optimal solution
and the sub-optimal solution and transmit the information
among different levels of solutions. The experimental results
and related statistical analysis show that the WCSDE algo-
rithm has better search accuracy and robustness than the
other five CS algorithms. In the future, we will try to settle
some industrial problems with the constrained conditions to
using the WCSDE algorithm for improving the diversity and
applicability of the algorithm.
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