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Abstract  Early diagnosis of breast cancer helps 
improve the patient's chance of survival. Therefore, cancer 
classification and feature selection are important research 
topics in medicine and biology. Recently, the adaptive 
elastic net was used effectively for feature-based cancer 
classification, allowing simultaneous feature selection and 
feature coefficient estimation. The adaptive elastic net 
basically employed elastic net estimates as the initial 
weight. Nevertheless, the elastic net estimator is 
inconsistent and biased in selecting features. Therefore, the 
regularized logistic regression with the adaptive elastic net 
(RLRAEN) was used to handle the inconsistency problem 
by employing the adjusted variances of features as weights 
within the L1- regularization of the elastic net model. The 
proposed method was applied to the Wisconsin Breast 
Cancer dataset of the UCI repository and compared to the 
other existing penalized methods that were also applied to 
the same dataset. Based on the experimental study, the 
RLRAEN was more efficient in terms of feature selection 
and classification accuracy than the other competing 
methods. Therefore, it can be concluded that RLRAEN is a 
better method in breast cancer classification. 

Keywords  Adaptive Elastic Net, Breast Cancer, 
Feature Selection, Regularized Logistic Regression 

1. Introduction
Breast cancer is the world’s second leading cause of 

death among women from cancer. Furthermore, it is one 
of the deadliest diseases among women. Unfortunately, it 
spreads faster in the world more than any other cancer 
disease. Unless it is detected in its early stages, breast 
cancer can threaten life [1]. Therefore, early diagnosis of 
breast cancer helps improve the patient's chance of 
survival. There are many approaches that can be used to 
diagnose breast cancer using many techniques of machine 
learning to decide classification, analysis, and prediction 
[2]. 

Over the recent decades, researchers have developed a 
variety of feature selection techniques. These techniques 
are divided into three groups. The first group is filter 
approaches. It includes the most common feature selection 
techniques, in which each feature is evaluated individually, 
irrespective of how well it performs in the group. The 
second group is wrapper approaches. It evaluates the 
feature group selection process using a variety of 
algorithms. Even though wrapper techniques, such as 
"forward feature selection" and "backward feature 
elimination" are more effective in feature selection than 
filter methods, wrapper methods are computationally very 
expensive. The embedded methods are the third group, 
which incorporates the benefits of both the filter and 
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wrapper groups. It contains penalization techniques that 
can model and select features simultaneously [3]–[5]. 

"Wisconsin diagnostic breast cancer" (WDBC) dataset 
was obtained from a digitized image of a breast mass 
using a fine needle [6]. In the machine learning discipline, 
there are numerous soft computing approaches that have 
been used to analyze and classify WDBC. The authors of 
Kadam et al. [2] indicated that several methods were 
proposed by many researchers in order to predict breast 
cancer early. Then, these authors proposed feature 
ensemble methods based on the so-called Stacked Sparse 
Autoencoders and Softmmax Regression Model 
(FE-SSAE-SM model) to classify breast cancer into 
benign and malignant. The findings revealed that their 
proposed method gave rise to a useful classification model 
of breast cancer. Thus, the method is as efficient as other 
machine learning methods. 

One of the most popular penalty-based regularization 
methods is penalized logistic regression. It is also used to 
classify and select features. With logistic regression, 
embedded feature selection, including classification and 
regularized techniques, are very successful. The logistic 
regression has received much interest in recent years to 
conduct both feature selection and classification 
simultaneously. This incorporates logistic regression with 
a penalty. With various penalties, a variety of logistic 
regression models may be employed. Among these 
penalties is the "Least Absolute Shrinkage and Selection 
Operator" (LASSO), which is based on L1-regularization 
[7]. The "Smoothly Clipped Absolute Deviation" (SCAD) 
[8] is another penalty. Besides, the elastic net [9], the 
adaptive L1- regularization [10], and adaptive elastic net 
techniques [11], [12] are some of the other penalties. 

The L1-regularization (LASSO) is capable of choosing 
variables. However, it has three flaws [13], [14]. The first 
flaw is linked to the number of features chosen by LASSO. 
The number of features in specific datasets may be much 
more than the number of observations. Regrettably, 
LASSO cannot choose more features than the number of 
observations. In other words, the number of features 
selected by LASSO is limited by the number of 
observations. The second flaw is linked to how the 
features operate. Basically, features operate as clusters or 
groupings. Each category contains features that are 
strongly correlated. This is anticipated to be taken into 
consideration by LASSO when choosing features. That is, 
it is anticipated to either pick the whole set of strongly 
associated features (assuming they are really associated 
with the illness) or leave it all alone (if they are unrelated). 
Regrettably, LASSO only chooses a feature of each highly 
correlated group of features relevant to the research. Zou 
and Hastie [9] developed the elastic net regularization 
technique to address the first and second limitations. The 
elastic net technique uses a penalty that is comprised of 
L1-regularization and L2-regularization. A bias in feature 
selection is considered the third flaw since it penalizes all 

feature coefficients equally. Therefore, LASSO does not 
enjoy oracle properties [8]. In order to address this issue, 
Zou [10] devised a novel regularization method named the 
adaptive LASSO technique, in which different weights are 
employed to punish each coefficient within the 
L1-regularization penalty. Adaptive weights are used in 
the adaptive LASSO to punish various coefficients in the 
L1-regularization. 

The L1-regularization is a popular technique in sparse 
approaches. One shortcoming of the L1-regularization 
model is that it applies the same amount of the penalty to 
all features, resulting in inconsistency in the feature 
selection process [8], [10]. A regularized logistic 
regression with adaptive elastic net (RLRAEN) is used in 
this research to enhance feature selection effectiveness. 
This is performed by using the adjusted variances of 
features as an initial weight within the L1-regularization 
with the elastic net to properly classify individuals in 
terms of catching cancer. This weight reflects the 
importance of each individual feature in certain respects. 
Experiments are carried out to compare the proposed 
feature selection technique in this study with other 
competitor methods. 

The remainder of the paper is organized as follows. 
Section 2 gives a short overview of relevant research on 
regularized logistic regression techniques. Section 3 
introduces the proposed method (RLRAEN). Section 4 
presents and discusses the findings of the experimental 
research designed to assess the efficiency of RLRAEN in 
comparison to LASSO, elastic net, and adaptive elastic net. 
Eventually, Section 5 draws conclusions. 

2. Regularized Logistic Regression 
The logistic regression is used to model binary outcome 

variables. In the cancer classification issue, for example, 
the outcome variable has just two values: 1 for malignant 
tumours and 0 for non-cancerous tumours. The 
relationship between the regression equation and the 
linear combination of the predictor variables is nonlinear 
in the logistic regression. 

To classify the outcome variable, , we assume that 
 is the n-dimensional vector, where each of its 

components, , equals 0 or 1. Classification of  is 
based on a linear combination of the  matrix with 

real entries; designed as ; where denotes the 
transpose of  an  

matrix of features, where  takes its values in R, and 

 is the p-dimensional vector of unknown coefficients. 
In general, in the logistic regression, the outcome variable 

 has a Bernoulli distribution as (2), and the probability 
that  is equal to 1 given the value of indicated as 
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 is written as 

   (1) 

     (2) 

The likelihood function can be expressed as 

    (3) 

Then, the log-likelihood function can be written as 
follows: 

 (4) 

The logistic regression is a highly discriminative 
classifier. However, when applying logistic regression to 
high-dimensional data, the predictions for the regression 
coefficients are inaccurate since the design matrix is 
singular. Aside from that, overfitting occurs in 
high-dimensional datasets, such as gene data sets, because 
the number of features (genes) is greater than the number 
of observations. In addition, the estimates produced by it 
may be negatively affected by multicollinearity [15]. 

It is possible that additional features may potentially 
create noise and degrade the classification accuracy from 
a statistical perspective. Because of this, researchers often 
seek to use feature selection techniques that may eliminate 
irrelevant and redundant information in order to enhance 
classification accuracy when developing classification 
models.  Furthermore, one of the strategies applicable in 
classification in the case of high dimensionality is the 
penalized logistic regression technique, which is utilized 
to eliminate the issue of high dimensionality while 
simultaneously improving the accuracy of classification 
[16]. Despite the fact that penalization techniques are 
frequently employed in practice in the situation of 
high-dimensionality, Doerken et al. [17] have shown that 
these approaches can be effectively applied to data with 
few dimensions. 

When a positive penalty component is introduced to the 
log-likelihood function, it is possible to drive certain 
coefficients to zero, resulting in a sparse solution. This is 
called "penalized logistic regression" (PLR) or " 
regularized logistic regression" (RLR) because 
"Regularization" is another term for this procedure. Thus, 
if there are too many features in the logistic model, a 
penalty term is included in its equation using the PLR 
technique. Penalizing the coefficient in this manner will 
decrease the coefficient values to zero. This means that 
the less significant features are almost equivalent to zero 
or precisely zero.  

The regularized log-likelihood is written as 

          (5) 

where indicates the log-likelihood as (4),  

indicates a regularization term, and  is a control 
parameter. Then the RLR of (5) is reduced with respect to 
the control parameter  to get the estimates of the 
coefficients. This punishment reduces the variances of the 
estimates and imposes them to be biased, leading to 
enhanced prediction accuracy [18]. In classification and 
feature selection applications, these penalizing 
(regularizing) techniques belong to the family of 
embedded feature selection approaches that are often 
utilized [19]. 

Without loss of generality, it is assumed that the 
features are standardized, 

  and, 

and the outcome variable is centered, 

. As a result, the intercept  is not 

penalized. The estimation of  is done by utilizing 
LASSO as follows. 

   (6) 

where  is the control parameter. When , (6) is 
minimized to the MLE estimator. As , the 
penalization imposes all features to be zero. 

The elastic net is another effective penalized technique 
that is utilized in the process of feature selection. It was 
proposed by Zou and Hastie [9] in order to address the 
first and second shortcomings of LASSO, respectively. 
The elastic net is a combination of L2-norm and L1-norm 
that is used to deal with the situation of highly correlated 
features as well as feature selection all at the same time. 
The RLR with the elastic net can be expressed as follows: 

 (7) 

It is easy to observe from (7) that the elastic net 
estimator relies on two control parameters  and  
whose possible values are non-negative. Equation (7) 
provides us with a solution to a penalized logistic 
regression problem. 

The adaptive LASSO (ALASSO) method was 
originally proposed by Zou [10] to tackle the third 
LASSO's drawback by substituting the L1-regularization 
with a re-weighted version. In other words, Zou [10] 
re-weighted the L1-regularization coefficients. For 
weighting, Ridge, LASSO, or other shrinkage methods 
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may be used. LASSO is employed as an initial estimator 
for the coefficients in this work, and the LASSO obtained 
from a first stage is used as such. In penalized logistic 
models using ALASSO, the ALASSO penalized logistic 
model is written as 

 (8) 

where  and 
 

is an initial estimate for each 

 estimated utilizing the LASSO method. Here, we set 

, for simplicity. 
Other penalized regression techniques that are similar 

to the elastic net method and have the capacity to 
accomplish grouping effect have been suggested, such as 
adaptive elastic net methods [11], [12], in which the 
authors provided two adaptive elastic net estimators. They 
included the adaptive weight into the L1-regularization 
when they were using the elastic net. However, in terms of 
adaptive weights, two adaptive elastic net (AElastic) 
methods vary from one another. Using the elastic net 
estimator, Zou and Zhang [11] build the adaptive weight. 
On the other hand, Ghosh [12] constructs the adaptive 
weight using the least squares estimator. For fixed , 

the regularized logistic regression using AElastic of  
can be expressed as follows: 

 (9) 

where  is the adaptive weight 

generated by the initial estimator  for some positive 
constant . The coordinate descent method is capable of 
providing a reliable solution to (6)-(9) [18]. 

3. The Proposed Method 
It has been shown that the elastic net technique 

performs well when the correlations between each pair of 
variables are extremely strong. However, El Anbari and 
Mkhadri [20] observed that the reliability elastic net 
technique lowers when the absolute correlation between 
features is not high . Elastic net has another 
issue in that it ignores the correlation structure of features 
[21]. Zou and Zhang [11] also showed that the elastic net 
does not possess the oracle property and that the grouping 

effect issue continues to be a concern. These issues that 
exist with the elastic net may be addressed by using the 
adaptive elastic net, which was proposed by Ghosh [12] 
and Zou and Zhang [11]. The adaptive elastic net 
combines the L2-regularization with the adaptive LASSO. 

It is critical when using an adaptive elastic net that the 
initial weight is selected correctly. This is done so that 
features may be more accurately selected while also 
ensuring that classifiers are accurate. The regularized 
logistic regression with AElastic net (RLRAEN) is our 
approach that uses the adjusted variances of features as 
initial weights within the L1-regularization of the elastic 
net model for each feature, as shown [22]. 

The p-dimensional vector of features can be expressed 
as follows: 

        (10) 

where  is the adjusted variance of a feature  that 
is defined as 

    
    (11) 

where  denotes the variance of feature  in class 

, is the weight of class or prior probability. In 

this research, , and . The used weight 
in this research provides the feature with a low value of 
adjusted variance with a relatively large weight. On the 
other hand, it provides the feature with a high value of 
adjusted variance with a small weight. In this case, the 
L1-regularization can suppress inconsistency in feature 
selection. After ensuring that each feature has a suitable 
weight, the RLRAEN may use it to find related features 
efficiently and correctly. The RLRAEN implementation 
algorithm is stated in the following Algorithm. The 
coordinate descent technique may be used to well solve 
the RLRAEN. 

Algorithm: The computation of RLRAEN 

Split each descriptor  based on the value of into two 

classes  and . 

Find the variance of  and  

Compute  

Find  

Define  

Solve the RLRAEN 
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4. Experimental Study 

4.1. Data Description 

The proposed method employed in this study has been 
applied to the publicly available breast cancer Wisconsin 
(Diagnostic) medical dataset (WDBC). This dataset was 
obtained from the UCI Machine Learning dataset 
repository [23]. The WDBC was created by Dr. William 
H. Wolberg. It includes the records of 569 cases, 357 of 
which represent benign breast cancer and 212 cases 
represent malignant breast cancer. In addition to the ID 
number of each record and the diagnosis of breast cancer 
(benign and malignant), the WDBC consists of 30 
real-valued features whose values were measured from a 
digital image of a breast mass using a special kind of 
needle aspirate. The values of these features represent the 
characteristics of the cell nuclei that appear in the image. 
Ten of the features are measurements of Radius, Texture, 
Perimeter, Area, Smoothness, Compactness, Concavity, 
Concave points, Symmetry, and Fractal dimension that 
were estimated for each cell nucleus [24], [25]. 

4.2. Performance Evaluation 

In this study, the performance of RLRAEN in terms of 
prediction is assessed. Following that, a comparison with 
various sparse techniques is carried out. Three 
performance measures are included in the comparison, 
and they are assessed on the above dataset. These 
measures are classification accuracy (CA), sensitivity 
(SEN), and specificity (SPE) [26], [27]. 

    
(13) 

         
 (14) 

         
 (15) 

TP and FP indicate the number of true and false 
positives, respectively, while TN and FN denote the 
number of true and false negatives, respectively. The 
better the classification performance is, the higher the 
values of the utilized assessment criteria are. The paired 
t-test is used to ensure that the promised improvements 
have a high probability of being correct and consistent. 

4.3. Experimental Setting 

The proposed technique (RLRAEN) employed in this 
study demonstrated its effectiveness through comparative 
experiments with three different techniques (LASSO, 
elastic net, and adaptive elastic net). These techniques, 
along with our method, are applied to the dataset 
presented above. Then, cross-validation (CV) is 

performed on each dataset by randomly partitioning it into 
two subsets: the training subset, which contains 70% of 
the data, and the testing subset, which contains 30% of the 
data. 10-fold cross-validation was performed using the 
training subset to obtain the best values of  and . 
The experiment was performed a hundred times, and the 
average of the results was used as the final value. All the 
tuning parameters have a range of [0,100]. All the 
techniques used were implemented in the programming 
language R utilizing the "glmnet" package. 

4.4. Experimental Results 

To evaluate the proposed method (RLRAEN) employed 
in this study, we compare it with LASSO, elastic net, and 
AElastic net. All of these methods were applied to the 
WDBC dataset. The average number of features selected 
by each method (# features), classification accuracy, 
sensitivity, and specificity were calculated for both the 
training and testing subsets of the WDBC dataset, as is 
shown in Tables 1 and 2. The standard deviation for the 
relevant value is given in parentheses. 

Table 1.  Criteria (averaged over 100 times) for the training subset. 

Methods # Features % CA % SEN % SPE 

Lasso 14 97.13 
(0.004) 

97.34 
(0.005) 

97.19 
(0.006) 

AElastic 23 98.02 
(0.004) 

97.72 
(0.004) 

98.63 
(0.009) 

Elastic 22 97.86 
(0.004) 

97.73 
(0.005) 

98.46 
(0.010) 

Proposed 25 98.90 
(0.005) 

98.81 
(0.005) 

99.39 
(0.004) 

Table 2.  Criteria (averaged over 100 times) for the testing subset. 

Methods % CA % SEN % SPE 

Lasso 89.10 (0.010) 92.40 (0.006) 90.94 (0.006) 

AElastic 91.37 (0.006) 93.13 (0.005) 90.91 (0.004) 

Elastic 92.07 (0.006) 93.57 (0.007) 91.70 (0.005) 

Proposed 95.94 (0.004) 94.97 (0.008) 92.98 (0.010) 

At first sight, it can be seen that RLRAEN had the 
greatest average number of chosen features among the 
other three techniques when selecting 25 features on 
average. While LASSO, elastic net, and adaptive elastic 
net picked 14, 22, and 23 features on average, respectively. 
Furthermore, RLRAEN achieved CA, SEN, and SPE 
better than LASSO, elastic net, and AElastic net on 
average for both the training and testing sets.  For 
instance, the training (testing) CA of RLRAEN was 98.90 
(95.94), which is greater than 97.86 (92.07) for the elastic 
net, 97.13 (89.10) for LASSO, and 98.02 (91.37) for 
AElastic net. 

To make sure that the evaluation is consistent, the 
significance of the above results was tested by means of 
the paired t-test. The null hypothesis is that the proposed 
method’s "mean of average accuracy equals mean of 
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average accuracy of another method". The alternative 
hypothesis is that "the mean of average accuracy of 
proposed method does not equal the mean of average 
accuracy of another method". The column labeled 
"improvement" provides the relative improvement 
achieved by the proposed method (compared to the other 
methods) in mean of average accuracy. The summary of 
the results is presented in Table 3, which shows that 
RLRAEN significantly performs better than the rest of the 
methods. The outcomes of the study show that the 
proposed method, RLRAEN, outperforms some of the 
contemporary classifiers. 

Table 3.  Significant test results of paired t-test for the training and 
testing set. 

Methods 

Training set: Average 
accuracy 

Testing set: Average 
accuracy 

Improvement p-value Improvement p-value 

Lasso 1.86% 0.002(*) 7.68% 0.0002(*) 

AElastic 0.94% 0.002(*) 5.00% 0.0001(*) 

Elastic 
net 1.10% 0.005(*) 4.20% 0.0016(*) 

(*) significant at  

In general, when compared to the other competitor 
techniques, the classification process of the proposed 
adaptive regularized technique offers the best overall 
classification process in terms of classification accuracy, 
sensitivity, and specificity. This indicates that RLRAEN 
takes into consideration the relative importance of the 
features. 

5. Conclusions 
In this study, the findings obtained by applying the 

RLRAEN method to the Breast Cancer dataset were 
compared with the findings obtained by applying the other 
three techniques (LASSO, elastic net, and adaptive elastic 
net) to the same dataset. As a result, it could be concluded 
that the proposed method achieved better and more 
efficient results for classification and feature selection 
than the other methods. Therefore, RLRAEN seems to be 
an appropriate feature selection and classification 
technique, and thus it may be used in other cancer-related 
datasets. 
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