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Biosynthesis, characterization and antiproliferative activity of green synthesized
gold nanoparticles using Lantadene A extracted from Lantana camara

Abstract

This study was focused on the biosynthesis of gold nanoparticles loaded with lantadene A (LA-AuNPs)
from Lantana camara extract and the antiproliferative effects on prostate cancer cells (LNCaP). The
synthesized LA-AuNPs had smooth surface, and nearly spherical in shape (67.94 nm) with the zeta
potential (-30.11+0.83 mV). LAAUNPs showed a dose dependent cytotoxic activity with IC50, 126.82 ug/
mL against LNCaP, but non-cytotoxic to normal prostate cells. The intrinsic pathway of apoptosis was
caused by the increase of caspases-3/7 and -9 activity and cell cycle arrest at the GO/G1 phase.
Therefore, LA-AuNPs could be a potent lead to inhibit LNCaP
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1. Introduction

Nanotechnology enables the synthesis of nanoscale
substances, approximately less than 100 nm [1,2]. One
of the challenges is developing an effective experi-
mental protocol to synthesize nanoparticles with
consistent and well characterized physiochemical
properties including high mono-dispersity in particle
size [3].

The concept of environmental safety and green
technology has been the key consideration in nano-
technology development [4,5]. Recently, the devel-
opment of metallic nanoparticles such as gold, silver,
titanium, platinum, cerium, iron, thallium and zinc
has attracted much attention, mainly due to the
unique catalytic, optical and magnetic properties of
metals [6]. The use of low-cost and eco-friendly
materials is considered as the green synthesis for
metallic nanoparticles. For the last decade, gold
nanoparticles (AuNPs) has been considered to be the
best drug carrier due to the excellent and unique
properties like controlled size, biocompatibility, sta-
bility and safer than other metallic nanoparticles
[7,8]. Therefore, AuNPs have been applied in several
applications such as, anti-cancer, antimicrobial and
anti-inflammation [9]. There were also studies re-
ported on the incorporation of different phytochemi-
cals in AuNPs [10—13]. Phytochemicals like
saponins, terpenes, alkaloids, phenolics, carbohy-
drates and lipids may reduce metallic ions during
nanoparticle  synthesis [14]. Previous studies
mentioned the synthesis and characterization of
different metallic NPs [15—17] including AuNPs
[18—20] using various extracts from different parts of
Lantana camara. L. camara is one of famous orna-
mental and herbal shrubs belonging to the family
Verbenaceae. L. camara is commonly grows in sub-
tropical, tropical and temperate areas [21]. It is also
known as Spanish flag, Surinam Tea Plant and red
sage [22] with different flower color such as violet,
red, pink, yellow and white. Numerous phytochemi-
cals were extracted and identified from different parts
of L. camara including steroids, iridoid, flavonoids,
glycosides, steroids, phenylpropanoid glycosides, ol-
igosaccharides, naphthoquinones and triterpenoids.
Lantadene A (LA) (22B-angeloyloxy-3-oxoolean-12-
en-28-oic acid) is a pentacyclic triterpenoid which is
a dominant compound in L. camara leaves [23,24].

https://doi.org/10.33640/2405-609X.3158

The phytochemical synthesized metallic nano-
particles have been reported to be more feasible and
stable in nanomedicine applications. Therefore, scien-
tists are encouraged to develop a new, safer and
effective drug delivery system to treat various types of
cancers. In particular, prostate cancer represents the
second most common cancer and the fifth most com-
mon cause of cancer death in men worldwide [25].

In the present study, the active compound, LA was
extracted from L. camara and reacted with gold to
form LA-AuNPs. The green-synthesized (LA—AuNPs)
were characterized for their physiochemical properties
such as chemical stability, elemental composition,
particle size, zeta potential and surface morphology for
better understanding the role of LA-AuNPs in prostate
cancer cell treatment. The characteristics were inter-
preted with the observation of high cell screening,
caspase activity and cell cycle arrest phenomenon to
explain the apoptosis pathway. The cytotoxicity of LA-
AuNPs against LNCaP was also compared with pros-
tate normal cell line.

2. Materials and methods
2.1. Chemicals, cell lines and plant material

L. camara leaves were collected from the garden of
Baghdad University (Al-Jadriya, Baghdad, Iraq). The
authentication of the plant was carried out by Dr.
Zainab Abid Aun from the Department of Biology,
College of Sciences for Women, Baghdad University
(Baghdad, Iraq) and processed by Mr. Ikhlas Hussain
Alwan who is a researcher of from the National Her-
barium, Ministry of Agriculture (Baghdad, Iraq). The
specimen has been deposited at the National Herbari-
um, Ministry of Agriculture (Baghdad, Iraq) with the
registration number of 1169. The prostate cancer cell
line (LNCaP) and prostate normal cell line (RWPE-1)
were purchased from American Type Culture Collec-
tion, ATCC (Manassas, Virginia, USA). Roswell Park
Memorial Institute Medium (RPMI 1640), keratinocyte
serum free medium (K-SFM) and gold(II) chloride
trihydrate  (HAuCly;3H,0), dimethyl sulfoxide
(DMSO) and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphe-
nyltetrazolium bromide (MTT) were purchased from
Sigma—Aldrich (St. Louis, MO, USA). Acetic acid,
methanol, chloroform and acetonitrile were obtained
from Merck (Darmstadt, Germany).

2405-609X/© 2021 University of Kerbala. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
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2.2. Extraction and purification of lantadene A

The collected leaves were dried and then ground
into powder. The leaf powder (100 g) was mixed with
500 mL methanol and macerated for 24 h with inter-
mittent shaking at 30 °C. The extract was filtrated
using muslin cloth and decolorized with 20 g activated
charcoal to obtain a yellowish solution.

The methanol solution was concentrated by evapo-
ration and reconstituted in a methanol—water (1:7)
mixture (15 mL). The solution was extracted with
chloroform by vigorous shaking in a 100 mL sepa-
rating funnel. The chloroform layer was withdrawn
after extraction. Another fresh chloroform (15 mL) was
added into the remaining aqueous solution for vigorous
shaking again. The organic layer was then collected
and combined prior to dehydration by adding a small
amount of anhydrous sodium sulphate. The organic
layer was then concentrated by a rotary evaporator.

The concentrated residue was added into 100 mL
methanol and left for crystallization. The obtained
white crystal (1.06 g) was reconstituted in methanol
and chromatographed through a silica gel packed col-
umn (30 g, 60—120 mesh) using the solvent system of
chloroform—methanol (99.5:0.5). The eluted solution
was concentrated in vacuo again and recrystallized in
methanol to form pure lantadene A (0.45 g).

Growth inhibition(%) =

Optical density of treated sample

2.3. Biosynthesis of lantadene A loaded gold nano-
particles (LA-AuNPs)

The green synthesis of LA-AuNPs was performed
according to the previously reported procedures with
slight modification [26]. A 2 mL aqueous
HAuCl,-3H,0 (1 mM) was added dropwise to 10 mL
of LA (1 mg/mL) with a constant stirring speed at
70 °C for 5—80 min. A gradual change of color was
observed which indicated that LA was incorporated
with gold nanoparticles. The UV—Vis absorption
spectrum was reported as a function of time to monitor
the progress of AuCl*~ reduction. The absorbance of
sample was monitored using an UV—Vis spectropho-
tometer at the scan range of 400—1100 nm (UV-1800,
Shimadzu, Tokyo, Japan). The mixture of synthesized
LA-AuNPs was centrifuged at 16,000 rpm for 15 min.

Optial density of DMSO(contol) *

The residue was washed three times with deionized
water and then left to drying.

2.4. Cytotoxicity assay

LNCaP cells were cultured in RPMI 1640 supple-
mented with 10% FBS, 100 U/mL penicillin and
100 pug/mL streptomycin. RWPE-1 cells were grown in
K-SFM supplemented with recombinant epidermal
growth factor and bovine pituitary extract. All cells
were incubated in 5% CO,, 37 °C for 3—5 days until
reached 80—90% confluency.

MTT assay was carried out to determine the cell
viability of LNCaP and RWPE-1 after treated with
different concentrations of LA-AuNPs ranged from
6.25 to 400 pg/mL. DMSO was used as negative
control. Briefly, 1 x 10° cells/well were seeded in a 96-
well plate and incubated overnight in 5% CO,, 37 °C
to obtain 80—90% confluency. The cells were then
treated with LA-AuNPs and further incubated for 24 h.
A 50 pL of MTT (2 mg/mL) was added to the treated
cells and incubated for another 2 h. After incubation,
the formazan crystals were removed by DMSO. The
viability of cells was determined at 570 nm using an
ELISA microplate reader (Bio-Rad, Hercules, Cali-
fornia, USA). The results are expressed in growth in-
hibition as calculated using equation (1).
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Fig. 1. UV—vis absorption spectra of the formed LA-AuNPs.
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Fig. 2. FTIR spectra of (a) LA and (b) synthesized LA-AuNPs.
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Fig. 3. EDX profiles of (a) LA and (b) crystalline LA-AuNPs.
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Fig. 4. X-ray diffraction (XRD) profile of crystalline LA-AuNPs.

The IC50 is defined as the required concentration of
LA-AuNPs to inhibit 50% cell viability. The experi-
ment was carried out in triplicate.

2.5. High content screening

Cellomics multiparameter cytotoxicity 3 kit
(Thermo Scientific™, Pittsburgh, PA, USA) was used
to evaluate cell nuclear intensity, cell membrane
permeability, mitochondrial membrane potential
(MMP) and cytochrome C release after treated with
LA-AuNPs. After 24 h of treatment, cell permeability
dye and MMP dye were added to the cells
(1 x 10* cells/well) and incubated for 30 min at 37 °C.
Blocking buffer (1 x ) was used in the fixation and
permeabilization of cells. Cells were probed with pri-
mary cytochrome C antibody and secondary DyLight
649 conjugated with goat anti-mouse immunoglobulin
G for 1 h each. The staining solution was supple-
mented with Hoechst 33,342 to stain the nucleus of
cells. The analysis was performed using the ArrayScan
high content screening system (Cellomics, PA, USA).

2.6. Measurement of caspase-3/7, —8 and —9
activities

The activities of caspase-3/7, —8 and —9 were
determined using Caspase-Glo-3/7, —8 and —9 kit
(Promega, Madison, WI, USA), according to the man-
ufacture's protocols. Initially, cells (1 x 10* cells/well)
were seeded and treated with LA-AuNPs overnight.
DMSO was used as the negative control. The next day,
100 pL of caspase-Glo reagent was added to the each
well and then incubated for 30 min. The activities of

samples were measured using a Tecan Infinite® 200
Pro (Tecan, Mannedorf, Switzerland) microplate reader.
The experiment was repeated in triplicate.

2.7. Cell cycle arrest analysis

The cell cycle was evaluated using a flow cytometer
(BD Biosciences, New Jersey, USA). Approximately,
1 x 10° cells/well were seeded and treated with LA-
AuNPs for 24 h. DMSO was used as negative control.
The treated cells were then washed twice with PBS.
The cells were fixed using 70% cold ethanol. The cells
were stained with PI supplemented with RNase. The
percentage of cells were measured in (GO/GI1, S and
G2/M) phases.

2.8. High performance liquid chromatography

The white crystal was then dissolved in methanol
for HPLC (Shimadzu LC-2010A HT, Kyoto, Japan)
analysis at 240 nm. The separation was carried out
using a Phenomenex CI18 column (4 pm,
150 x 4.6 mm) at the isocratic gradient. The mobile
phase was consisted of methanol: acetonitrile: water:
acetic acid (68:20:12:0.1). The flow rate was 1.2 mL/
min and the injection volume was 20 pL.

2.9. Characterization of LA-AuNPs

LA-AuNPs were evaluated for the chemical stabil-
ity of LA based on its functional groups using Fourier
transform infrared spectroscopy (FTIR, IRPrestige-21,
Shimadzu, Tokyo, Japan). A small amount of sample
was homogenized with KBr and the mixture was
analyzed at the spectral range of 4000-400 cm™". The
crystalline nature of LA-AuNPs was analyzed using a
X-ray diffractometer (XRD- 6000, Shimadzu, Tokyo,
Japan) which was operated at 45 kV and 40 mA with
Ko for Cu (A = 1.54 /°\) and the scanning was per-
formed at 20 = 10°—80° angles. The mean of crys-
tallite size was calculated using Scherrer equation (2)
based on the average of four reflection peaks; 38.417°
(111), 44.603° (200), 64.725° (220) and 77.618° (311).

kA
- Bcost @)

D: mean of crystallite size

k: a dimensionless shape factor of 0.9

A: X-ray wavelength

B: full width at half maximum of peak (radians) cor-
rected for instrumental broadening.



318 D.A. Salim Dawood et al. / Karbala International Journal of Modern Science 7 (2021) 313—326

(@)
100 -

90
80 -
70 -

60 -
50 -

Intensity

40 -
30:
20-'
10-'

0 -

40 50 60 70 80 9 100 110 120

Diameter (nm)

® o

0.9 !
0.8 ]
0.7 i
0.6 ]

Power

s’
o
0.3-
"
. |
% S § N

-96 -48 0 48 96
Zeta potential (mV)

Fig. 5. (a) Dynamic light scattering for particle size distribution based on light intensity and (b) zeta potential of LA-AuNPs.




D.A. Salim Dawood et al. / Karbala International Journal of Modern Science 7 (2021) 313—326 319

s‘
7

04 i e L G s it G
0 10 20 30 40 50 60 T0 80
Diameter (nm)

-

50 nm

0: the Bragg diffraction angle obtained from 26 value
corresponding to maximum intensity peak (radians).

The analysis of elements was performed using a X-
Max 50 energy dispersive X-ray spectrometer (EDX;
Oxford Instrument, Abingdon, UK) coupled with a
scanning electron microscope (SEM). The particle size
distribution (light intensity) and polydispersity index
of LA-AuNPs, as well as the surface electrical charge
(zeta potential) were estimated to determine the
colloidal stability using a zeta analyzer (ZetaPlus,
Brookhaven, NY, USA). The sample was sonicated
before test to avoid any possible aggregation.

The surface roughness, surface morphology and
particle size were also carried out using a combined
atomic force microscopy (AFM) and scanning probe
microscope (AA3000 SPM, Angstrom Advanced, Inc.,
Stoughton, MA, USA). Further morphological analysis
of synthesized LA-AuNPs was conducted using a field
emission scanning electron microscope (MIRA 3
FESEM, TESCAN, Brno, Czech Republic) and trans-
mission electron microscopy (JEM-2100 TEM, JEOL
Ltd., Tokyo, Japan) operated at 200 kV. The frequency
histogram of particle size distribution was analyzed
using ImageJ (version 1.53 k, Maryland, USA).

2.10. Statistical analysis

deviation. ANOVA was performed to determine the
significance of results using GraphPad Prism 7 (La
Jolla, CA, USA). The statistical significance is defined
at p < 0.05.

The results were expressed as mean + standard

3. Results and discussion
3.1. Physiochemical characterisation of LA-AuNPs

The addition of LA into the gold ion solution caused
the gradual change of color solution from pale yellow
into ruby-red. This indicated the reduction of gold ions
(Au’™) to gold nanoparticles. The color change can be
explained by the excitation of surface plasmon reso-
nance [27]. The biosynthesis and fabrication of nano-
particles was also monitored using an UV—Vis
spectrophotometer in a time dependent manner
(Fig. 1). The UV—Vis spectra of synthesized AuNPs
showed a strong surface plasmon resonance

Fig. 6. (a) 3D AFM images, (b) SEM, (c) histogram of particles size
distribution and (d) TEM showing the surface topology of LA-
AuNPs.
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Fig. 7. Percentage growth of LNCaP and RWPE-1 cells treated by LA-AuNPs.

corresponding to the peak at 543 nm. Reported that
gold nanoparticles have an absorbance peak between
500 and 550 nm depending on the particle size [28].
The figure shows that the reaction was started at 5 min
and completed in 80 min.

FTIR was used to examine the change of compound
functional groups after reacted with gold ion during
nanomization. Fig. 2 shows strong peak which was
assigned to —OH stretching appeared at 3419.87 cm ™'
in LA became sharper and higher in intensity at
343136 cm™! in LA-AuNPs spectrum [29]. The
vibrational stretching of aliphatic -CH- was found to
exhibit at 2929.87 cm ! in LA, and around 2922.16
cm™ ' in LA-AuNPs [30]. The reduced band at 1734.01
cm~' which belonged to the -C=0 ester in LA was
shifted to 1739.79 cm™' in LA-AuNPs spectrum. This
indicates the elimination of the terminal esteric group,
followed by the reduction of -OH to -C=0. The other
minor bands at 1647.21 cm™ ' in LA and 1633.71 cm ™'
in LA-AuNPs, were found to correspond to the
carbonyl group -C=O [31]. The spikes at 1286.52
cm~ ' and 1074.35 cm™" correspond to the C-O-C and
-CO of the aromatic ester and primary alcohol,
respectively. Those bands were reduced as appeared at
126530 cm™' and 107049 cm™' in LA-AuNPs
spectrum.

3.2. Determination of elemental composition by EDX

The elements in the synthesized LA-AuNPs were
determined using EDX. The strongest peak of gold was
noticed around 2.2 keV, in addition to another two
minor peaks located at 8.5 and 9.7, respectively
(Fig. 3(b)). This indicates that gold as the predominant
element with the total weight of 48.6%. The other low
intense peaks such as, O, Na, Si, S, CI, P, Ni, Al, Mg
and K were also identified (Fig. 3(a)). The existence of
Si signal was most probably leached from glass during
sample preparation.

3.3. Crystallographic structure of LA-AuNPs

XRD measurement was used to examine the crys-
talline structure of the synthesized LA-AuNPs (Fig. 4).
A number of Bragg reflections which is categorized as
the face-centered cubic structure of gold can be seen
from the figure. The strongest peaks were assigned to
the diffractions at 20; 38.417° (111), 44.603° (200),
64.725° (220) and 77.618° (311) which was identical
with the data reported for the standard gold metal
(Joint Committee on Powder Diffraction Standards, no.
04—0784, USA). The mean of crystallite size was
found to be 29.5 + 5.49 nm. This explains the cubic
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respectively.
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structure of metallic gold and the crystallinity of LA-
AuNPs (Ramkumar et al.) [20].

3.4. Surface morphology of synthesized LA-AuNPs

The particle size distribution of synthesized LA-
AuNPs was determined based on the principle of dy-
namic light scattering. Particle size was determined
by measuring the random changes in the intensity of
light scattered from a solution. Fig. 5 shows the hy-
drodynamic average size of 67.94 + 1.76 nm for LA-
AuNPs with the polydispersity index (PDI) of 0.381.
The results explained the medium mono-dispersity
with minimal aggregation of nanoparticles. The elec-
trical charge on the particles was contributed by
functional groups on the surface of particles. The zeta
potential of LA-AuNPs was —30.11 + 0.83 mV which
was considered to be physically stable [31]. The zeta
potential explains the stability of nanoparticles stability
in colloidal solution.

Another three analytical techniques such as AFM,
FESEM and TEM were used to describe the morphology
of the synthesized LA-AuNPs. AFM is a powerful tool
to examine the morphological features of LA-AuNPsin a
3D micrograph as presented in Fig. 6(a). The AFM
image displays the nearly spherical topology of nano-
particles with the mean particles size about 59.86 nm. The
FESEM result was in line with the topological image
generated by AFM. Fig. 6(b) also reveals the approxi-
mately spherical shape of synthesized LA-AuNPs in a
homogeneous distribution with the mean particles size of
63.59 + 20.502 nm (Fig. 6(c)). Further morphological
observation was monitored using TEM. Fig. 6(d) exhibits

the spherical allographic structure of nanoparticles with
the mean particles size of 62.40 + 14.022 nm. All
morphological studies indicated the spherical and nano-
sized particles (59.86—67.94 nm) were successfully
produced in this study.

3.5. Cytotoxicity of LA-AuNPs

The MTT assay was used to measure the cytotoxic
activity of the synthesized LA-AuNPs against LNCaP
and RWPE-1 cells. LNCaP cells displayed the decrease
of cell viability after 24 h of treatment, especially at
the concentration higher than 50 pg/mL. LA-AuNPs
were found to be non-toxic to RWPE-1 cells compared
to the minimum selective concentration of drug
(docetaxel) as presented in Fig. 7. The IC50 was pre-
sented to be 126.82 ng/mL for LNCaP cells, whereas
705.56 pg/mL for RWPE-1 cells. Hence, LA-AuNPs
have a potent anti-cancer activity against cancer cells
and non-toxic for normal cells [32]. This cytotoxicity
could be attributed to the physiochemical interaction of
gold and LA with the functional groups of intracellular
proteins, as well as with the nitrogen bases and phos-
phate groups in DNA [33]. Lee et al. [34] reported that
the magnitude of surface charge is not an exclusive
factor to determine the cytotoxicity of gold nano-
particles. The cytotoxicity was mostly probably due to
the hydrophobic moiety which induced the lytic
interaction with plasma membrane. This phenomenon
would hinder cell proliferation by slowing down cell
migration, inhibiting DNA replication and causing
DNA damage. Of late, Ramkumar et al. [20] reported
the synthesis of LA-AuNPs using the root extract of L.
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Fig. 10. The cell cycle phases of (a) GO/GI, (b) S and (c) G2/M.

camara. The cytotoxic activity was assessed against
MBA-MB-231 breast cancer and Vero normal cells.
They also revealed that the plant extract loaded nano-
particles showed a selective toxicity against MBA-MB-
231 breast cancer cells rather than Vero normal cells
[20]. The finding explained the non-toxicity of gold
nanoparticles to normal cell lines.

3.6. High content screening (HCS) assay

The apoptosis or survival of cells are mostly regu-
lated and controlled by mitochondria. Therefore, any
disturbances on cell nuclear, cell membrane perme-
ability, MMP and regulation of caspases could result to
cell death [35]. Therefore, the treated LNCaP cells
were assessed using HCS. The blue intensity of
Hoechst dye was increased with the increased con-
centration of LA-AuNPs in cancer cell treatment
(Fig. 8(a)). The increment was significant at the con-
centration ranged from 50 to 400 pg/mL. The increase
of nuclear fragmentation was observed at higher con-
centration of LA-AuNPs in comparison to control as
shown in Fig. 8(b). Fig. 8(c) shows to have a slight
increment in the permeability of cell membrane.
However, the treated LNCaP cells were weakly stained
with MMP dye in comparison to untreated cells. The
LA-AuNPs also induced a dose-dependent disturbance
in MMP as shown in Fig. 8(c). Approximately, 50 pg/
mL of LA-AuNPs was equal to the performance of
docetaxel (6.25 pg/mL) in reducing MMP. Meanwhile,
the collapse of (MMP) lead to the elevation in
releasing of cytochrome C to cytosols (Fig. 8 (d)). We
supposed the LA-AuNPs could induce apoptosis by
targeting the mitochondria and its contents [36].

3.7. LA-AuNPs induced caspase —3/7, 8 and —9
activities

Caspases are a group of cysteine proteolytic en-
zymes which can be used to determine apoptosis
pathway [37]. Thus, the activity of caspase —3/7, —8,
and —9 in LNCaP cells were monitored after LA-
AuNPs administration for 24 h. As shown in Fig. 9,
LA-AuNPs induced a dose-dependent increment in
caspases —3/7 and —9 activities starting from 50 to
400 pg/mL. In contrast, there is almost no significant
change of caspase-8 activity. The intrinsic mechanism
of mitochondria involved the activation of caspase-3
and -9 which were mostly regulated by Bcl-2 family
proteins [38]. Bcl-2 protein was downregulated and
Bax was transferred into mitochondria, and thus lead-
ing to the collapse of MMP to release cytochrome C
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[39]. The cytochrome C forms a complex with Apaf-1
which is called apoptosome. Apoptosome would lead
to the activation of caspase-9, and consequently the
activation of caspase-3/7 in apoptosis [40]. The LA-
AuNPs induced caspases-3/7 and —9 activation, but
did not activate caspase-8. Therefore, LA-AuNPs fol-
lowed the mitochondrial intrinsic pathway of
apoptosis.

3.8. Cell cycle arrest analysis

The antiproliferation of cells can be explained by
cell cycle arrest using a flow cytometer [41]. As shown
in Fig. 10, the percentage of cell count was substan-
tially increased with the increase of LA-AuNPs con-
centration in the GO/G1 phase compared to the cell
count of control. The treatment was significant (P *
0.05) at the concentration of 25—400 pg/mL. Contro-
versially, the cells population in the S and G2/M
phases was substantially lower than that of control. The
lack of control in cell cycle always results in cancer
development [42]. The cyclin-dependent kinases
(CDKs) regulated the progression of cell cycle via the
interaction between regulatory sub-unit (cyclin) and
cyclin-dependent kinase inhibitors (CDKIs) [43—45].
However, the activities of CDKs are specific to the
various stages of cell cycle. The G1 phase progression
is mediated by CDK4 and CDK6 and complexed with
D-type cyclins [46]. The G1-S phase transition may
regulate by CDK2-cyclin E complexes, while a com-
plex CDK2-cyclin A was responsible for S phase
progression. The transition of G2-M phase is
controlled by CDK1-cyclin B [47,48]. It is known that
anti-tumor agent may induce cell cycle arrest at the G1,
S, or G2/M phases [50]. In the present study, LA-
AuNPs induced a dose-dependent cell cycle arrest in
LNCaP cells at the GO/G1 phase.

4. Conclusion

A simple, cost-effective and eco-friendly method
for the synthesis of LA-AuNPs was successfully car-
ried out. Gold (III) ion was chemically reduced to gold
using LA as a reducing agent. FTIR revealed that the
stabilization of gold ions by LA through the bio-
reduction of esteric groups. The mean particles size
was 67.94 + 1.76 nm with medium monodispersity and
high stability of nanoparticles in colloid. The spherical
shape of synthesized LA-AuNPs was cytotoxic to
prostate cancer cells but non-toxic to normal prostate
cells. LA-AuNPs induced intrinsic apoptosis via the
activation of caspases —3/7 and —9 and stimulated the

cell cycle arrest at the GO/G1 phase. Hence, the syn-
thesized LA-AuNPs have therapeutic potential in
prostate cancer therapy.
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