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ABSTRACT Object detection becomes a challenge due to diversity of object scales. In general, modern
object detectors use feature pyramid to learn multi-scale representation for better results. However, current
versions of feature pyramid are insufficient to handle scale imbalance, as it is inefficient to integrate
semantic information across different scales. Here, we reformulate feature pyramid construction as a feature
reconfiguration process. We propose a detection network, Multi-level Refinement Feature pyramid Network,
to combine high-level features (i.e., semantic information), middle-level feature and low-level feature (i.e.,
boundary information), in a highly-nonlinear yet efficient manner. A novel contextual features module is
proposed, which consists of global attention and local reconfigurations. It efficiently gathers task-oriented
contextual features across different scales and spatial locations (i.e., lightweight local reconfiguration and
global attention). To evaluate significance of proposed model, we designed and trained end-to-end single
stage detector called MRFDet by assimilating it into Single Shot Detector (SSD), and it achieved better
detection performance compared to most recent single-stage objects detectors. MRFDet achieves an AP of
45.2 with MS-COCO and an improvement in mAP of 4.5% with VOC.

INDEX TERMS Object detection, feature pyramid, convolutional neural network, computer vision.

I. INTRODUCTION
Object detection becomes more challenging as the scale of
object instances varies [1]–[3]. According to our best infor-
mation so far, two strategies have been devised to resolve
arising issues by this challenge. In the first strategy, the image
pyramid is used to detect objects (i.e., a series of different
sizes of input images) [1]. Due to computational complexity
and increased memory requirements, this solution can only
be exploited during testing. Thus, it dramatically drops the
efficiency of the detector. The second strategy is based on
the feature pyramid developed from the input image used for
object detection [3], [4]. It can be exploited at both phases
(testing and training phase) due to low memory requirements
and computational cost. Furthermore, ‘‘the feature pyramid
module’’ can be effectively incorporated into deep networks
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to create an end-to-end solution. However, the object detec-
tor based on pyramidal construction [3]–[6] yields promis-
ing results. But there are still some limitations due to the
generation of feature pyramid from the intrinsic multi-scale
pyramidal architecture of the backbone (that design for object
classification task).

The feature pyramid models have two main limitations.
First, single-level layers of the backbone network (i.e.,
designed for classification task) are used to generate feature
maps that are not sufficiently descriptive for the object detec-
tion task. Second, a multi-level feature pyramid can produce
a more descriptive feature-map, but it adds significant com-
putational complexity. Primarily, the low-level features that
are extracted from shallow layers are not very descriptive but
helpful in object localization task. Moreover, the extraction
of high-level features from deeper layers can be useful for
the classification task. High-level features are appropriate for
objects with intricate presence, while low-level features are
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suitable for the objects with an uncomplicated appearance.
In general, objects with similar sizes having different appear-
ances, such as the appearance of a remote person, is more
complicated than that of a similar traffic light. Thus, each
feature-map in the pyramid based on single-level information
can yield sub-optimal results (i.e., used for a specific range of
object sizes).

The intuition behind this work is the use of information
from the middle layers (i.e., it is expected to describe the
mid-level representation of object parts and retain the spatial
information as well) along with shallow and deep-level fea-
tures. Medium-level features are necessary not only for initial
low-level convolutional layers features (that encode basic
visual geometry such as edges, circles, lines, corners) but also
for high-level features that encode the high-level informa-
tion used for object detection (category-level evidence). It is
advantageous to have features of all levels for object recog-
nition. The higher-level features are utilized for classification
of the object, while low-level features are helpful for object
localization. The most effective method to use middle-level
features for object detection is still an open question.

This research work aims to build a more powerful feature
pyramid with multiple levels for recognizing object instances
of various scales with less computational effort, in order
to avoid the previously mentioned constraints of existing
methods. As depicted in Fig. 2, to accomplish this objective,
we initially merged features from multiple layers (i.e., multi-
level features) extracted through a backbone network such as
VGG-16 and base features, and then fed them into a block of
alternating residual standard convolution unit (RCU) to get
more representative, multi-scale/level features. At this point,
we compile the feature map of the same scales to develop
the ultimate feature pyramid. Finally, the constructed feature
pyramid is passed through Contextual features module to
capture contextual information from a vast image region.
In addition, each feature map contains layered information
in the resulting feature pyramid. For this reason, we call
our proposed network for building pyramids MRFPN (Multi-
Level Refinement Feature Pyramid Network).

In this paper, a practical end-to-end single stage detector
is designed and trained to assess the significance of our
proposed Multi-level Refinement Feature Pyramid network.
We call our model MRFDet (Multi-level Refinement Feature
Detector) as it is constructed upon multi-level and multi-
scale features network (MRFPN) integrate with the archi-
tecture of SSD [4]. MRFDet achieved the significant result
(i.e., an Average Precision of 45.2), outperforming one-stage
detectors on MS-COCO [7] and improvement of 4.5% in
mAP PASCAL VOC07/12 benchmark datasets. The main
contributions of this work are summarized as follows:

1) We proposed a multi-level refinement feature pyramid
network (MRFPN) for object detection with less compu-
tational complexity. It exploits the features from multi-
ple levels and recursively refines the shallow features to
generate a middle level and more in-depth feature maps.

2) For the first time, Chained Parallel Pooling has been
used during the construction phase of the feature pyra-
mid to introduce more robustness and able to capture
the contextual information from a vast image region,
followed by prediction layers for object detection. For
this purpose, the features are efficiently pool with sev-
eral window sizes and merged with learnable weights
and residual connections.

3) These design features result in extensive training and
significant recognition performance; even input images
are not high-resolution images, further improving the
tradeoff between accuracy and speed.

4) With qualitative and quantitative observations, we prove
that our MRFPN shows a significant improvement over
conventional SSD [4] and M2Det [8]. MRFDet can be
used for both datasets; i.e., PASCAL VOC 07/12 and
MS COCO achieve state-of-the-art performance.

II. RELATED WORK
The sliding window has a rich and long history of perspective,
beginning with the use of convolutional networks to recog-
nize handwritten digits. However, the invention of enhanced
object detector [9], integral channel features [10], and the
HOG [11] led to more effective methods of face detection
and pedestrian detection. The rebirth of deep learning exem-
plifies the sliding window in the realm of classic computer
vision. In this section, we mainly discuss the difference and
similarities of our model and some previous works in details.

A. ANCHOR-BASED OBJECT DETECTION
Anchor-based object detection framework further cate-
gories into two clusters: two-stage approaches with pro-
posal determined and one-stage proposal free approaches.
The two-stage approach in present-day object detection is
a dominant metaphor. The Selective-Search [12] is a pio-
neering approach that comprises of two stages. In the first
phase, a spare set of candidate proposal is generated that
includes all objects, while the negative-locations are filtered.
In contrast, the classification of background and foreground
classes performed in the second stage. R-CNN [13] achieved
a significant gain in accuracy by replacing the classifier of
the second stage with a convolutional network. RCNN has
improved in speed and accuracy over the years [2], [14] by
using learned object proposals [15]–[17]. Region Proposal
Networks (RPN) combines second stage classifier with pro-
posal generation into a single convolutional network such
as Faster R-CNN [16]. Various research works have been
proposed to enhance its performance, including redesigning
and reforming of architecture [3], [6], [18]–[20], attention
and context mechanism [21], modified strategies in training
and loss function [19], [22], feature fusion enrichment and
enhancement [23], [24]. For two-stage detectors, the proposal
is predicted using anchors as regression references and clas-
sification candidates. Such models achieve the highest rate of
accuracy but are usually slow.
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FIGURE 1. Demonstration of the five kinds of feature pyramid that are used in state-of-the-art models, a) SSD-style feature pyramid, b) feature pyramid
used in FPN, c) feature pyramid used in STDN, d) feature pyramid used in M2Det, and e) our proposed multi-level multi-scale FPN.

FIGURE 2. An outline of individual parts of our multi-path refinement feature pyramid design MRFDet (300× 300). MRFDet utilizes the backbone and
MLFPN frameworks to extract robust features to detect objects from the input image; it generates class category scores and dense bounding boxes.
In MLFPN, the stack of RCU fuses base features and feature maps of corresponding layers of backbone to generate multi-scale multi-level features, and
then the FSM module aggregates the features into multi-level multi-scale features pyramid. Finally, parallel pooling applies to increase the effectiveness
of features against the appearance complexity variance of instances. And thus, we achieve fruitful end-to-end training of the whole system.

Due to high computational efficiency, one-stage anchor-
based detectors have attained much attention. OverFeat [25]
is the first modern deep learning based one-stage detector.
SSD [4], [26] directly predict the object anchor box offset and
category by spreading the anchor boxes on multi-scale layers
within a ConvNet. Recent development shows that a plenty of
work have been proposed to boost its performance in different
aspects, such as multi-scale feature fusion [26], [27], training
strategies (from scratch) [28], proposed new loss function [5],

anchor matching and refinement [29], [30], and enrichment
of features [31], [32]. One stage detector uses the anchor as a
reference box for final selections.

B. ANCHOR-LESS EXPLORATIONS
The best known anchor-less detector could be YOLOv1 [33]
with input image 448×448 and output of a 7×7 grid cell for
the box prediction. YOLOv1 experiences from low recall as
it used single point usages for bounding box prediction [34].
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As a result, anchors are used to ensure high recall in
YOLO9000 [34] and YOLOv3 [35]. Due to difficulties in
detecting objects with multiple scales, some of detectors were
considered inappropriate for generic object detection [36].
DenseBox (anchorless detector) [37] the image pyramid to
detect objects with multiple scales that takes several seconds
to process one image. RepPoints [38] uses a deformable
convolution to create more precise features and represents
an object as a set of sample points. FSAF [39] uses the
anchor-free paradigm with the best feature prediction to train
each instance. FCOS [36] uses a per-pixel prediction strategy
and relies on centerness map to suppress poor-quality object
detection. The CenterNet [40] represents each object through
its characteristics at the center point. CornerNet [41] uses the
Associative Embedding technique [42] to detect the bounding
box of an object as a pair of key-points. Cascaded and central
pooling is used to improve recall and precision in Corner-
Net. FoveaBox [43] proposed a technique with which the
final class probability can be directly predicted by assigning
objects to multiple adjacent pyramid levels.

C. FEATURE PYRAMID NETWORK/MULTI-LEVEL FEATURE
PYRAMID
The effective representation of multi-scales features scales in
object recognition is always the main hurdle to improving the
detection accuracy. Most previous approaches to detection
use a pyramid feature hierarchy extracted from backbone
networks to make a prediction. As far as we know, two main
strategies have been used to deal with scale-variance.

The first strategy is featuring image pyramids (i.e., input
image with various sizes and resolutions) that is used to pro-
duce multi-scale semantic features. These semantic features
further are used to separate prediction, and then all participate
together tomake the ultimate prediction. The feature of multi-
scale images significantly improves the accuracy of recog-
nition and localization precision, compared to single-scale
images features such as used in [19] and SNIP [1]. Despite the
increase in performance, feature image pyramid strategies are
unable to gain popularity in the A.I. community and not plau-
sible for real-time applications due to drastically high time
and memory requirements. To remedy this problem, SNIP [1]
used featured image pyramids only during the testing phase.
‘‘In contrast, other models such as Fast R-CNN [14] and
Faster R-CNN [16] did not to use this strategy by default’’.

The second strategy is the feature pyramid generation
for object detection, i.e., extracts feature from multiple lay-
ers of the network using a single-scale image. This method
is considerably more cost-effective than the image pyramid
approach in terms of computing effort and memory require-
ments and enables FPN to be provided in real-time appli-
cations both in training and in the test phase. In addition,
it is flexible and fits easily into state-of-the-art detectors
based on a deep neural network.’’ As one of the pioneering
works, Feature Pyramid Network (FPN) [3] has implemented
a top-down pathway and side links to generate features pyra-
mid that takes accuracy and speed into account. Following

this idea, PANet [44] includes extra bottom-up path aggrega-
tion network on the top of FPN; STDL [45] exploits cross-
scale features in scale-transfer module, M2Det [8] proposes
the U-shape module to fuse the multi-scale feature; and
G-FRNet [46] control the information flow across features
uses gate units. Most recently, NAS-FPN [47] uses the neural
architecture search to automatically design feature network
topology’’. Thousands of GPU hours are required during
search in NAS-FPN and yielding an irregular feature network
which is difficult to interpret. EfficientDet [48] proposes
a weighted bidirectional feature network with customized
compound scaling method for multi-scale feature fusion.
Libra R-CNN [49] proposed a balance design comprises of
simple components i.e., balanced feature pyramid, balance
L1 loss, and IoU-balanced sampling, to solve the imbalance
issue existing in the training process. The different flavors of
feature pyramid have been shown in Fig. 1. In contrast, the
purpose of this work is to understand whether single-phase
detectors can match or outdo the precision of a two-phase
detector at similar or faster speeds.

III. PROPOSED METHOD
A systematic overview of our proposed framework is shown
in Fig. 2. Our framework is based on SSD with VGG-16
as backbone. The VGG-16 backbone network is used to
generate base features. In addition, base features and feature
maps of corresponding layers are used in construction phase
of feature pyramid in multipath refinement feature pyramid
network module (MRFPN). It consists of three modules
such as Residual Convolutional Unit (RCU), Features Stan-
dardization Module (FSM), and Contextual Features Module
(CFM)—a detailed description of three core modules with
network configurations in MRFDet, as illustrated in the fol-
lowing sections.

1- RCU creates a set of multi-scale features that enrich the
semantic information in the base feature and feature map
of backbone layers.

2- FSM module assembles the features into a multi-level
feature pyramid using a scaled feature chain operation.

3- Finally, CFM uses to capture background contextual
information from a large area of the image. It uses multi-
window sizes to pool the features and fuse them using
learnable weights.

Finally, prediction layers produce dense bounding boxes
and categories that are scored on learnable features, followed
by non-maximum suppression (NMS) operation to get the
final prediction similar to SSD.

A. MULTIPATH REFINEMENT FEATURE PYRAMID
NETWORK (MRFPN)
As aforementioned, this scheme is used to generate multi-
level feature map in order to detect objects with different
scales. This schema generates a multi-level feature pyramid
by merging low-level semantic features to medium and high-
level features. It has three basic blocks i.e., RCU, FSM, and
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FIGURE 3. Structural detail of residual convolutional unit (RCU) with FSM. Upper block with red color: it generates
low-level features and has three branches. Middle block with yellow color: it generates medium-level features and have
two branches while bottom block with green color: it generates deep-level features and also have two branches just like
second block. Finally, multi-level multi-scales feature pyramid is generated by FSM.

CFM as shown in Fig.2. Firstly, VGG-16 [50] generate based
features that include multi-level semantic information for
MRFPN. The first block of MRFPN comprises of a stack
of RCUs that uses base feature and feature maps of four
layers (i.e., Conv1_3 to Conv4_3) of the backbone network
(VGG-16) to generates low, medium and high-level feature
maps of different scales. In first RCU, base feature and feature
map of Conv1_3, Conv2_3 of backbone are used to generates
low-level features. While the output of first RCU is combined
with feature map of Conv3_3 layer of backbone network in
the second RCU to generate medium-level features. Simi-
larly, high-level features are generated using output of second
RCU and featuremap of Conv4_3 layer of backbone network.
Note that the first RCU has no previous knowledge of any
other RCU and is therefore only learned from base features
(Xbf).
The outputs of multi-level/scale features are calculated as:{
x l1, x

l
2, x

l
3, . . . . . . , x

l
i

}
=

{
RC l

(
Xbf ,XConv(i+1)_3, ,XConvi_3

)
, l = 1

RC l

(
x l−1i ,XConv(i+1)_3

)
, l = 2 . . . L

(1)

where Xbf denotes the base feature, xli denotes the features
with the ith scale in the lth RCU, L denotes the number of
RCUs, RCl denotes the lth RCU processing, and XConv(i+1)_3
denotes a feature map of the i + 1 layer of the backbone net-
work. The feature standardization module is the second block
of feature pyramid network. We used scale-wise concatena-
tion operation to aggregates and up-samples the multi-scale
features. Finally, Chained pooling is used to capture con-
textual background information from a huge image region.

End-to-end training is done to efficiently train the entire
network efficiently.

B. MRFDet
The architecture of MRFDet is illustrated in Fig. 2. The
VGG16 backbone network develops base features that are
exploited in the RCU stack to produce multi-scale feature
maps. Multi-level feature fusion block concatenates the fea-
tures map scale-wise to generate the feature pyramid. The
prediction layer and NMS operation are applied to MLFP,
similar to SSD except chained parallel pooling that is applied
at the beginning of the Prediction layers block. It is worth
considering here that our architecture is flexible and requires
less computational effort, which makes it more convenient to
adapt to real-time application.

1) RESIDUAL CONVOLUTIONAL UNIT (RCU)
The residual convolutional unit is first module of MRFPN
that uses a set of adaptive convolutions to refine the base
features and feature maps of backbone network and gen-
erates multi-level features. A optimized version of basic
ResNet [18] block without batch normalization layers is used
in the RCU. The detailed architecture of RCU is shown in
Fig. 3. It has two branches, top branch comprises of two
Conv layers with 1 × 1 and 3 × 3 filters and stride 2, while
non-linearity has been added using pooling and ReLU (R)
operations. The other branch has one 1 × 1 Conv layer,
as shown in Fig. 2(a).

Finally, refined feature maps of backbone layers, i.e.,
XConv1_3 and XConv2_3 merges with output of top branch of
RCU and construct low-level features as described in equa-
tion 2. While medium-level and deep-level features are built
using XConv3_3 and XConv4_3 respectively, and the output of
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FIGURE 4. Illustration of feature standardization modules. Features with
equivalent scaling and channel dimension are concatenated in FSM.

previous RCUblock, as describe in equation 3 and equation 4.
The corresponding backbone layer filter determines the filter
size for each input path. Moreover, an additional Conv-layer
1 × 1 is used to improve ability to learn and to keep feature
smooth [51]. In this way, multi-scale features of current level
are generated. RC1 generates low-level features, RC2 gener-
ates medium-level features while RC l generates deep level
features.

XL = R
(
Conv1×1

(
XConv1_3

))
+ R

(
Conv3×3

(
XConv2_3

))
+Conv3×3

(
pool

(
Conv1×1

(
R
(
Xbf

))))
(2)

XM = R
(
Conv3×3

(
XConv3_3

))
+Conv3×3 (pool (Conv1×1 (R (XL)))) (3)

XH = R
(
Conv3×3

(
XConv4_3

))
+Conv3×3 (pool (Conv1×1 (R (XM )))) (4)

2) FEATURES STANDARDIZATION MODULE
The second block of MRFPN is a features standardization
module (FSM) that aggregates refine features generated by
RCUs in the form of multi-level feature pyramid, shown
in Fig. 2 (b) and Fig. 4. Initially, features with equivalent
scales are concatenated with channel dimension. The resul-
tant features can be represented as X = (X1,X2,X3, . . . ,Xi),
where Xi= Cancat

(
x1i ,x

2
i ,x

3
i , . . . ,x

L
i

)
∈ RWi×Hi×C , refer

to the ith concatenated feature set. To generate the feature
map with same dimensions, it uses convolutional adaptation
and up-sample the smaller feature maps to larger feature
maps. Finally, all feature maps are concatenated to generates
multi-level feature pyramid containing features of multi-level
depths of each scale.

3) CONTEXTUAL FEATURES MODULE
The multi-level feature pyramid is fed to contextual features
module (CFM) to generatemore robust multi-level contextual
features, as shown in Figs. 2(c) and 5. This module is used in
place of last two prediction layers of SSD. It captures con-
textual background information from a huge image region.
In order to keep the size of feature map same for addition,

FIGURE 5. (a) Complete architecture of contextual feature module,
multi-level feature pyramid is fed to CFM that contains four parallel
branches by default, each branch contains Conv layer and pooling layer
with different filters (i.e., 3× 3 and 1× 1). (b) Alternative architecture of
contextual features module. Compare with Fig. 5 (a), position of pooling
layer is exchange with Convolution layers marks with gray color.

padding and chain operation are carried out alternatively.
A block of CFM contains two parallel branches of Conv
layers and pooling layer. The output of Conv layer of pre-
vious block is fed to upper branch of next block, while the
sum of output of previous block is fed to lower branch of
next block. In contextual features module, we tested several
combinations of parallel pooling blocks and observed that
best result was obtains with four parallel pooling block com-
bination in CFM [52]. An alternate architecture of chained
parallel pooling block is shown in Fig. 5 (b). This alternate
architecture is a modified version of the architecture shown
in Fig. 5 (a) by interchanging the position of pooling layer
and convolution layer in parallel pooling block. The convo-
lution layer adapts to learn the input features and consider
their importance before being fed to pooling layer. In our
observation, this approach may sometimes perform a little
better in some datasets compared to the original architecture.

4) OBJECTIVE LOSS FUNCTION
To handle the different object categories, the MRFDet train-
ing objective is derived from the multi-box objective [15],
[53]. Let xpij = {1, 0} be an indicator for the agreement of
ith default box with the jth ground truth box of class p. the
overall objective loss function is a weighted sum of the loss
of localization (loc) and confidence loss (conf):

L (x, c, pbox , gbox)=
1
N

(
Lconf (x, c)+αLloc

(
x, pbox , gbox

))
(5)

where N is the number of matched default boxes, the loss
is zero if N = 0. Localization loss is L1 smooth loss [54]
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between the predicted box pbox and ground truth box (gbox)
parameters. Similar to faster R-CNN [16], offsets regress for
the center (cx, cy) of the default bounding box (bbox) and for
its width (w) and height (h).

Lloc (x, , pbox , gbox)

=

∑N

iεpos

∑
mε{cx,cy,w,h}

xkijsmoothL1
(
pbox mi − ĝbox j

m)
(6)

ĝbox
cx
j

=

(
gbox cxj − d

cx
i

)
dwi

ĝbox
cy
j =

(
gbox

cy
j − d

cy
i

)
dhi

(7)

ĝbox
w
j

= log

(
gbox wj
dwi

)
ĝbox

h
j = log

(
gbox jh

dhi

)
(8)

The softmax loss over multiple classes confidence(c) is
called confidence loss.

Lconf (x, c) = −
N∑

iεpos

logĉpi −
N∑

iεneg

logĉoi

and

ĉpi =
exp

(
cpi
)/∑

p exp
(
cpi
) (9)

and cross-validation is used to set the weight term α to 1.

5) NETWROK CONFIGURATION
We have assembled MRFDet with the VGG-16 backbone
framework. Pre-trained backbone framework, i.e., VGG-16
(trained on ImageNet 2012 dataset [55]), is used to train
the entire network. The default configuration of MRFPN
contains three RCU, each with two branches except the first
RCU; the first branch has two Conv layers of filters (1 × 1,
and 3×3)with stride 2 and non-linearity incorporated through
the ReLU and pooling operations, so it produces multi-scale
features. The other branch has only a 1 × 1 Conv layer
with a ReLU function. To decrease the parameters numbers,
we use the Conv filter size less than 1024 to facilitate network
training on the GPU. We use the same input sizes as it was
used in the conventional SSD, RefineDet, and Retina Net
such as 300, 512.

The last stage of the MRFPN consists of the contextual
features module that comprises of parallel pooling unit that
forms the chain. The contextual features module output is fed
to the original SSD prediction layers as an input. We place
six anchors with a total of three ratios for each pixel of
pyramidal features. Then a probability rating of 0.05 is set as
the threshold to filter out most of the low-scoring anchors. For
more accurate boxes, post-processing is performed using soft
non-maximum suppression NMS with a linear kernel [56].
Lowering the threshold to 0.01 can yield improve detection
results; however, it significantly reduces the inference time.
We don’t see it as a pursuit of improving practical values.
The SGD first uses a learning rate of 10-3, momenta of 0.9,

and 0.0005 weight decay and batch size 32 to fine-tune the
resulting model. The guidelines for learning rate and weight
decay differ slightly for each data set. Complete training and
testing code have been developed on TensorFlow.

C. EXPERIMENTAL RESULTS
To demonstrate the effectiveness of our approach, we carry
out comprehensive experiments on two benchmark datasets
of generic object detection, such as MS-COCO and PAS-
CAL 07/12. PASCAL VOC07/12 includes 20 categories in
9,963 and 22,531 images, respectively. We compare with
Fast-RCNN and Faster RCNN [16] in the Pascal data set. The
previously trained backbone framework, i.e., VGG-16 is used
to fine-tune the model. Localization and class confidences
score is predicted using the MRFF block, pooling block,
and prediction layer (i.e., Conv8_2, Conv9_2, Conv10_2, and
Conv11_2). We set a learning rate of 0.0001 for the initial
5k iterations and afterwards keep training for the next 30k
iterations with a learning rate 10-4 and 10-5. We use COCO-
trainval35k for training, it contains 35 random subsets of 40k
validation images and 80k training images. Our experimental
section includes some sub-sections. (1) The detail of the
implementation of the experiments is illustrated in the first
section. (2) The comparison with the most modern models is
explained in detail in the second section. (3) While the third
section contains the ablation studies of MRFDet.

1) IMPLEMENTATION DETAIL
To analyze the performance of proposed scheme based on
MRFDet, training process starts with warm-up strategy of 5k
epochs with learning rate of 0.0001 than gradually decreases
up to 10−4 and 10−5 at 15k epochs and end at 30k epochs. The
TensorFlow platform is used to develop the MRFDet, with
input size 300 × 300 and batch size of 32. Experiments are
carried out on NVIDIA Geforce RTX 2060, CUDA 10.1 and
CuDNN 7.5.0 with memory data rate of 14.00Gbps. The
training phase of MRFDet with VGG-16 and input size is
300 × 300, and 512 × 512; the total cost of training is four
days and a week, respectively.

2) COMPARISON WITH STATE-OF-THE-ART MODELS
a: MS-COCO
In Table 1 we analyze the test results of the proposedMRFDet
with state-of-the-art object detectors. For these experiments
we use a Multi-level Refinement Feature Pyramid Network
with 3 RCUs, FSM and CFM blocks. Input image size, test
strategies such as multi-scale technique, model speed, and
test results are some of the significant parameters that are
included in the comparison. The test results of MRFDet
with MS COCO test-dev are portrayed in Table 1. In par-
ticular, MRFDet-300 with VGG-16 backbone has achieved
an AP of 40.4 and thus surpassing most object detectors
with enormous input sizes and more impressive backbones,
e.g., Deformable R-FCN [57] has 37.5AP and Faster R-CNN
with FPN is 36.2AP. Assembled with ResNet -101, MRFDet

156498 VOLUME 9, 2021



L. Aziz et al.: Multi-Level Refinement Feature Pyramid Network for Scale Imbalance Object Detection

TABLE 1. Detection accuracy of MRFDet 300× 300 and 512× 512 (input size) models’ comparison with other state-of-the-art models in term of mAP
percentage on MSCOCO test-dev set.

can be further improved. To achieve an AP of 41.8, Refine-
Det [30] acquires the benefits of one and two-stage detec-
tor. Key-point regression is used in the CornerNet [41] to
detect objects and borrows the advantages of Hourglass [58]

and focal loss [5], thus gets AP of 42.1. Conversely, our
proposed MRFDet is based on the original SSD regression
method using multi-scale multi-level features and reached
45.2 AP, which is higher than any single-stage detectors.
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TABLE 2. State-of-the-art COMPARISON with existing single and two stage detector on PASCAL VOC 07/12 test set. Our framework OUTPERFORMS FOR
both input image size, such as 300× 300 and 512× 512. (Data: ‘07’: Voc 2007 train-val, ‘07 + 12’: VOC 2007 + VOC 2012 train-val, ‘07 + 12 + coco’: first
train on 07 + 12 then fine-tune on COCO trainval35K.)

TABLE 3. Ablation experiments regarding design of MRFDet on
MS-COCO-miniVal set. The results shows the improvement in detection
accuracy.

The parameter of comparison between different sophisticated
models is speed of single scale inference methods as different
strategies and tools are used. Furthermore, the increase in
performance of MRFDet is not entirely due to depth of the
model or obtained parameters. In comparison with modern
one- and two-stage detectors, we find that 201M parameters
are generated in CornerNet with Hourglass and 205M param-
eters are generated inMask R-CNN [6] (ResNet-101-32×8d-
FPN [59]). While our model generates 146M parameters.

b: PASCAL VOC2007/2012
The test images from PASCAL VOC 07/12 are used to
compare the performance of our proposed model with most

TABLE 4. Standard pattern of MRFPN in MRFDet with backbone-VGG-16,
300× 300 image size.

advanced one and two-stage detectors, as depicted in Table 2.
The standard configuration of MRFDet contains three RCUs
with a feature standardization module and a contextual fea-
ture module as shown in Fig. 2. While conventional SSD
prediction layers are used to compute confidence score and
localization. The ‘‘Xavier’’ method [60] is used to initialize
the parameters of all prediction layers. The backpropagation
is used to learn the scaling, since the feature norm is scaled to
20 at each location in the feature map using L2 normalization
technique [61]. Our model is trained on PASCALVOC 07/12
and further fine-tune on the MS-COCO trainval35k in order
to achieve better results.

To correctly assess the class confidence score and location,
we cannot use the correction rate of image classification
because each image has multiple objects under multiple cat-
egories in the object detection problem. In PASCAL VOC
07/12 test set, mAP is used as the evaluation index of accu-
racy, and frames per second are used as the evaluation index
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FIGURE 6. MS-COCO test-dev: graph between speed (ms) versus accuracy
(
mAP

)
.

FIGURE 7. (a) Loss vs. iteration graph during training class loss, bounding box loss, confidence loss and total loss with three
learning rates (0.0001lr : 00 <= iteration <= 500;0.00001 lr : 5k < iteration <= 15k;0.000001 lr : 15k < iteration <= 35k).
(b) Accuracy vs. iterations graph during training (AP: on MS COCO dataset; mAP : Pascal Voc 07, 07+12, 07 + 12 + coco).

for real-time detection. Precision (P) and recall (R) for each
class are used to draw P-R curve. The formula of precision
and recall is as follows:

P = TP/
TP+ FP′, R = TP/

TP+ FN ′ (10)

where FP represents the numbers of false-positive predicted
samples, TP represents the number of the true-positive
predicted samples, and FN represents the numbers of false-
negative predicted samples. The formula of the mAP and AP
are given below:

AP =
∫ 1

0
p(R)dR (11)

mAP =
∑N

i=1

AP(i)
N

(12)

The frame per second is defined as the number of pic-
tures that recognize in one second by a detector. FPS
rate above 24 is considered as smooth. As is clear from
Table 2, our proposed model MRFDet- 300 (low resolu-
tion) is already performing better than Fast R-CNN. When
input size is increased to 512 × 512 for further train-
ing, it is even more accurate and outperforms the Faster
R-CNN by 2.7% mAP. If we train the MRFDEt-300 with
additional data (i.e., 07 + 12), we observe that MRFDet-
300 is already 2.1% better than SDD and Faster R-CNN
and MRFDet-512 by 3.6% better. We get our best results
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FIGURE 8. Comparison of results with other modern models.

after fine-tuning our model on MS-COCO trainval35k that
is 84.6%mAP. MRFDet is particularly sensitive to the size
of bounding boxes, and due to multi-level feature pyramid
with several scales, offers significantly better performance
with small objects. Those small objects have semantic
information in the MLFP that help in detecting small
objects.

3) ABLATION STUDIES ON MS-COCO
In this section, we review the effectiveness of each module
configuration of MRFDet on detection performance. We are
trying three different designs of RCU in our MRFPN. First,
a simple design of RCUs upgrades the AP to up to three units,
as shown in the third section of Table 3. In the first branch
of each RCU, an additional conv layer with a 3 × 3 filter is
used, which improves the AP to 3.1. Finally, increasing the
conv layer in the second branch of the RCU delivers the best
results in the 30.9 AP performance. Although increments in
conv-layers can improve detection accuracy, the redundant
use of the basic function in each RCU increases the number
of parameters. For this reason, features of different layers of
backbone networks are used to construct low, medium, and

high-level features. While the necessary location information
is obtained through the embedded basic feature. The Feature
Standardization Module (FSM) improved all scoring mea-
surements, as shown in the seventh column of Table 3. Next,
we analyzed the effect of our proposed contextual features
module on recognition performance. Additional block of par-
allel pooling improves performance significantly. But we’ve
seen the best results with four consecutive blocks. Strong base
functions provide a noticeable AP gain, such as using ResNet-
101 as the backbone instead of VGG-16, it generated an AP
gain of 2% as shown in Table 3.

4) VARIANTS OF MLFPN
It has been observed that multi-scale features are very effec-
tive in detection tasks. It remains to be seen to what extent
MRFPN has made the improvement? And how to design
RCU and contextual feature module? And how many blocks
of RCU ought to be fine? A combination of variants of
standard pattern is examined, such as VGG-16 as backbone
network and input size 300 × 300 and tune the no of RCUs,
adaptation of internal channels of each RCU and architec-
ture of contextual feature module. As appeared in Table 4,
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FIGURE 9. Qualitative results of the proposed framework. Our method works well with occlusion, interclass
interference and cluster background.

different configuration of RCUs and contextual features mod-
ules are used to assess the performance of proposed MRFDet
on COCO mini-Val set.

Stacking more Conv layers in RCUs and in the contextual
features module gives more boost in terms of accuracy. The
increase in the number parameter remains comparable while
adapting a combination of three RCUs with 512, 256, or
128 channels respectively.

5) SPEED
In the context of comparing inference speed of MRFDet
with latest models, we conclude that reduced version of
VGG-16 [50] (without F.C. layers) speed up the base fea-

ture extraction process. The inference time of an image is
a sum of NMS time and CNN time of 1000 images and
is divided by 1000, and batch size is set to 1. Specifi-
cally, we assembled the MRFDet with VGG-16 (reduced
version) and proposed the faster version of MRFDet with
input size 320 × 320, and the standard and accurate ver-
sion of MRFDet with input size 512 × 512. Taking advan-
tage of our proposed MRFPN framework and one-stage
detector, MRFDet has significantly improved the speed
and accuracy curve compared to other advanced methods.
MRFDet can achieve precise detection results with high
speed based on the optimization of TensorFlow. The speed of
SSD321-ResNet101, SSD513-ResNet101, M2Det-VGG16,
RefineDet512-ResNet101, RefineDet320-ResNet101, and
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CornerNet are tested on our device for fair comparison.
It comes to the conclusion that MRFDet performs far better
in term of accuracy and efficiency.

IV. DISSCUSSION
According to our observations, the detection accuracy of
MRFDet has improved mainly due to the proposed MRFPN
and Contextual features module. Firstly, we merge the mul-
tilayered feature maps and backbone base-features through
alternate blocks of RCU and MLFF modules to extract more
robust multi-scale multi-level features. Finally, constructed
features are fed into CFM to minimize the parameters and
add more robustness to object detection. In contrast, existing
detectors [3], [26], [30] are only used with an increase in the
depth of the layers of the backbone or extra layers. There-
fore, predominant detection performance has been achieved
through our proposedmethod. In particular, multi-levelmulti-
scale features are used to demonstrate better performance in
dealing with appearance-complexity variation across objects
instances. Our proposed MRFPN can learn effective features
for detecting an object with large variations in appearance
and scales. E.g., the input image contains person, vehicles
and traffic signal of different sizes. Some of the findings are
as follows: 1) A larger size person has higher and stronger
activation value at feature map as compared to a smaller one.
2)While the small-sized person, traffic signal, and the vehicle
have substantial activation values with the same scale feature
map. 3) Conversely, the individual, vehicle and traffic signals
have an extremely robust activation value on the feature maps
of the significant level, the middle level and the lowest level.
From our observations, the proposed method can effectively
learn sensitive features to deal with variations in scale and
complexity of appearance across object instances. It is essen-
tial to use multi-level/scale features to identify objects of
comparable size but different in appearance.

V. CONCLUSION
Multi-level refinement feature pyramid network is proposed
to identify the objects with different scales and complex
appearances. The proposed strategy consists of three mod-
ules, a stack of three residual convolutional units is used in the
first module to construct the multi-scale multi-level features
using feature maps of backbone network and base features
(i.e., constructed from VGG-16). The second module is used
to standardize multi-level features after up/down-sampling
with similar scale in the form of feature pyramid. Finally,
contextual features module is used to strengthen the resulting
feature pyramid for object identification. We achieve sig-
nificantly improved scores compared to other single-stage
detector onMS-COCO dataset (i.e., 45.2 AP with multi-scale
inference strategy). The effectiveness of proposed architec-
ture is demonstrated using the results of ablation studies.
However, there is still a room for improvement in detection,
such as GAN can be used to reconstruct high resolution
deep features or to optimize the upper sample layer using
interpolation techniques.
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