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Abstract. The studies on the energy of a graph have been actively studied since 1978 and
there have been various types of energy of graphs proposed and studied by mathematicians
all over the world. One of the many types of energy being studied is Seidel energy, where it
is defined as the summation of the absolute values of the eigenvalues of the Seidel matrix of
a graph. This research combines the study on three important branches in mathematics, i.e.
energy of graph in linear algebra, Cayley graph in graph theory and dihedral group in group
theory. The aim of this research is to present some values of Seidel energy of Cayley graphs
associated to dihedral groups with respect to certain subsets of the group, namely the subsets of
order one and the subsets of order two; {a, an−1} for n ≥ 3 and {a2, an−2} for n ≥ 5. The results
are proven by using some properties of special graphs such as complete graph, cycle graph and
complete bipartite graph, including some relations between the eigenvalues of a graph, with the
Seidel eigenvalues of a graph.

1. Introduction

The study on Cayley graph was first initiated by Arthur Cayley in 1878 to explain the idea of
abstract groups described by a set of generators [1]. It is defined as a graph with the elements
of a group G as the vertices and there is an edge joining the vertices g and h in the group G if
and only if there is s ∈ S, where S is a subset of G, such that the product of s and g is equal
to h. The subset S of G does not include the identity element of the group G and it holds the
inverse-closed property where every element of the subset has an inverse under the operation
that is also an element of the subset. The Cayley graph of G with respect to the subset S is
often denoted as Cay(G; S) [2].

Through the years, the study on Cayley graph has developed and became a significant branch
in algebraic graph theory. In 1988, Babai and Seress [3] have presented some results on the
diameter of Cayley graphs of symmetric groups including the alternating groups. Not long
after, in 1993, Lakshmivarahan et al. [4] have analysed the symmetries in the interconnection
networks of a variety of Cayley graphs of permutation groups. The types of symmetry analyzed
consist of vertex and edge transitivity, distance regularity and distance transitivity.

In 2000, Friedman [5] has shown in his study that among all sets of n − 1 transpositions
which generate the symmetric groups Sn, the Cayley graph associated to the set S =
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{(1, n), (2, n), . . . , (n − 1, n)} has the highest eigenvalue. Two years later, Li [6] has compiled
and presented a survey on the findings, the problems and methods developed in finding the
isomorphism for Cayley graphs which have effectively been used to solve the problems regarding
finite vertex-transitive graphs.

In addition to that, in 2008, Konstantinova [7] came out with another survey which covered
the historical changes of some problems on Cayley graphs such as the Hamiltonicity or diameter
problems. The author also included various uses of Cayley graphs in solving combinatorial,
graph-theoretical and also applied problems.

Later in 2012, Adiga and Ariamanesh [8] have determined the number of undirected Cayley
graphs of symmetric groups Sn and alternating groups An up to isomorphism, as presented in
the following proposition.

Proposition 1. [8] Let Sn be symmetric groups. Then Cay(Sn, {(ij)}) � i, j ∈ {1, 2, . . . , n}
are all isomorphic to each other. i.e up to isomorphism, there is exactly one Cayley graph on
symmetric groups Sn of valency 1.

There have also been several works on the Cayley graphs especially for dihedral groups. In
2006, Wang and Xu [9] worked on the non-normal one-regular and 4-valent Cayley graphs of
dihedral groups while in the same year, Kwak and Oh [10] have classified the 4-valent and 6-
valent one regular normal Cayley graphs on dihedral groups whose vertex stabilizers in Aut(Γ)
are cyclic. A k-regular graph is a regular graph with vertices of degree k or also known as a k-
valent graph. Meanwhile, vertex stabilizers is an element which fix a vertex of a graph. Besides,
Jungreis et al. [11] have studied the hamiltonian of Cayley graphs on groups of low order where
a hamiltonian path is a path in an undirected or directed graph that visits each vertex exactly
once.

In addition, in 2008, Kwak et al. [12] have explored on one-regular Cayley graphs on dihedral
groups of any prescribed valency. Kim et al. [13] have also studied on the Cayley graphs of
dihedral groups on the classification of p-valent regular Cayley graphs. They came out with the
following theorem and proposition.

Theorem 1. [12] Let p be an odd prime number. Then, any p-valent one-regular Cayley graphs
on a dihedral groups is isomorphic to one of Cay(Dn : l, p) for (n, l, p) ∈ O except at most
finitely many ones in which l is positive integers less than n and O be the set of triples (n, l, k)
satisfying the following two conditions:
(i) For any r, s, t, u(0 ≤ r, s, t, u ≤ k − 1), l[r] + l[s] = l[t] + l[u](modn) if and only if either
(r, s) = (t, u) or (r, s) = (u, t).
(ii) For any sequence of numbers i0, i1, i2, i3, i4, i5 ∈ {0, 1, 2, · · · , k−1} such that ij �= ij +1 and
i5 �= i0, l[i0] + l[i2] + l[i4] = l[i1] + l[i3] + l[i5](modn) if and only if the numbers i0, i1 and i2 are
all distinct and i0 = i3, i1 = i4 and i2 = i5.

Proposition 2. [13] Every prime valent one-regular Cayley graphs on a dihedral group is
normal.

Meanwhile, the study on the energy of general simple graphs was inspired from the Hückel
Molecular Orbital Theory (HMO) proposed in 1930s. In the early years, the Hückel Molecular
Orbital Theory has been used by chemists to approximate the energies related with π−electron
orbitals in conjugated hydrocarbon. In 1956, the fact that the method is actually applying a
first degree polynomial of the adjacency matrix of a graph was first realized by Günthard and
Primas [14]. Later in 1978, the energy of a simple graph has been defined by Gutman [15].

The ordinary energy of a graph Γ is defined as the summation of all positive values of the
eigenvalues of the adjacency matrix of the graph. The adjacency matrix A(Γ) of the graph
Γ is a square matrix of size n × n, whose ij-entry is equal to 1 if the vertices vi and vj are
adjacent and is equal to zero otherwise. The characteristic polynomial of the adjacency matrix,
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i.e, det(λIn − A(Γ)), where In is the unit matrix of order n is said to be the characteristic
polynomial of the graph Γ and often denoted by f(Γ, x). Since the eigenvalues of a graph Γ
are defined as the eigenvalues of its adjacency matrix A(Γ), so they are just the roots of the
equation f(Γ, x) = 0, denoted by λ1, λ2, . . . , λn.

One of the energy which is closely related by their adjacency matrix is the Seidel energy. The
Seidel energy SE(Γ) of a graph Γ is defined as the sum of the absolute values of the eigenvalues
of the Seidel matrix of Γ, denoted as SE(Γ) =

∑n
i=1 |θi| where θi are the eigenvalues of the

Seidel matrix of the graph Γ. The Seidel matrix of a simple graph with n vertices and m edges,
denoted by S(Γ) = (sij) is a real square symmetric matrix of order n defined as sij = −1 if vi

and vj are adjacent, sij = 1 if vi and vj are not adjacent and 0 if i = j.[16]
In order to obtain the Seidel energy of a graph, we need to extract the eigenvalues of the

Seidel matrix which we referred as the Seidel eigenvalues. The eigenvalues can be obtained from
the roots of the characteristic equation of the matrix. The set of all Seidel eigenvalues is also
referred as the Seidel spectrum of a matrix.

In the year 2008, Zhou [17] has presented some findings on the the relations between the
main eigenvalues and eigenvectors of an adjacency matrix of a graph which is used in finding
the ordinary energy of the graph, with the Seidel matrix of the graph which is used in finding
the Seidel energy of the graph. Some of the results emphasized by Zhou in [17] are as given in
the following theorem and corollary.

Theorem 2. [17] Let θ1, θ2, · · · , θl be the main eigenvalues of the Seidel matrix S(Γ) and
α1, α2, · · · , αl be the associated orthonormal eigenvectors. Let E be the l × l matrix whose
(i, j)-entry is eTαie

Tαj and M = 1
2(E − I − diag(θ1, θ2, · · · , θl)). Then the eigenvalues of

M are precisely the main eigenvalues of S(Γ). Furthermore, if b = (b1, b2, · · · , bl)
T is an

eigenvector that corresponding to an eigenvalue μ of M , then
∑l

j=1 bjαj is an eigenvector of

A(Γ) corresponding to μ.

Corollary 1. [17] Let λ1, λ2, · · · , λl and θ1, θ2, · · · , θl are all main eigenvalues of A(Γ) and
S(Γ), respectively. Then ∑l

i=1(2λi + θi) = n− l.

Next, in 2012, Haemers [18] has obtained the upper and lower bounds for SE(Γ), characterized
the equality for the upper bound, and formulated a conjecture for the lower bound for SE(Γ).
Haemers conjectured that the Seidel energy of any graph with n vertices is at least 2n − 2, the
Seidel energy of the complete graph with n vertices.

In 2014, Nageswari and Sarasija [19] have presented their findings on the sharp upper and
lower bounds for the Seidel energy of connected and disconnected graphs. Their findings are
given in the following:

Proposition 3. [19] The Seidel eigenvalues s1, s2, · · · , sn of the Seidel matrix of the graph Γ
satisfy the following relations:

∑n
i=1 si = 0;

∑n
i=1 s2

i = n(n − 1).

Theorem 3. [19] If Γ is a connected graph with n vertices and m edges then the inequality

SE(Γ) ≤ |n− 1− 4m
n |+

√
(n− 1)(n2 − n− (n− 1− 4m

n )2 holds.

Theorem 4. [19] If Γ1 and Γ2 are two components of a disconnected graph Γ with vertices
n1 and n2 respectively then the Seidel energy of Γ, SE(Γ) has the following inequality,
SE(Γ1) + SE(Γ2) ≤ SE(Γ) ≤ SE(Γ1) + SE(Γ2) + 2

√
n1n2.

Corollary 2. [19] If Γ1 and Γ2 are two components of a disconnected graph Γ with equal number
of vertices say n then the Seidel energy of Γ has the following inequality, SE(Γ1) + SE(Γ2) ≤
SE(Γ) ≤ SE(Γ1) + SE(Γ2) + 2(n).
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In the following year, Ramane et al. [20] have shown that if Γ is regular of order n and of
degree r ≥ 3 , then for each k ≥ 2, the Seidel energy of the k-th iterated line graph of Γ depends
solely on n and r. Their findings have enable the construction of pairs of non-cospectral, Seidel
equienergetic graphs of the same order.

2. Preliminaries Results

Several forms of the ordinary and Seidel spectrum of special graphs such as complete graph,
cycle graph and complete bipartite graph have been found by Brouwer and Haemers [22] as
stated in the following propositions.

Proposition 4. [22] Consider the undirected n-cycle graph Cn. The spectrum of Cn consists
of the numbers {2cos( 2πj

n )}; j = {0, 1, . . . , n− 1}.
Proposition 5. [22] Let G be a complete graph Kn on n vertices. Its Seidel spectrum is
{(1− n)1, (1)n−1}.
Proposition 6. [22] Let G be a complete bipartite graph Km,n−m on n vertices. Its Seidel

spectrum is {(1− n)1, (1)n−1}.
In 2018 and 2019, Fadzil et al. in [23] and [24] have proved the energy of the Cayley graph

with respect to the few subsets associated to the dihedral group of order 2n as presented in the
following propositions, lemmas and theorems.

Proposition 7. [23] Let D2n be a dihedral group of order 2n where n ≥ 3 and n even.
Let S = {an/2, b} be a subset of D2n. The Cayley graphs of D2n with respect to the set S,
Cay(D2n, {an/2, b}), are the cycle graphs n

2 C4.

Lemma 1. [23] Let D2n be a dihedral group of order 2n where n ≥ 3 and n even. Let
S = {an/2, b} be a subset of D2n. Thus, the spectrum of the Cay(D2n, {an/2, b}), denoted as
Spec(Cay(D2n, {an/2, b})) are 0 with multiplicity n and ±2 with multiplicity to n/2.

Theorem 5. [23] Let D2n be a dihedral group of order 2n where n ≥ 3 and S = {an/2, b}
is a subset of D2n. The energy of the Cayley graphs of D2n with respect to the set S,
E(Cay(D2n, {an/2, b})) = 2n.

Proposition 8. [24] Let D2n be the dihedral group of order 2n, where n ≥ 3 and X =
{b, ab, . . . , an−1b} be the generating subset of D2n. Then, the Cayley graph of D2n with respect to
the generating subset X denoted as Cay(D2n, {b, ab, . . . , an−1b}) is the complete bipartite graph
Kn,n.

Lemma 2. [24] Let D2n be the dihedral group of order 2n, where n ≥ 3 and
X = {b, ab, . . . , an−1b} be the generating subset of D2n. Therefore, the eigenvalues of
Cay(D2n, {b, ab, . . . , an−1b}) = Kn,n are 0 with multiplicity 2n − 2 and ±n with multiplicity
1.

Theorem 6. [24] Let D2n be the dihedral group of order 2n, where n ≥ 3 and X =
{b, ab, . . . , an−1b} be the generating subset of D2n. The energy of the Cayley graphs of D2n

with respect to the generating subset X , ε(Cay(D2n, {b, ab, . . . , an−1b})) = 2n.

Recently, in 2020, Akbari et al. [21] have established the validity of Haemers conjecture that
the Seidel energy of any graph of order n is at least 2n − 2 and that up to Seidel equivalence,
the equality holds for Kn.

This paper aims to present the Seidel energy of the Cayley graphs for dihedral group D2n with
respect to the subsets of order up to two. The methodology consists of finding the eigenvalues
of the Cayley graphs and thus computing the Seidel energy of the respected Cayley graphs.

This paper is structured as follows: in first section, some introductions and previous studies
on the topics are laid out. In second section, some main results on the Seidel energy of the
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Cayley graphs of the dihedral group are presented in form of lemmas and theorems. Lastly,
some conclusion of the results are summarized in the third section.

3. Main Results

In this section, the Seidel energy of the Cayley graphs associated to the dihedral group D2n,
with respect to subsets of order one and two are presented.

3.1. The Seidel Energy of the Cayley Graphs Associated to Dihedral Group With Respect to
Subsets of Order One
In the following lemma and theorem, the Seidel eigenvalues and Seidel energy are computed and
presented for the Cayley graph associated to the dihedral group with respect to subsets of order
one.

Lemma 3. Let D2n be the dihedral group of order 2n, where n ≥ 3 and X (1) be a subset of
order one of D2n. Then, the Seidel eigenvalues of the Cayley graphs Cay(D2n, X (1)) are ±1
with multiplicity n.

Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 3 and X (1) is a subset of order
one of D2n. The Cayley graph of D2n with respect to subsets of order one, Cay(D2n, X (1))
is nK2. From Proposition 5, since the Seidel spectrum of a complete graph Kn on n vertices
is {(1 − n), (1)n−1}, then the Seidel eigenvalues of Cay(D2n, X (1)) = nK2 are θi = ±1 with
multiplicity n.

The Seidel energy of the Cayley graph associated to the dihedral group of order 2n with a
subset of order one is found and presented in the following theorem.

Theorem 7. Let D2n be the dihedral group of order 2n, where n ≥ 3 and X (1) be a subset of
order one of D2n. Then, the Seidel energy of the Cayley graphs Cay(D2n, X (1)) is 2n.

Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 3 and X (1) is a subset of order
one of D2n. Cay(D2n, X (1)) = nK2 is the Cayley graph of D2n with respect to the subset of
order one. Clearly, the Seidel eigenvalues of Cay(D2n, X (1)) are θi = ±1 with multiplicity n,
then, the Seidel energy of the Cay(D2n, X (1)) denoted as SE(Cay(D2n, X (1))) =

∑n
i=1 |θi| =

n(|1|+ | − 1|) = 2n.

An example is provided to illustrate the previous theorem.

Example 1. Let D10 be the dihedral group of order 10, where D10 =
〈
a, b|a5 = b2 = 1, bab= a−1

〉
and X (1) = {b} be the subset of D10 of order one.

Then, the Cayley graph Cay(D10, {b}) is the complete graph 5K2. This gives the Seidel
spectrum of the Cayley graph Cay(D10, {b}) as {(1− 5), (1)5−1}. Therefore, its easy to see that
the eigenvalues of the graph is ±1 with multiplicity 5 since n = 5. Therefore, the Seidel energy
of the Cay(D10, {b}) denoted as SE(Cay(D10, {b})) =

∑5
i=1 |θi| = 5(|1|+ | − 1|) = 10.

3.2. The Seidel Energy of the Cayley Graphs Associated to Dihedral Group With Respect to
Subsets of Order Two
This subsection presented the results on the Seidel energy of the Cayley graph associated to the
dihedral group of order 2n with respect to the subsets of order two in the form of theorems.

Theorem 8. Let D2n be the dihedral group of order 2n, where n ≥ 3 and X (2) = {a, an−1} be
a subset of order two of D2n. Then, the Cayley graphs of D2n with respect to the subset X (2),
denoted by Cay(D2n, {a, an−1}) is two cycle graphs of length n, denoted as 2Cn.
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Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 3 and X (2) = {a, an−1} is a
subset of order two of D2n. Then, by using the definition of Cayley graph, it is shown that the
followings are two cycles of length n for Cay(D2n, {a, an−1}).

1− a− a2 − · · · − an−1 − 1 (1)
b− ab− a2b− · · · − an−1b− b (2)

Since (ai+1)(ai)−1 = ai+1−i = a ∈ X (2) and (an−1)(1)−1 = an−1 ∈ X (2), then ai is adjacent
to ai+1 for 0 ≤ i ≤ n − 2 and an−1 is adjacent to 1. Thus, it is proven that (1) is a cycle.

Next,since (ai+1b)(aib)−1 = ai+1bb−1a−i = ai+1a−i = a ∈ X (2) and (an−1b)(b)−1 = an−1bb−1

= an−1 ∈ X (2), then aib is adjacent to ai+1b for 0 ≤ i ≤ n− 2 and an−1b is adjacent to b. Thus,
it is proven that (2) is a cycle.

Since all Cayley graphs of D2n with respect to the subset X (2) = {a, an−1} are 2-regular
graphs, then there is no edge between both cycles. Therefore, Cay(D2n, {a, an−1}) is two cycle
graphs of length n, denoted as 2Cn.

Theorem 9. Let D2n be the dihedral group of order 2n, where n ≥ 3 and X (2) = {a, an−1} be
a subset of order two of D2n. Then, the Seidel energy of the Cayley graphs Cay(D2n, {a, an−1})
is

∑n
i=1 |8 cos( 2πi

n )|.
Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 3 and X (2) = {a, an−1} is
a subset of valency two of D2n. By Theorem 8, the Cayley graph of D2n with respect to the
subset {a, an−1}, denoted as Cay(D2n, {a, an−1}) is 2Cn. In order to find the Seidel energy
of the Cayley graph, Corollary 1 is used. Obviously, from Proposition 4, the eigenvalues of
Cay(D2n, {a, an−1}) are λi = {2 cos( 2πj

n ); j = 0, 1, . . . , n− 1} with multiplicity 2.
Since Cay(D2n, {a, an−1}) is a 2-regular graph, its Seidel spectrum is determined by its adjacency
spectrum as given in the following: ∑l

i=1(2λi + θi) = n − l
where λi and θi are the eigenvalues of l × l adjacency matrix A(Γ) and l × l Seidel matrix

A∗(Γ) respectively. Therefore, by rearranging the above equation gives the following equation:∑l
i=1 θi = n− l−∑l

i=1 2λi.
Thus, the Seidel energy of Cay(D2n, {a, an−1}) is the summation of its Seidel eigenvalues as
given in the following:

SE(Cay(D2n, {a, an−1})) =
l∑

i=1

θi = n − l −
l∑

i=1

2λi.

Therefore, the Seidel energy of the Cayley graphs Cay(D2n, {a, an−1}) is as given in the
following:

SE(Cay(D2n, {a, an−1})) =
n∑

i=1

|2λi|

=

n∑
i=1

| − 8 cos(
2πi

n
)|

=

n∑
i=1

|8 cos(2πi

n
)|.

Next theorem presents the Seidel energy for the Cayley graph of the dihedral group with
respect to the subset {a2, an−2} for the case n is odd.
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Theorem 10. Let D2n be the dihedral group of order 2n, where n ≥ 5 and n is odd. Let
X (2) = {a2, an−2} be a subset of order two of D2n. Then, the Cayley graphs of D2n with respect
to the subset X (2), denoted by Cay(D2n, {a2, an−2}) is two cycle graphs of length n, denoted as
2Cn.

Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 5 and n is odd. Let
X (2) = {a2, an−2} be a subset of order two of D2n. Then, by using the definition of Cayley
graph, it is shown that the followings are two cycles of length n for Cay(D2n, {a2, an−2}).

1− a2 − a4 − · · · − a2k − a− a3 − a5 − · · · − a2k−1 − 1 (3)
b− a2b− a4b− · · · − a2kb− ab− a3b− a5b− · · · − a2k−1b− b (4)

First, it is proven that (3) is a cycle based on the followings.
(i) Since (a2(i+1))(a2i)−1 = a2i+2a−2i = a2 ∈ X (2), then a2i is adjacent to a2(i+1).
(ii) Since (a2k)(a)−1 = a2k−1 = an−2 ∈ X (2), then a2k is adjacent to a.
(iii) Since (a2j+3)(a2j+1)−1 = a2j+3−2j−1 = a2 ∈ X (2), then a2j+1 is adjacent to a2j+3.
(iv) Since (a2k−1)(1)−1 = a2k−1 = an−2 ∈ X (2), then a2k−1 is adjacent to 1.

Next, it is proven that (4) is a cycle based on the followings.
(i) Since (a2(i+1)b)(a2ib)−1 = a2i+2bb−1a−2i = a2 ∈ X (2), then a2ib is adjacent to a2(i+1)b.
(ii) Since (a2kb)(ab)−1 = a2kbb−1a−1 = a2k−1 = an−2 ∈ X (2), then a2kb is adjacent to ab.
(iii) Since (a2j+3b)(a2j+1b)−1 = a2j+3bb−1a−2j−1 = a2j+3−2j−1 = a2 ∈ X (2), then a2j+1b is
adjacent to a2j+3b.
(iv) Since (a2k−1b)b−1 = a2k−1 = an−2 ∈ X (2), then a2k−1b is adjacent to b.

Therefore, both (3) and (4) are cycles. Since all Cayley graphs of D2n with respect to the
subset X (2) are 2-regular graphs, then there is no edge between both cycles. Thus, the Cayley
graphs of D2n with respect to the subset X (2) = {a2, an−2}, where n ≥ 5 and n is odd, is the
two cycle graphs of length n, denoted as 2Cn.

Theorem 11. Let D2n be the dihedral group of order 2n, where n ≥ 3 and n is odd. Let
X (2) = {a2, an−2} be a subset of valency two of D2n. Then, the Seidel energy of the Cayley
graphs Cay(D2n, {a2, an−2}) is

∑n
i=1 |8 cos( 2πi

n )|.
Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 3 and n is odd. Let
X (2) = {a2, an−2} be a subset of valency two of D2n. By Theorem 10, the Cayley graph of
D2n with respect to the subset {a2, an−2}, denoted as Cay(D2n, {a2, an−2}) is 2Cn. Its easy to
see that the eigenvalues of Cay(D2n, {a2, an−2}) are λi = {2 cos( 2πj

n ); j = 0, 1, . . . , n − 1} with
multiplicity 2. Similarly, as in the proof of Theorem 9, the Seidel energy of the Cayley graphs
Cay(D2n, {a2, an−2}) where n ≥ 3 and n is odd is as given in the following:

SE(Cay(D2n, {a2, an−2})) =
n∑

i=1

| − 2λi|

=

n∑
i=1

| − 2(4 cos(
2πi

n
))|

=

n∑
i=1

|8 cos(2πi

n
)|.

An example is provided to illustrate the previous theorem.
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Example 2. Let D10 be the dihedral group of order 10, where D10 =
〈
a, b|a5 = b2 = 1, bab= a−1

〉
and X (2) = {a2, a3} be the subset of D10 of valency two. Then, clearly, the Cayley graph
Cay(D10, {a2, a3}) is the union of two cycle graphs of five vertices, 2C5. Then, the Seidel en-
ergy of Cay(D10, {a2, a3}) is given as

∑5
i=1 |8 cos( 2πi

5 )|.
The following theorem presents the Seidel energy for the Cayley graph of the dihedral group

with respect to the subset {a2, an−2} for the case n is even.

Theorem 12. Let D2n be the dihedral group of order 2n, where n ≥ 5 and n is even. Let
X (2) = {a2, an−2} be a subset of order two of D2n. Then, the Cayley graphs of D2n with respect
to the subset X (2), denoted by Cay(D2n, {a2, an−2}) is four cycle graphs of length n

2 , denoted as
4Cn

2

.

Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 5 and n is even. Let
X (2) = {a2, an−2} be a subset of order two of D2n. Assume that n = 2k, then, by using
the definition of Cayley graph, it is proven that the followings are four cycles of length k for
Cay(D2n, {a2, an−2}).

1− a2 − a4 − · · · − a2k−2 − 1 (5)
a− a3 − a5 − · · · − a2k−1 − a (6)

b− a2b− a4b− · · · − a2k−2b− b (7)
ab− a3b− a5b− · · · − a2k−1b− ab (8)

First, it is proven that (5) is a cycle based on the followings:
(i) Since (a2(i+1))(a2i)−1 = a2i+2a−2i = a2 ∈ X (2), then a2i is adjacent to a2(i+1).
(ii) Since (a2k−2)(1)−1 = a2k−2 = an−2 ∈ X (2), then a2k−2 is adjacent to 1.

Next, it is proven that (6) is a cycle based on the followings:
(i) Since (a2i+3)(a2i+1)−1 = a2i+3a−2i−1 = a2i+3−2i−1 = a2 ∈ X (2), then a2i+1 is adjacent to
a2i+3.
(ii) Since (a2k−1)(a)−1 = a2k−1−1 = a2k−2 = an−2 ∈ X (2), then a2k−1 is adjacent to a.

Next, (7) is proven a cycle based on the followings:
(i) Since (a2(i+1)b)(a2ib)−1 = a2i+2bb−1a−2i = a2 ∈ X (2), then a2ib is adjacent to a2(i+1)b.
(ii) Since (a2k−2b)(b)−1 = a2k−2 = an−2 ∈ X (2), then a2k−2b is adjacent to b.

Finally, (8) is proven a cycle based on the followings:
(i) Since (a2i+3b)(a2i+1b)−1 = a2i+3bb−1a−2i−1 = a2i+3−2i−1 = a2 ∈ X (2), then a2i+1b is adjacent
to a2i+3b.
(ii) Since (a2k−1b)(ab)−1 = a2k−1bb−1a−1 = a2k−1−1 = a2k−2 = an−2 ∈ X (2), then a2k−1b is
adjacent to ab.

Therefore, all of them are cycles. There is no edge between all cycles since all Cayley graphs
of D2n with respect to the subset X (2) are 2-regular graphs. Thus, the Cayley graphs of D2n

with respect to the subset X (2) = {a2, an−2}, where n ≥ 5 and n is even, is the four cycle graphs
of length n

2 , denoted as 4Cn

2

.

Theorem 13. Let D2n be the dihedral group of order 2n, where n ≥ 3 and n is even. Let
X (2) = {a2, an−2} be a subset of valency two of D2n. Then, the Seidel energy of the Cayley
graphs Cay(D2n, {a2, an−2}) for n even is

∑n
i=1 |16 cos( 4iπ

n )|.
Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 3 and n is even.
Let X (2) = {a2, an−2} be a subset of valency two of D2n. By Theorem 12, the Cayley
graph of D2n with respect to the subset {a2, an−2}, denoted as Cay(D2n, {a2, an−2}) is 4Cn

2
.

Therefore, the eigenvalues of Cay(D2n, {a2, an−2}) are {2 cos( 4πj
n ); j = 0, 1, . . . , n − 1} with
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multiplicity 4. Similarly, as in the proof of Theorem 9, the Seidel energy of the Cayley graphs
Cay(D2n, {a2, an−2}) where n ≥ 3 and n is even is as given in the following:

SE(Cay(D2n, {a2, an−2})) =
n∑

i=1

| − 2λi|

=

n∑
i=1

| − 2(8) cos(
4iπ

n
)|

=

n∑
i=1

|16 cos(4iπ
n
)|.

The following example is provided to illustrate the previous theorem.

Example 3. Let D12 be the dihedral group of order 12, where D12 =
〈
a, b|a6 = b2 = 1, bab= a−1

〉
and X (2) = {a2, a4} be the subset of D12 of valency two. Then, the Cayley graph of D12 with
respect to X (2), denoted by Cay(D12, {a2, a4}) is the union of four cycle graphs of three vertices,
4C3. Therefore, the Seidel energy of the graph,

∑6
i=1 |16 cos( 4iπ

6 )| = ∑6
i=1 |16 cos( 2iπ

3 )|.
Next theorem provides the Cayley graph for the fourth case which is for the subset {an

2 , aib}
while n is even.

Theorem 14. Let D2n be the dihedral group of order 2n, where n ≥ 4 and n is even. Let
X (2) = {an

2 , aib} be a subset of valency two of D2n. Then, the Seidel energy of the Cayley
graphs Cay(D2n, {an

2 , aib}) is
∑3

i=0 |2n cos(πi
2 )|.

Proof. Suppose D2n is the dihedral group of order 2n, where n ≥ 3 and n is even. Let
X (2) = {an

2 , aib} be a subset of valency two of D2n. The Cayley graph of D2n with respect to the
subset {an

2 , aib}, denoted as Cay(D2n, {an

2 , aib}) is n
2 C4. It is easy to see that the eigenvalues

of Cay(D2n, {an

2 , aib}) are λi = {2 cos(πj
2 ); j = 0, 1, 2, 3} with multiplicity n

2 . By using the same

step as in the previous proof, the Seidel energy of the Cayley graphs Cay(D2n, {an

2 , aib}) is as
given in the following:

SE(Cay(D2n, {an

2 , aib})) =
n∑

i=1

|θi|

=

3∑
i=0

| − 2n cos(
πi

2
)|

=

3∑
i=0

|2n cos(πi

2
)|.

An example is provided to illustrate the previous theorem.

Example 4. Let D8 be the dihedral group of order 8 where D8 =< a, b|a4 = b2 = 1, bab = a−1 >
and X = {a2, b} be a subset of D8. The Cayley graph of D8 with respect to the subset
X , Cay(D8, {a2, b}) are the cycle graph 2C4. Therefore, the Seidel energy of the graph is∑3

i=0 |8 cos(πi
2 )|.

3.3. The Seidel Energy of the Cayley Graphs Associated to the Generating Subset of Dihedral
Group
The followings are the lemmas and theorems for the Seidel eigenvalues and Seidel energy of the
Cayley graph with respect to the generating subset associated to dihedral group.
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Lemma 4. Let D2n be the dihedral group of order 2n, where n ≥ 3 and X = {b, ab, . . . , an−1b} be
the generating subset of D2n. Therefore, the Seidel eigenvalues of Cay(D2n, {b, ab, . . . , an−1b})
are 2n− 1 with multiplicity 1 and −1 with multiplicity 2n− 1.

Proof. Consider the dihedral group D2n of order 2n where n ≥ 3 and X = {b, ab, . . . , an−1b}
is the generating subset of D2n. From Proposition 8, the Cayley graphs of D2n with respect to
the generating subset X , Cay(D2n, {b, ab, . . . , an−1b}) are the complete bipartite graph Kn,n.
Recalled from Proposition 6, since the Seidel spectrum of a complete bipartite graph Km,n is
{(m + n − 1)1, (−1)m+n−1}, then since in this case, m = n for Kn,n, thus the Seidel spectrum
Spec(Kn,n) = {(n+ n − 1)1, (−1)n+n−1} = {(2n − 1)1, (−1)2n−1}. Therefore, the Seidel eigen-
values are θi = 2n− 1 with multiplicity 1 and θi = −1 with multiplicity 2n− 1.

Theorem 15. Let D2n be the dihedral group of order 2n, where n ≥ 3 and X = {b, ab, . . . , an−1b}
be the generating subset of D2n. The Seidel energy of the Cayley graphs of D2n with respect to
the generating subset X , SE(Cay(D2n, {b, ab, . . . , an−1b})) = 4n− 2.

Proof. Consider the dihedral group D2n of order 2n where n ≥ 3 and X = {b, ab, . . . , an−1b} is
the generating subset of D2n. From Proposition 8 and Lemma 4, the Cayley graphs of D2n with
respect to the generating subsetX , Cay(D2n, {b, ab, . . . , an−1b}) are the complete bipartite graph
Kn,n with Seidel eigenvalues θi = 2n−1 with multiplicity 1 and θi = −1 with multiplicity 2n−1.
Therefore, the Seidel energy of the Cayley graphs of D2n with respect to the generating sub-
set X , SE(Cay(D2n, {b, ab, . . . , an−1b})) = (1)|(2n−1)|+(2n−1)|(−1)|= 2n−1+2n−1 = 4n−2.

The following example is provided to illustrate the previous theorem.

Example 5. Let D6 be the dihedral group of order 6, where D6 =
〈
a, b|a3 = b2 = 1, bab= a−1

〉
and X = {b, ab, a2b} be the generating subset of D6. From Proposition 8,
Cay(D2n, {b, ab, . . . , an−1b}) = Kn,n gives the Cay(D6, {b, ab, a2b}) as complete bipartite graph
K3,3. By Lemma 4, the Seidel eigenvalues of Cay(D6, {b, ab, a2b}) are θi = 5 with multi-
plicity 1 and θi = −1 with multiplicity 5. This gives the Seidel energy of the Cayley graphs,
SE(Cay(D6, {b, ab, a2b})) = 4(3)− 2 = 10.

Conclusion

As conclusion, the Seidel energy of the Cayley graphs associated to the dihedral groups D2n,
with respect to subsets of order one and two as well as the generating set are computed are
summarized in the following table.
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Table 1. The Seidel energy of the Cayley graphs with respect to subsets of order one and two
of dihedral groups, D2n, (n ≥ 3)

Group Order Cases Seidel Energy

D2n, (n ≥ 3) 1 {a|for all a ∈ D2n} 2n

2
{a, an−1} ∑n

i=1 |8 cos( 2πi
n )|

{a2, an−2} for n odd
∑n

i=1 |8 cos( 2πi
n )|

{a2, an−2} for n even
∑n

i=1 |16 cos( 4πi
n )|

{an

2 , aib} ∑3
i=0 |2n cos(πi

2 )|

Generating set {b, ab, . . . , an−1b} 4n− 2
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