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Abstract: In this work, an improved approach to enhance the training performance of an Artificial
Neural Network (ANN) for prediction of the output of renewable energy systems is proposed.
Using the proposed approach, a significant reduction of the Mean Squared Error (MSE) in training
performance is achieved, specifically from 4.45 × 10−7 to 3.19 × 10−10. Moreover, a simplified
application of the already trained ANN is introduced through which photovoltaic (PV) output
can be predicted without the availability of real-time current weather data. Moreover, unlike the
existing prediction models, which ask the user to apply multiple inputs in order to forecast power,
the proposed model requires only the set of dates specifying forecasting period as the input for
prediction purposes. Moreover, in the presence of the historical weather data this model is able to
predict PV power for different time spans rather than only for a fixed period. The prediction accuracy
of the proposed model has been validated by comparing the predicted power values with the actual
ones under different weather conditions. To calculate actual power, the data were obtained from the
National Renewable Energy Laboratory (NREL), USA and from the Universiti Teknologi Malaysia
(UTM), Malaysia. It is envisaged that the proposed model can be easily handled by a non-technical
user to assess the feasibility of the photovoltaic solar energy system before its installation.

Keywords: solar energy; power system operation; photovoltaics; PV power prediction; Artificial
Neural Network (ANN); power forecasting

1. Introduction

Solar photovoltaic (PV) modules of various sizes have been commercialized due to
their potential long term economic and environmental benefits [1–4]. The prospects of PV
are enhanced by continuous price reduction in the modules and inverter. However, like
most sustainable energy sources, its availability is intermittent due to varying weather
conditions [2,5–13]. It is established that PV power depends on various complex weather
conditions like temperature, radiation, wind speed, dust and humidity. To handle these
kinds of complexities and to provide accurate predictions, development of authentic as
well as practical prediction models is extremely significant [14]. Moreover, in order to

Sustainability 2021, 13, 11893. https://doi.org/10.3390/su132111893 https://www.mdpi.com/journal/sustainability

https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-9609-4563
https://orcid.org/0000-0002-5373-2999
https://orcid.org/0000-0002-6986-3619
https://doi.org/10.3390/su132111893
https://doi.org/10.3390/su132111893
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/su132111893
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su132111893?type=check_update&version=2


Sustainability 2021, 13, 11893 2 of 18

efficiently utilize PV power, particularly when connected to the electrical grid, there is a
need for accurate predictions of the power yield, as power system operation with proper
planning is a task of utmost importance for enhancing the reliability of the system [7,15–19].
This, in turn, requires real-time measurement of electrical and meteorological data. With
the availability of this information, artificial intelligence (AI) techniques can be used to
synchronize PV power generation with the grid and subsequently take advantage of the
tariff structure [15,20].

The Artificial Neural Network (ANN) is an important tool to solve non-linear relation-
ships among data without prior assumptions concerning the nature of their correlations.
The ANN is extensively employed in the modelling, identification, optimization, prediction
and control of complex systems [8,15,21]. In PV system applications, ANN is used mainly
to predict power output. It has been shown to give superior results compared to classical
or analytical approaches like the regression, time-series or state-space methods [22–26].

To date, various ANN models have been proposed with various complexity and
accuracy [5,6,15,22,23,27–31]. A novel PV power prediction model utilizing a deep Convo-
lutional Neural Network (CNN) system and the input signal decomposition algorithm was
presented in [32]. This CNN system takes out deep features for short-term power forecast-
ing by means of the transfer learning-based AlexNet. In another work [33], the authors
aimed to integrate the data from the Numerical Weather Prediction system with machine
learning in order to accurately forecast PV power. In this work, the ANN structure was
applied to forecast PV output by means of irradiation and temperature data extracted from
Global Data Assimilation System (GDAS). In a recent work [34], a short-term prediction
system was presented to improve the hybrid forecasting accuracy of multiple generation
sources, such as PV and wind in the same area. The researchers in [35] proposed a two-step
method for PV power forecasting using weather data through Machine Learning. This
approach proposed a process which connects unannounced weather data with announced
weather forecasts. The existing prediction models can forecast PV power in the presence of
real-time current weather data and predict for a fixed time span: for instance, the model
in [27] can predict for one day ahead only; in [28] for a day ahead; in [29] for a day ahead;
in [30] for a day ahead; in [15] for a week ahead; in [23] for a month ahead; in [36] for a
month ahead; in [37] for a year ahead; and in [38] for a day ahead. The proposed work
is an effort to make the prediction model capable of forecasting for different time spans
even in the presence of current weather data. It bears mentioning that the aforementioned
models have differences in structures and different complexity levels.

Based on the dissimilarities and complexities found in existing prediction models,
they can generally be divided into four types: (1) the hybrid model [15,28–30], where ANN
is combined with other classical or analytical tool such as time-series model (nonlinear
autoregressive network with exogenous) [28] and multiregression analysis [15]; (2) the
indirect model [5,39], where solar irradiance is predicted based on related weather data in
a first step, then in a second step this irradiance is converted to PV power output; (3) the
direct model [6,15,22,23,27–30], where PV power is predicted directly by the use of weather
data in only one step; and (4) the standalone model [6,22,23,27], where the ANN is solely
used as a prediction engine, such as multilayered feedforward back-propagation neural
network [6,27], standard feedforward back propagation (FFBP) and general regression
neural network [23].

Among these models, (3) and (4) are found to be simpler due to the lower number of
steps and tools involved in their training. Moreover, their combination gives better training
performance, as proven by in [23], where performance was improved with respect to the
lowest Mean Squared Error (MSE) compared to the other models. Despite the simplicity of
the model proposed in [23], it exhibits several disadvantages: (1) it involves normalization
and denormalization of data before and after training the ANN, which increases the overall
processing steps; (2) five years of data is used for both training and testing of the ANN,
while normally it is not feasible to get data for such a long period; and (3) it considers a
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standard FFBP neural network to be the best choice for the PV prediction model, which is
not true according to the most recent research [40–42].

In view of these shortcomings, a bayesian regulation backpropagation neural network
with multiple hidden layers is proposed in this paper to overcome the highlighted problems.
The proposed work needs no normalization and denormalization steps before or after
training of the ANN, which simplifies the model. Moreover, unlike the previous work
where five years data were considered for training purposes [23], one year’s data is used
here for both training and testing of the ANN, while achieving better training performance
in terms of reduced MSE. Using these data, PV power is calculated with the help of the
single diode model and Newton Raphson Method. For better training performance, the
ANN is provided with two sets of inputs. The first set of inputs consists of the weather
parameters in their original fluctuating form. The second set of inputs comprises the
smooth values (obtained by applying a moving average) of the most fluctuating parameters.
Application of the moving average removes short-term variation from the data [43,44], and
thus helps the ANN to be trained accurately.

It is worth mentioning that almost all existing prediction models require the same
number of inputs at the time of prediction as were applied while training the ANN.
Consequently, the user is unable to predict PV power without having current real-time
weather data. To overcome this shortcoming, the proposed model can be simply used for
PV power prediction (for various time spans) by applying a set of dates as the only input
by the user. This model is configured in such a way that the remaining inputs required by
the already-trained network are automatically extracted from the existing database (having
historical weather parameters) instead of real-time current weather parameters, as per the
user-applied dates. Thus, the contributions of this work are summarized as:

• Improving the training performance of the ANN
• Prediction of PV power without real-time current weather data
• Model needs only the set of dates for prediction from the user
• Proposed model can predict PV power for various time spans

The rest of the paper is organized as follows: In the second section, a PV single diode
model to calculate the module’s output power is presented. The third section explains the
overall methodology. In the fourth section, the results and discussion are presented. Lastly,
conclusions and possibilities for future work are provided.

2. PV Diode Model for Power Prediction

The most commonly used model to calculate power production by PV cell is the single
diode equivalent circuit [1,45,46]. Due to its non-ideal structure in nature, there are some
losses which occur in real PV cells. These losses are expressed by series (Rs) and parallel
(Rsh) resistances in equivalent circuits, as shown in Figure 1 [47–50].
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Figure 1. PV single diode circuit model.

By applying Kirchhoff’s law, the output current I will be obtained by Equation (1) [49]:

I = IL − ID − Ish (1)
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where IL is photo current, i.e., current generated by the incidence of light, ID is diode current
and Ish is leakage current in shunt resistor. Photo current can be obtained by Equation (2) [22]:

= Isc, re f
G

Gre f
+ µIsc,re f

(
TC − Tre f

)
(2)

where Isc, re f is the short circuit reference current (in Ampere) at STC, G is the surface
irradiance of the cell, Gre f is irradiance at STC (1000 W/m2), µIsc,re f is short circuit current
coefficient provided by manufacturer, Tc is temperature of environment in Kelvin, and Tref
is temperature at STC (298◦ K).

The diode current can be obtained by Equation (3) [49]:

ID = I0

(
e

qV
nkT − 1

)
(3)

where I0 is saturation or leakage current of the diode, q is electron charge (1.602 × 10−19 C),
V is voltage imposed on the diode, and n is ideality factor. The value of the ideality factor
is typically 1 ≥ n ≤ 2 [51]; n is taken as 1 in this work, as suggested in [1], k is Boltzmann
constant defined as 1.381 × 10−23 J/K and T is actual cell temperature, which is normally
equal to environmental temperature. For multiple solar cells connected in series and parallel,
the value of output current of PV module can be found by Equation (4) [1,52–54]:

Ipv = Np IL − Np I0

[
e(

q(Voc+IPV Rs)
Ns nkT ) − 1

]
−
(

Voc + IRs

Rp

)
(4)

where NP and NS is number of solar cells connected in parallel and in series, respectively.
The value of RS can be obtained analytically; however, RSh is assumed to be infinity [51].
The output voltage can be calculated by Equation (5) [22,51]:

V = Voc,re f + nTln

(
G

Gre f

)
+ µVoc,re f

(
TC − Tre f

)
(5)

where Voc,ref is the reference voltage at STC given by the manufacturer and µVoc,re f is the
temperature coefficient of voltage, also normally given by the manufacturer.

The module’s reverse saturation current can be found by Equation (6) [53].

Irs =
Isc,re f[

e(
qV

Ns nkT ) − 1
] (6)

The saturation or leakage current of diode can be found by Equation (7) [52,53,55,56]:

I0 = Irs

( T
Tre f

)3
 e

(
qEg
nk ) ( 1

Tre f
− 1

T ) (7)

where Eg is the energy gap or band gap for silicon, equal to 1.1 eV for silicon and 1.39 for
gallium arsenide [49,57]

The value of PV power (considering maximum power point tracking, i.e., MPPT) is
then calculated using Equation (8) [57–59].

Ppv = V I (8)

The PV power calculation is discussed in detail under the following subsection
on methodology.
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3. Methodology

The proposed work was carried out using Matlab (R2021a) software. The illustration
of the overall prediction system in a graphical manner is shown in Figure 2.
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For accurate training of the ANN and in order to use the data at the time of prediction
without having current real-time weather data, a main database must be maintained
consisting of the historical metrological parameters. Data were taken from two sources
with different weather conditions. The first source was the National Renewable Energy
Laboratory (NREL), USA. The hourly NREL data were obtained from the official website,
http://www.nrel.gov/, accessed on 27 August 2021. This database consists of ten years
of data from 1st July 2003 to 30th June 2013. The one-year data were selected as a case
study for training and testing purposes while the remaining data were used for prediction
purposes in the absence of current weather data. The second source of data was the PV-
based EV charging station at the Universiti Teknologi Malaysia (UTM), Malaysia. The
Centre of Electrical Energy Systems, UTM has established a 15kW grid-connected PV setup
with a fully equipped data logging system, as shown in Figure 3.
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The data logger has ability to track and store weather parameters and electrical vari-
ables for every minute, thirty minutes and one hour of the day. These weather parameters
are directly used to calculate the output power of the PV array.

3.1. PV Power Calculations

For output power calculation, the parameters of the PV module of Kyocera company
were taken as the case study. These parameters are given in Table 1. The reverse saturation
current is calculated using Equation (6). Similarly, the saturation or leakage current and
photo current are calculated using Equatizons (7) and (2), respectively. The series resistance
of the single diode model is calculated using the simple relation RS = (Voc − Vmp)/Imp and
the parameters from Table 1. Rsh is taken as 10 kΩ, because Rsh is very high [51]. Based on
the parameters given in the PV datasheet, the maximum power (Pmp) is calculated using
values given in Table 1 as Pmp = Vmp × Imp. Since Equation (4) is transcendental in nature,
the method of Newton–Raphson (NR) iteration was applied to find photovoltaic current,
as shown in Figure 4 [1,49,57]. NR algorithm has the advantage of very quick quadratic
convergence for initial values near the root; thus, a good solution can be achieved within a
few iterative steps [1].

The PV power using Equation (8) is calculated and maximum power (Pmaxc) extracted
by taking maximum power point tracking into account. To calculate the accurate value
of current and power, a small iteration termination threshold for error was taken equal to
0.0001; the error was calculated as (Pmaxc − Pmp) [1].

Table 1. Module specifications at STC, KD325GX-LFB Model.

Parameter Value Unit

Pmax 325 W
Vmp 40.3 V
Imp 8.07 A

Voc,ref 49.7 V
Isc,ref 8.69 A

Ptolerance +5/−3 %
µVoc,re f −0.36 %/◦C
µIsc,re f 0.060 %/◦C

Operating Temp −40 to +90 ◦C
NS 80
NP 1



Sustainability 2021, 13, 11893 7 of 18

Sustainability 2021, 13, x FOR PEER REVIEW 7 of 18 
 

The PV power using Equation (8) is calculated and maximum power (Pmaxc) extracted 
by taking maximum power point tracking into account. To calculate the accurate value of 
current and power, a small iteration termination threshold for error was taken equal to 
0.0001; the error was calculated as (Pmaxc − Pmp) [1]. 

 
Figure 4. Newton Raphson Solution for PV current and power calculation. 

The calculated PV power is stored in the already maintained database to use as a 
target during the training phase of ANN and for comparison purposes. Nevertheless, be-
fore applying the fluctuating parameters to the network for its training, the moving aver-
age was applied on these parameters. 

3.2. Application of Moving Average 
As per the help document of MATLAB R2021a, Arima enables a user to create varia-

tions of the autoregressive integrated moving average (ARIMA) model, including an au-
toregressive (AR(p)), moving average (MA(q)), or ARMA(p,q) model. As discussed ear-
lier, weather conditions are always fluctuating and thus influencing the generation of PV 
power directly [5,6]. To remove these short-term variations/fluctuations for better training 
of the network, the moving average (MA) of these variables was obtained before applying 
them to the ANN in this work. For this purpose, the abruptly fluctuating parameters were 
divided into more than one value by taking their moving average for one day, two days 
and so forth. The increased number of variables with less variation helped the ANN to be 
trained in a more generalized way. This is because the moving average smoothens the 

Inputs from Data sheet, weather 
database and literature at  STC: Isc,ref, 
Voc,ref, Imp, Vmp,  Eg, µi  µv , Ns, Np k, q, 

n, Gs, Ts, T, G

Calculate Irs, Io, IL. Set values of Rs 
and Rsh and calculate value of Pmp. 
Load values of T & G from database 

and initialize Error = ∞ 

Error > 0.0001

Apply Newton Raphson Solution on eq. 
4 for current and on eq. 8 for voltage. 

Find Pmaxc and Error = (Pmaxc - Pmp) 

Yes

No

Start

End
Figure 4. Newton Raphson Solution for PV current and power calculation.

The calculated PV power is stored in the already maintained database to use as a
target during the training phase of ANN and for comparison purposes. Nevertheless,
before applying the fluctuating parameters to the network for its training, the moving
average was applied on these parameters.

3.2. Application of Moving Average

As per the help document of MATLAB R2021a, Arima enables a user to create vari-
ations of the autoregressive integrated moving average (ARIMA) model, including an
autoregressive (AR(p)), moving average (MA(q)), or ARMA(p,q) model. As discussed
earlier, weather conditions are always fluctuating and thus influencing the generation of PV
power directly [5,6]. To remove these short-term variations/fluctuations for better training
of the network, the moving average (MA) of these variables was obtained before applying
them to the ANN in this work. For this purpose, the abruptly fluctuating parameters were
divided into more than one value by taking their moving average for one day, two days
and so forth. The increased number of variables with less variation helped the ANN to
be trained in a more generalized way. This is because the moving average smoothens the
data, which then provide a clear visual picture of the variable to the neural network for
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better training [43,44]. The simple moving average (MA) concept can be explained by the
Equation (9) [44].

At+1 =
At + At−1 + At−2 + At−3 + . . . + At−D+1

D
(9)

At+1 is the average value, At and At−i are historical values, and D is the number of
days for which the moving average is to be calculated. The most important and directly
affecting parameter on PV power generation is solar irradiance, of which the actual and
moving average-based patterns for eleven days (i.e., D = 11) are shown in Figure 5. In
this figure, the blue lines show the actual values of solar irradiance and the orange lines
represent their moving average.
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Figure 5. Irradiance and its moving average.

The moving average of irradiance shows the same pattern as the original one, however
with considerably reduced and smooth variations. Therefore, the inclusion of MA-based
parameters during the training phase of the ANN has enhanced training performance by
reducing the MSE by a significant amount, as shown in the results section. This is the main
contribution of this work, which is proved in the next section. It is to be mentioned here
that MSE to measure the training performance of feedforward neural networks is used by
various researchers [50,60].

3.3. ANN Training Phase

Only one year of data out of the main ten-year database was used for ANN training (80%)
and testing (20%) purposes; the remaining data were used for validation and prediction of PV
power. The purpose of using only one year of data for training was to make the proposed
model comparable with existing work, as most researchers use one year data for training of
the ANN [15,27–30]. The specifications of selected networks in this work are as follows:

Algorithm: Bayesian regulation backpropagation
The trainbr (Bayesian regularization) training function was used in this work. This is

because the trainbr algorithm generally works best when the network falls approximately
in both the positive and negative range of inputs [42]. Though it takes a longer training
time than other training functions, this is good choice in the case of complex problems
because it produces better generalization capability [42]. It updates the weight and bias
values according to Levenberg–Marquardt optimization and then determines the correct
combination to produce a well-generalized network [61].

Layers: Six hidden layers with sizes of 11 11 11 10 10 10, respectively, and one output layer.
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It is worth mentioning that, in order to train the network accurately, the average of
weather parameters was also added as an input besides their actual values. The weather
parameters used for training the ANN were quite fluctuating, and their quantity has thus
been increased by adding their average values. This makes the system more complex; thus,
in order to enhance the training performance of the network and to have more generalized
prediction capabilities, the number of hidden layers was increased. To get the finalized
structure as shown in Figure 6, different combinations of hidden layers and number of
neurons were checked until getting the smallest MSE in training performance on a trial
basis, as adopted in existing research works [62–65].
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Table 2. Parameters of the proposed ANN structure.

No. of
Inputs Target Training

Function

Transfer
Function of

Hidden
Layer

Size of
Data

Transfer
Function of

Output
Layer

No. of
Input
Layers

No. of
Output
Layers

No. of
Hidden
Layers

Six Hidden
Layers with
Number of

Neurons

24 1 trainbr Tan-sigmoid
Hourly

based one
year data

linear 1 1 6 11 11 11 10 10
10

The details of input parameters with their names are given in next subsection.

Table 3. Input parameters/variables applied for neural network training.

Input No. Input Name Input No. Input Name Input No. Input Name

1 Time 9 Previous one day
average irradiance 17 Previous one day average dew

point temperature

2 Day of week 10 Previous two day
average irradiance 18 Previous two day average dew

point temperature

3 Day of month 11 Previous three day
average irradiance 19 Previous three day average dew

point temperature

4 Day of year 12 Dry bulb
temperature 20 Previous one day average Power

5 Humidity 13
Previous one day
average dry bulb

temperature
21 Previous two day average Power

6 Wind speed 14
Previous two day
average dry bulb

temperature
22 Previous three day average Power

7 Air pressure 15
Previous three day
average dry bulb

temperature
23 Previous four day average Power

8 Irradiance 16 Dew point
temperature 24 Previous five day average Power

The first four inputs in Table 2 were used (in the form of dates) during the training and
prediction phases in order to extract the remaining parameters from the already-maintained
historical database.

The next five inputs, humidity, wind speed, air pressure, irradiance and temperature,
were the main inputs used for training the network. The remaining average inputs (obtained
by means of RA) were used mainly for reduction of training and prediction errors.

Target: PV Power
Target is the variable that is the mandatory input of the ANN at the time of training.

This is the input which is to be predicted by using the already trained network; that is, PV
power in this work. The structure of the proposed multilayer neural network is shown
in Figure 6. Figure 6a shows the detailed structure of the proposed ANN showing each
hidden layer, their neurons and the transfer functions within entire network.

Matlab has the capability to generate the graph of MSE against each iteration (epoch)
during the training phase of the network, as shown in Figure 7. This MSE actually repre-
sents the training performance of the network.

It is clear from Figure 7 that the obtained error (i.e., MSE) with the proposed structure
of network was 3.19 × 10−10, which is much lower than the least obtained error in the
existing literature (i.e., 4.45 × 10−7 [23]). It is worth mentioning that the data of a five year
period was used in [23] for training and testing purposes, while in our proposed work the
data of only one year’s span was used for the same purpose. Even then, the obtained error
in the case of the proposed model was smaller, which shows the remarkable improvement
in the training performance of the ANN.

The Matlab generated regression plots, as shown in Figure 8, clearly depict the accu-
racy of the training as well as the testing phases of the proposed network.
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Once the network was trained, it could be used for predicting PV power by applying
the required input parameters.

3.4. Prediction Phase

In this work, the utilization of the already trained neural network was made quite
simple compared to the already-proposed networks in the existing literature. The existing
models need current real-time weather parameters as an input (exactly equal in number
to those applied during the training phase) in order to predict PV power. However, in
our proposed work, the operator needs to apply only a set of dates (to specify prediction
period) as an input in order to forecast the power. The remaining input parameters are
extracted from a historical database which already contains the time, day and weather
parameters. A simple data extraction algorithm (the pseudocode is given in the next
section) was developed to automatically extract the remaining input parameters from this
database by matching the days with the user’s applied date. Firstly, the user’s applied date
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is converted to day of week, month and year using the built-in functions of Matlab. As the
database contains the value of each parameter for ten years against that specific date, the
algorithm takes the mean of each variable for every hour to obtain a single value of each
parameter. This average gives a very close value of each parameter to the real one. Thus,
the extracted parameters are applied to the already trained NN for PV power prediction
without having current real-time data. Therefore, the proposed work not only improves the
training performance of the ANN but also makes use of this trained network for prediction
of PV power without the presence of the real-time weather parameters. Thus, the proposed
work makes the prediction process completely independent of any kind of external data
except a set of dates.

A flowchart describing the overall functionality of the final prediction algorithm is
shown in Figure 9.
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Figure 9. A flowchart describing the functionality of the final prediction algorithm.

For ease of reading, the above flowchart provides self-explanatory details of the overall
methodology of the proposed work. It is important to note that the proposed prediction
model is capable of forecasting power for different time spans depending upon the applied
dates used to extract the data. This is another contribution of this work, as the exiting
models can make predictions for a fixed time span.
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3.5. Pseudocode of Data Extraction Algorithm

The pseudocode of the simple algorithm used for extraction of required input data from
the main ten-year historical database according to the dates entered by the user is presented
in this section. The extracted inputs were automatically applied to the already-trained
network in order to predict the PV power for every hour of the mentioned time span.

Data extraction algorithm starts
Load historical database
Ask user to enter start and end dates
Obtain days of year from entered dates using Matlab built-in function
Starts For loop for 24 h, i.e., 0:23
Starts While loop (<=days of year) %depends on years of historical database
Extract historical parameters of every hour for every day of year
Ends While loop
Take average of each parameter to get single value
Perform moving average (MA) on fluctuating variables
Apply extracted and RA-based parameters to the already-trained ANN to predict PV Power
Ends For loop
The data extraction algorithm facilitates a user (without requiring any knowledge

of AI) to predict PV power for any time span in the absence of real-time weather parameters
by merely entering a set of dates.

4. Results and Discussion

It is important to note that in the existing literature, researchers have validated their work
through comparisons of predicted data with actual data from a single source [5,30,66–68].
However, in this work, the data from two different countries (Malaysia and United States)
having entirely different weather conditions are used for validation purposes. Due to its
existence on the equator, the weather of Malaysia is quite unstable compared to that of
the USA. Figure 10a,b show the successful comparison between actual and predicted PV
power under unstable weather conditions at UTM, Malaysia, while Figure 10c,d show
the comparison under stable weather conditions at NREL (California), USA, each for
different time spans. The coherency of predicted power with actual power in these results
successfully validates the proposed prediction model.

The previous results in Figure 10 validate the accuracy of the prediction by means of
comparison between actual and predicted power. Figure 11 shows the capability of the
proposed model to use the already-trained neural network to predict power for any span
of time without the presence of real-time weather data by utilizing historical data only.
Figure 11a–d show the predicted power for one day, one week, one month and three years
using the proposed algorithm. This shows that the proposed model is quite flexible in
predicting power for various time periods.

The comparison of errors for training performance (mean squared error, i.e., MSE)
and prediction performance (mean absolute percentage error, i.e., MAPE) obtained with
the proposed and the already published models is given in Table 4. The results in the table
clearly show the significant reductions in MSE and MAPE in the case of the proposed work.

Since the application of the already-trained network is made simple in this work, the
proposed solution also provides a guide to the installers of the PV system to estimate its
yield (by predicting PV power) prior to its installation in the presence of the historical
weather data only.
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Figure 10. (a,b) show comparison between actual and predicted PV power for validation with UTM Malaysian data; (c,d)
show comparison between actual and predicted PV power for validation with NREL USA data.
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Figure 11. Cont.
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Figure 11. (a–d) show predicted power for one day, one week, one month and three years.

Table 4. Comparison of proposed approach with the existing work.

References Training Data MSE in Training
Performance Prediction Period MAPE in Prediction

[27], 2011 One year 6.23 × 10−3 Day ahead —
[28], 2011 One year — Day ahead <5%
[29], 2011 One year — Day ahead 6.36%
[30], 2014 One year — Day ahead 5.41%
[15], 2014 One year — Week ahead 6.50%
[23], 2014 Five Years 4.45 × 10−7 Month ahead —
[36], 2016 One year — Month ahead 9%
[37], 2018 One year 0.01 Year ahead —
[38], 2019 Two years 1.67 Day ahead —

Proposed, 2021 One Year 3.19 × 10−10 Any time-span 1.8%

Note: Bold to highlight the superiority of proposed approach over existing approaches.

5. Conclusions and Future Work

PV power prediction through ANN is a real life application of artificial intelligence
in the field of renewable energy systems. This work has improved the training perfor-
mance of a neural network by applying the moving average of the most sensitive and
fluctuating weather parameters and increasing the hidden layers of the ANN. The results
evidently show that the training performance error has been considerably reduced (from
4.45 × 10−7 to 3.19 × 10−10) compared to the errors obtained in existing ANN-based mod-
els. Moreover, prediction of PV power without real-time current weather data is made
possible by exploiting historical weather data. It is worth mentioning that the proposed
model asks the user to apply externally only the set of dates for prediction purpose, instead
of multiple weather parameters. Unlike the existing prediction models, the proposed
model has the capability to predict PV power for various time spans. Though the proposed
approach is simple, it is quite novel and very useful for prediction of PV power without
real-time current weather data. As a future work, the accuracy of the proposed work can
be further enhanced by training the network with larger historical weather data (more than
one year) and by using the two-diode model of solar cell instead of the single diode model.
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