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A B S T R A C T   

The aim of this study is numerically to investigate the effects of local thermal non-equilibrium 
porous media on the melting process of paraffin with the melting temperature33◦C. The geom
etry consists of a half-cylinder containing paraffin with a uniform constant temperature and an 
insulating wall. Also, Darcy model and buoyant force due to density changes are considered in 
this simulation. The effects of the presence of aluminum foam with porosity ε = 0.8, and 0.95 and 
difference temperature ΔT = 5, 10, and 15 have been studied on the melting fraction of PCM, 
temperature and streamlines contours and heat flux of cylinder’s surface. The observations show 
that enhancement of porosity 0.8 to 0.9 increases the volume of PCM 11.7%, and reduces time of 
melting process 30.8% for ΔT = 15. Moreover, increment of ΔT = 5 to 15 leads to decrease time 
of melting process 71.8% when porosity is 0.95.   

1. Introduction 

Storing energy using phase change materials is a great innovation in energy storage. These materials due to receiving and storing 
heat as latent heat at a constant temperature have highly regarded by researchers [1–3]. Energy storage in the form of heat at different 
temperatures has led to have significant applications of PCM in various industries such as cooking [4], clothing [5], textile [6], 
building [7–9], heating and cooling systems [10–12], desalination systems [54–56], and medicine [13]. 

The latent heat of PCM in solid to vapor phase is more than solid to liquid phase, but phase change solid-liquid is widely used due to 
low change volume [14]. Two important parameters in PCMs are latent heat and solid to liquid phase transition temperature. PCMs can 
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be classified into three types: organic, inorganic and eutectic mixtures. On the other hand, PCMs can be classified in approach of 
melting temperature (Tm) and latent heat solid-liquid (hsl) as follows [15–17]:  

• Queues salt solution for − 70 < Tm < 0◦C with 220 < hsl < 320 kj/kg.

• Paraffins for 0 < Tm < 130◦C with 180 < hsl < 220 kj/kg.

• Sugar alcohols for 60 < Tm < 210◦C with 210 < hsl < 430 kj/kg.

Paraffins are a type of organic PCM that have more advantages such as: availability, high latent heat in solid-liquid transition, auto- 
nucleation properties, high nucleation rate, chemical stability, and low cost. One of the important advantages of paraffin is the melting 
temperature range of 0–130◦, which has a very good temperature range for most industrial applications. But one of the disadvantages 
of paraffins is low thermal conductivity, which studies [15,18,19] have used for thermal energy storage systems, cooling photovoltaic 
panels, controlling temperature of medicine in delivery processes. 

Residential, office and industrial buildings need a lot of energy for heating and cooling. It can be said that cooling and heating of 
buildings consume energy between 18 and 73% of the total energy [20] that range of energy consumption of buildings function of 
many different parameters such as weather conditions, geography, season, design and the used materials in the building, etc. [21–23]. 
One of the important applications of PCM is for cooling and heating systems of buildings. These materials are used as intelligent 
material to control the temperature’s building. because these materials change phase at a constant temperature and response to the 
environmental turbulent conditions from temperature point of view and the whole process occurs at a constant temperature [24]. 
There are many renewable energy sources available to humans who have been able to use these resources in different ways [25–27]. It 
can be said that Solar energy is a remarkable renewable heat source whose heat is available worldwide. There are many ways to use 
solar heat. Therefore, using solar energy to melt PCM materials can be a very good option [28–30]. 

There are various methods for solving fluid kinematic problems and heat transfer processes such as analytical, laboratory and 
numerical methods. In the numerical method, the governing equations of Navier-Stokes are discretized and solved [31–33]. One of the 

Nomenclature 

Asf Surface area density, [m2] 
C Specific heat capacity, [J kg− 1 K− 1] 
dp Pore diameter, [m] 
df Fiber diameter, [m] 
R Radius of cylinder, [m] 
g Gravitational acceleration, [m s− 2] 
hsf Local heat transfer coefficient, [W m− 2 K− 1] 
K Permeability, [m− 2] 
k Thermal conductivity, [W m− 1 K− 1] 
L Latent heat, [J kg− 1] 
P Pressure, [N m− 2] 
T Temperature, [K] 
TM Melting temperature, [K] 
V Velocity vector, [m s− 1] 
x, y Cartesian coordinates, [m] 

Greek symbols 
β Thermal expansion coefficient, [K− 1] 
ω pore density, [− ] 
μ Dynamic viscosity, [kg m− 1 s− 1] 
λ Melting fraction, [− ] 
ρ Density, [kg m− 3] 
ε Porosity, [− ] 
Re Reynolds number 
Pr Prandtl number 

Subscript 
Ave Average 
C Cold 
pcm Phase change material 
f fluid 
s Porous media  
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new applications of Navier-Stokes complex equations is in simulating blood flow in the arteries [34–36] and drug delivery and drug 
release in the body [37–40]. 

Due to the widespread use of PCM, many studies have conducted on the PCM melting process using numerical methods and 
simulations by computational fluid dynamics (CFD) [41–43]. Badiei et al. [44] simulated the PCM melting to improve the performance 
of a solar flat panel collector. They used four types of PCM to have four different melting temperatures in their simulations. Their 
results show that the collector efficiency is improved 13% for low melting temperatures. In another numerical study by Gómez et al. 
[45], they simulated the effects of PCM within a wall to be fixed temperature’s room versus climate changes. observations say that the 
wall filled PCM leads to keep the room at temperature constant and reduce the energy consumption of the cooling system. Study [46] 
has numerically investigated the PCM melting process in presence of a copper porous media inside rectangle chamber. They have also 
implemented the local thermal non-equilibrium model with enthalpy-porous method in their governing equations and studied the 
effects of porous media on the melting process, temperature and streamlines contours. Heat transfer phenomena in different systems 
have been reviewed by many researchers [47–49]. Also, using solar energy [60] is a great idea for melting phase change material, 
because solar energy is available both on and out the earth, as well as clean and renewable energy [50–53]. 

Fig. 1. A half-cylinder filled aluminum foam as porous media and paraffin as phase change material.  

Table 1 
The thermophysical properties of used material [57,59]. 

Fig. 2. The mesh independence for melting fraction and a section of used unstructured mesh for current unsteady simulation.  
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As mentioned in the introduction, phase change materials are very useful for the building industry. and few studies have been 
simulated PCM melting process in presence of local thermal non-equilibrium porous media and has not been considered porosity on 
melting process with different difference temperature. In this study, the aluminum foam is embedded inside a half-cylinder with a hot 
wall as constant temperature for melting PCM. On the other hand, the porous medium is considered as local thermal non-equilibrium 
and the effects of natural convection of liquid PCM is used in governing equation in order to precise the simulation results with 
laboratory and physical results. 

2. Geometry 

The geometry consists of a porous half-cylinder with radius R = 5 cm filled paraffin as the phase change material with melting 
temperature Tm = 33◦C (see Fig. 1). The material of the porous medium is aluminum foam, which in the present simulation is 
investigated as local thermal non-equilibrium. It should also be noted that the top wall of the geometry is exposed by uniform constant 
temperature and the bottom wall is insulated. Therefore, the hot wall causes to melt the paraffin, which creates a natural convection 
flow inside the chamber and helps the paraffin for melting more. Note that the gravitational acceleration is 9.8 m

s2 in - y-direction. 

3. Mathematical model and properties 

Assumptions include two-dimensional flow, incompressible, unsteady, laminar, local thermal non-equilibrium in porous media, 
and constant properties. The effects of Darcy and buoyant force are considered in momentum equation due to presence of porous media 
and changing density with temperature, respectively. The momentum, energy equations of fluid and porous media for local thermal 
non-equilibrium model are represented as follows [59]: 

Fig. 3. Comparison of melting fraction between results of current work and Kamkari et al. [58].  
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Momentum equation: 

ρf

ε
∂V
∂t

+
ρf

ε2 (V.∇)V = − ∇P+
μf

ε ∇.(∇V) −
μf

K
V +(ρβ)f

(
T − TRef

)
g − 105

(1 − λ)2

λ3 + 0.001
V (1)  

Which the last term of the momentum equation in right hand is the mushy term source which acts as a porous medium in the melting 
and solidification processes. This term indicates where PCM is in the solid phase (which is function of λ), the velocity value should be 
zero. 

Energy equation of fluid: 

ερf

(

Cf +L
dλ
dTf

)
∂Tf

∂t
+ ρf Cf

(
V.∇Tf

)
= εkf∇.

(
∇Tf

)
− hsf Asf

(
Tf − Ts

)
(2) 

Energy equation of porous media: 

(1 − ε)ρsCs
∂Ts

∂t
=(1 − ε)ks∇.(∇Ts) − hsf Asf

(
Ts − Tf

)
(3) 

The solid to fluid phase change is a function of the error function, which is calculated as follows: 

λ= 0.5 erf
(

4
Ts − Tm

Tl − Ts

)

+ 0.5 (4) 

The porous media equations can be listed as follows [57]: 

Pore diameter dp =
0.0254

ω (5)  

Fiber diameter df = 1.18dp

(
1 − ε
3π

)1/2(

1 − eε− 1
0.04

)− 1

(6) 

Fig. 4. The melting fraction, streamlines, temperature contours versus time for ΔT = 5, ε = 0.8.  
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Permeability K = 0.00073(1 − ε)− 0.224
(

df

dp

)− 1.11

dp
2 (7)  

Local heat transfer coefficient hsf =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0.76
(

kf

d

)

Re0.4d Pr0.37pcm 1 ≤ Red < 40

0.52
(

kf

d

)

Re0.5d Pr0.37pcm 40 ≤ Red < 103

0.26
(

kf

d

)

Re0.6d Pr0.37pcm 103 ≤ Red < 2× 105

,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

d = df

(

1 − e
ε− 1
0.04

)

Red =
ρf |V|d

μf

Prpcm =
μf Cf

kf

(8)  

Surface area density Asf = 3πdf

(

1 − eε− 1
0.04

)
(
0.59dp

)− 2 (9) 

According to the study [57], the pore density (ω) of the Aluminum foam and the is equal to 10. Moreover, Table 1 shows the 
thermophysical properties of paraffin and aluminum foam [57,59]. 

The boundary and initial conditions are required to solve the mentioned PDE equations. The geometry is at an initial temperature of 
29.5◦C (temperature of melting point) and the top wall of the geometry is at a uniform constant temperature (TH) and the bottom wall 
is insulated. The non-slip condition is also used for velocity on the walls. 

4. Numerical considerations 

The mentioned equations are discretized by finite volume method (FVM) and solved instantaneously by PIMPLE algorithm. The 
PIMPLE algorithm is combinated of PISO (Pressure Implicit with Splitting of Operator) and SIMPLE (Semi-Implicit Method for 
Pressure-Linked Equations) algorithms. Euler, First-order upwind and Central schemes are implemented for time, convective and 
conductive terms, respectively. It can also be mentioned that unstructured mesh is used to simulate PCM inside the half-cylinder 
chamber (see Fig. 2). The mesh independence with a constant time step (1.2 s) has been checked for melting fraction in the 

Fig. 5. The melting fraction, streamlines, temperature contours versus time for ΔT = 5, ε = 0.95.  
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conditions of ε = 0.95, and ΔT = 10, which in all cases the Courant number is much smaller than one. Fig. 2 demonstrates the melting 
fraction of paraffin for 1 h after beginning of process. the mesh 55.3k is chosen to simulate all the other cases, which the Courant 
number is much smaller than unit for all cases. 

Kamkari et al. [58] have experimentally investigated the melting process of lauric acid as PCM in a rectangular chamber. One of a 
chamber walls was at a constant temperature of 70◦C◦C and the other walls were insulated and they took pictures of the melting 
process. Fig. 3 shows the results of the melting process of the present simulation and experimental study [58] to verify the present 
numerical solution. According to Fig. 3, the current results are consistent with the experimental results. 

5. Results and discussions 

This section investigates melting process of paraffin with melting temperature 30◦C inside a half-cylinder in presence of thermal 
non-equilibrium porous media. The temperature of PCM, flow pattern, melting fraction contours, plot of melting fraction and input 
heat transfer rate versus time are studies for two porosity ε = 0.8, 0.95 and three temperature difference between top wall and melting 
temperature ΔT = 5, 10, and 15. 

Figs. 4 and 5 demonstrate the melting fraction, streamline and temperature contours for ΔT = 5 when ε = 0.8, 0.95, respectively. 
For both porosities, after 1 h from the beginning of the melting process, the molten PCM moves due to the buoyant force, which leads to 
the form two clockwise and counterclockwise vortices in both sides of geometry. On the other hand, most isothermals are observed in 
the liquid phase region, because input heat from top wall causes to heat liquid phase as sensible heat (increment of the liquid phase 
temperature) and melt solid phase as latent heat. 

Over time, more volume of PCM melt, which vortices become larger and stronger. Also, the center of the vortices move against 
gravity direction. Moreover, the isothermals are spaced apart in order to be increased the distance between the top wall and the surface 
of solid phase in constant temperature difference. 

By comparing the two Figs. 4 and 5 at a fixed time, it can be noted that the enhancement of porosity has led to decreased melting 
fraction. Because the volume of PCM for a porosity 0.95 is more than porosity 0.8. On the other hand, the strength of streamlines has 
been increased by rising porosity because resistance of the porous medium has been reduced versus movement of the fluid flow. In 
addition, the isothermals for both porosities are similar except at the bottom of the chamber where the density of isothermals is high. 

The mentioned arguments for Figs. 4 and 5 at a fixed porosity are true to Figs. 6 and 7. But there are many differences, which will be 

Fig. 6. The melting fraction, streamlines, temperature contours versus time for ΔT = 15, ε = 0.8.  
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Fig. 7. The melting fraction, streamlines, temperature contours versus time for ΔT = 15, ε = 0.95.  

Fig. 8. the melting fraction versus time for I) ΔT = 5, II) ΔT = 10, III) ΔT = 15.  
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analyzed in following. 
First, the effects of porosity are investigated at ΔT = 15. At a constant time, the rising porosity 0.8 to 0.95 enhances the strength of 

the vortices and the melting fraction (unlike ΔT = 5). Although, the volume of PCM has increased. it can be realized that the effects of 
convective heat transfer have increased by increasing buoyant force. As a result, the PCM of at porosity 0.95 is molten faster than 
porosity 0.8. On the other hand, increasing time at porosity 0.95 first increases and then decreases the strength of the vortices. Because 
at t = 2 h, all PCM has been melted and the after this time, input heat leads to increase PCM temperature, which decreases temperature 
difference between the surface of the geometry and the flow, and buoyant force. 

Now, we compare the effects of temperature difference. In both porosities and at fixed times, the increasing ΔT causes enhance 
melting fraction for two reasons:  

• increasing ΔT leads to increase temperature gradient and heat flux.  
• increment ΔT enhances the buoyant force and the strength of the vortices. 

Fig. 8 shows the melting fraction versus time to compare the effects and the temperature difference and porosity. Before analyzing 
the results, it can be said that the volume of PCM in porosity 0.95 is 11.7% higher than ε = 0.8. According to plot (I) in Fig. 8, the rising 
porosity has no effect on the melting fraction and time, although the volume of PCM has increased by 11.7%. Because the increment of 
porosity has led to increase strength of flow and convective heat transfer. 

Plots II and III in Fig. 8 show that in the first minutes of the melting process, the porosity has no effect on the melting fraction, 
because the liquid phase flow is very weak and heat is transferred by conductive mechanism. An addition, Increasing the time causes to 
enhance the buoyant force to move liquid phase, which leads to increase the convective heat transfer to melt the solid PCM. At a fixed 
time, increasing the porosity from 0.8 to 0.95 increases the melting fraction, although the volume PCM was increased by 11.7%. it can 
be observed that increment of porosity reduces the Darcy force and increases the convective heat transfer. 

6. Conclusion 

In the present study, the melting process of paraffin inside a half-cylinder with porous media has been simulated by FVM method, 
PIMPLE algorithm and regarding effects of free convection for three various temperature difference (5 < ΔT < 15) and two porosities 
(ε = 0.8, and 0.95). Moreover, the porous medium is considered as local thermal non-equilibrium and Darcy model is applied in the 
momentum equation. Used PCM is a type of paraffin with a melting temperature of 30◦C and the porous media is made of aluminum 
metal with pore density 10. The important observations can be listed as below:  

• In the ΔT = 5, 15, increasing porosity 0.8 to 0.95 enhances strength of streamlines 123.6%, 161.54% at a fixed time, respectively.  
• In all of ΔT, increment of porosity enhances convective heat transfer relative to conductive mechanism in order to enhance the 

permeability of porous media versus movement of fluid flow.  
• In the ΔT = 5, increasing porosity 0.8 to 0.9 increase the volume of PCM 11.7%, but doesn’t affect on time of melting process.  
• Enhancement of porosity 0.8 to 0.9 rises the volume of PCM 11.7%, and reduces time of melting process 31.7, and 30.8% for ΔT =

10, and 15, respectively.  
• At the constant porosity 0.8, increment of ΔT = 5 to 15 leads to decrease time of melting process 42.3%.  
• Melting process behaves as a parabolic with Negative concavity relative to time for all cases. 
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