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Abstract

Effects of different surface textures on the interface shear strength, interface slip, and failure

modes of the concrete-to-concrete bond are examined through finite element numerical

model and experimental methods in the presence of the horizontal load with ‘push-off’ tech-

nique under different normal stresses. Three different surface textures are considered;

smooth, indented, and transversely roughened to finish the top surfaces of the concrete

bases. In the three-dimensional modeling via the ABAQUS solver, the Cohesive Zone

Model (CZM) is used to simulate the interface shear failure. It is observed that the interface

shear strength increases with the applied normal stress. The transversely roughened sur-

face achieves the highest interface shear strength compared with those finished with the

indented and smooth approaches. The smooth and indented surfaces are controlled by the

adhesive failure mode while the transversely roughened surface is dominated by the cohe-

sive failure mode. Also, it is observed that the CZM approach can accurately model the inter-

face shear failure with 3–29% differences between the modeled and the experimental test

findings.

Introduction

The composite concrete slab is constructed by integrating a precast concrete slab with the cast-

in-place concrete topping, both of which are performing monolithically in unison as a single

element as dictated by their shear strength at the interface. The interfacial behavior of compos-

ite concrete slab plays an imperative role in maintaining its integrity in service. In essence, the

cohesion and frictional characteristics of concrete, as well as its external normal stress all con-

tribute to the capacity of the composite action near the interface region of the slab [1–3]. The
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shear-friction theory advocates that the shear is transmitted across the interface between two

concrete members along with the occurrence of friction-inflicted normal forces acting on the

interface [4–6]. In the interface of a composite slab, failure may occur in the concrete topping,

which tends to not conform to the curvature of the precast slab under a deformed state [7].

Therefore, understanding the interface texture behaviors of the concrete-to-concrete compos-

ite may contribute to an efficient interface shear strength design of the slab under horizontal

and normal loadings.

A significant number of experimental studies have revealed that the interface shear strength

relies greatly on the roughness and the adhesive type of the composite interface. Loov and Pat-

naik [8] pointed out that an effective interface shear strength is critical for the development of

flexural strength, shear strength, and deflection characteristics. Through a series of investiga-

tions, Mohamad et al. [9], Ceia et al. [10], and He et al. [11] observed that the shear strength of

the concrete-to-concrete interface increases with its roughness. Costa et al. [12] stated that the

binding matrix strength and the type of aggregate influence the interface strength attributed to

its dependence on the roughness of the substrates. By investigating the influence of carbon-

ation on the shear strength prediction between the old concrete substrate and the new self-

compacting concrete (SCC) overlay, Zhang [13] showed that the shear strength increases by

30% when the carbonation depth of the substrate is deeper than 20 mm.

Over the past decades, various techniques have been established to model the fracture or

debonding of the interface layers through the fracture mechanics and strength of materials

methods [14–17]. As an alternative, the Cohesive Zone Model (CZM) pioneered by Dugda in

1960 [18] and Barenblatt in 1962 [19] is a fracture mechanics model that directly introduces

the fracture mechanism by adopting the softening relationship between traction and separa-

tion in numerical simulations [20,21]. They had been successfully used CZM to simulate and

predict the entire fracture process from crack onset to rupture, including crack growth, propa-

gation, potential bifurcation, and multiple fracturing. Alfano [22] presented the effects of the

shape of the interface law (e.g., bilinear, linear-parabolic, exponential, and trapezoidal) on the

analysis of debonding by using CZM. They found that the exponential law has the optimal

finite-element approximation and bilinear law has the best agreement between the approxima-

tion and compactional cost while the trapezoidal law has worst results in term of numerical

stability. Borst et al. [23] implemented CZM to simulate the crack propagation by considering

the partition-of-unity property of the finite element mesh to avoid any mesh bias. The fracture

of quasi-brittle materials such as concrete was defined using CZM for the concrete-to-concrete

behavioral simulation technique [24]. Hadjazi et al. [25] established theoretical model based

on the bi-linear CZM for intermediate crack-introduced debonding in FRP-plated concrete

beam. They found that the capacity of the FRP-concrete interface increased with the increase

of crack length and the thickness of the FRP plate. Additionally, a cohesive or bridging zone

model was developed to simulate the interfacial debonding between fiber-reinforced polymer

(FRP) and concrete with the consideration of different failure mechanisms at the bridging

zone and softening zone [26]. The model confirmed that the pulling force on the FRP plate is

directly associated with the square root of the energy release rate at the debonding tip.

It is worth noting that most of the aforementioned experimental studies considered only

the horizontal loading case. However, in reality, the vertical load occurs also on the top layer of

the composite precast slab during service. For the composite slab to behave monolithically, the

bond at the interface between the precast slab and concrete topping must remain intact. The

interface shear stress must be sufficiently transferred along the interface of the two concretes.

However, when load is applied on the weaker interface bond, it may cause interface failure due

to slippage of the concrete topping. If this slip occurred and the composite action is lost, only

friction force is acted between the precast slab and concrete topping. Therefore, each concrete
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layer will deform separately due to the vertical forces which cause tension at the bottom of the

two concretes. Fig 1 shows the stress distributions for the weak interface bond (non-composite

section) and the strong interface bond (composite section) of the composite precast concrete

slab behavior. In terms of simulation, finite element modeling has not been performed for the

concrete-to-concrete composite through the “push-off” test with the consideration of simulta-

neous effects of both horizontal and normal loads.

Therefore, this study was aimed to investigate the effects of the surface texture roughness

on the interface shear strength, interface slip, and failure mode of the interface of the concrete-

to-concrete composite under both horizontal and vertical loading using the “push-off” test

method. To evaluate the quality of the surface which ranges from very smooth to very rough

(limited to the roughness height) and is significantly influenced by the method of preparation

as per Eurocode 2 [28], smooth or “left as-cast” with a troweled finish, the indented surface fin-

ished with a corrugated steel mold, and the transverse roughened surface finished by wire-

brushing in the transverse direction surfaces were considered and measured with the aid of a

roughness instrument. Also, the finite element (FE) numerical modeling was employed with

the ABAQUS/Standard [29] solver to predict the interface strength between the concrete

base and topping layers, adopting specifically the Cohesive Zone Model (CZM) interaction

description. Conforming to the physical findings, the results from the experimental tests were

implemented in the model to simulate the interface bond. Furthermore, outcomes from the

horizontal load, interface slip, and interface shear strength from both numerical and experi-

mental approaches for the “push-off” tests were compared for verification purposes. Departing

from a successful verification, the models were then employed to examine the stress pattern

and failure mode experienced by different conditions of surface textures at the interface

region. The paper ends by highlighting the main findings from the current study.

Fig 1. Stress distribution of a) Non-composite section and b) Composite section (Kovach and Naito [27]).

https://doi.org/10.1371/journal.pone.0252050.g001
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Experimental program

The “push-off” test used to study the behavior of the interface bond of the composite concrete-

to-concrete slab under different normal stresses. The test was conducted following the

approach adopted in Mohamad et al. [9]. A total of 36 (12 specimens for each surface texture,

i.e., 3 specimens for each normal stress) were prepared. The overall dimension of the specimen

is 300 mm × 300 mm × 175 mm. The concrete base as the bottom layer is 100 mm high while

the concrete topping as the top layer is 75 mm high. Mild steel wire mesh of 6 mm diameter

and at 200 mm spacing were used in both concrete base and concrete topping to control

shrinkage as shown in Fig 2. These concrete layers were, respectively, designed with compres-

sive strengths of 25 N/mm2 and 40 N/mm2. In preparation, the concrete topping was cast onto

the concrete base after confirming that the concrete base had achieved two-third of the design

compressive strength at 7 days.

Fig 3 illustrates the “push-off” test set up. A horizontal load parallel to one of the interface

bond lines was applied to one side of the concrete topping while the concrete base was fixed to

the test frame to attain a complete shear failure at the interfacial region. Also, four normal

stresses were considered: 0 N/mm2, 0.5 N/mm2, 1.0 N/mm2, and 1.5 N/mm2. To avoid any

uplift during the test, a uniformly arranged set of rollers was placed on top of the specimen. The

horizontal displacement or interface slip was measured during the test using the Linear Variable

Displacement Transducer (LVDT) close to the interface as shown in Fig 3. The horizontal load

is applied incrementally at every 5 kN until the specimen failed. Failure is well defined when the

bond at the interface is broken or when the two concrete layers become separated.

Fig 4 shows the surface textures at the top face of the concrete base while Fig 5 displays their

surface roughness profiles as assessed by the Portable Stylus roughness instrument. Three dif-

ferent surface textures were examined, including smooth, indented, and transversely rough-

ened. These surfaces were left as-cast with a troweled finishing, with a corrugated steel mold,

and with wire-brushing in the transverse direction, respectively.

Fig 2. “Push-off” specimen a) Schematic of reinforcement details, and b) Actual reinforcement.

https://doi.org/10.1371/journal.pone.0252050.g002

Fig 3. “Push-off” test setup: a) Schematic drawing, and b) Experimental set-up.

https://doi.org/10.1371/journal.pone.0252050.g003
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The interface shear strength was determined based on the shear-friction theory for the sur-

face texture types examined in this study as follows [9]:

t ¼ C:fct þ m:sn ð1Þ

where fct is the lower concrete tensile strength among the two layers, σn is the normal stress

strength, and μ is the friction coefficient compatible with the interface shear strength given as:

m ¼ 0:8766 Rpm
0:3978 ð2Þ

where Rpm is the mean peak height roughness parameter while the theoretical cohesion coeffi-

cient, C, takes the following expression:

C ¼ 0:2363e0:237Rpm ð3Þ

Finite element numerical modeling

Modeling description. In addition to the physical tests, the “push-off” tests were simu-

lated by the 3D FE models using the commercial software, ABAQUS 6.12/standard [29]. Fig 6

shows the modeled composite concrete-to-concrete specimens with the considered three inter-

face textures, i.e., smooth, indented, and transversely roughened. All dimensions and parame-

ters of the interface were modeled identically with the experimental specimens.

The interaction characteristics of the interface element introduced between the concrete

base and concrete topping were modeled in accordance with the interface failure modes

Fig 4. Surface textures of the top surface of the concrete base: a) schematics and b) actual surfaces.

https://doi.org/10.1371/journal.pone.0252050.g004

Fig 5. Surface roughness profile at the top surface of the concrete base.

https://doi.org/10.1371/journal.pone.0252050.g005
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demonstrated in the experimental tests. Accordingly, the interaction of the interface element

was modeled adopting the tie constraint description for the smooth and indented surfaces due

to the observed adhesive bond failure. On the other hand, for the transversely roughened sur-

face, the interface failed with the cohesive mode. To model such a condition, the interface ele-

ment was inserted through the concrete topping. Meanwhile, the rough interface for the

concrete-to-concrete bond was modeled as the cohesive interaction instead of an element-

based interfacial description (see Fig 6). To perform the load-interface slip analysis along with

the normal stress, the boundary conditions were applied in the FE modeling step-by-step as

illustrated in Fig 7. In the initial step, the bottom surface of the model was constrained in all

directions. In the first step, both the side surfaces of the concrete topping and concrete base

were restrained. In the second step, normal stress was applied onto the top surface of the

model at 0.5 N/mm2, 1.0 N/mm2, and 1.5 N/mm2 for different normal stress loading condi-

tions. For the control specimen where the normal stress was 0 N/mm2, the top surface was

restrained in the y- and z-directions. In the third step, the load was applied as a displacement,

δ, monotonically in the x-direction until the interface slipped and the loading curve experi-

enced a drop in magnitude. The application of loading on the composite concrete used the

kinematic coupling constraint, in which a large number of nodes (also known as the “cou-

pling” nodes) were constrained to the rigid body motion of a single reference point located

centrally at the side of the concrete topping.

The concrete base and concrete topping were modeled as elastic materials with Young’s

Moduli of 35 kN/mm2 and 31 kN/mm2, respectively, as obtained from the experimental tests.

The concrete base and concrete topping models were meshed using the 3-dimensional solid

elements. The element type employed for the smooth surface specimen was an 8-node linear

bricks (hexahedral) with reduced integration and hourglass control (C3D8R) while those with

indented and transversely roughened surfaces were meshed with 6-node linear triangular

Fig 6. FE models for the composite concrete-to-concrete specimens with various interface types.

https://doi.org/10.1371/journal.pone.0252050.g006
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prism elements (C3D6). The selection of different types of continuum elements was due to dif-

ferences in the surface textures. The 3-dimensional interface element (COH3D8) with zero-

thickness was embedded in the model via shared nodes or tie constraints to connect the con-

crete topping and concrete base.

The CZM parameters were then used to describe the interface shear behavior of the models.

The employed CZM included the constitutive relation between the traction acting on the inter-

face and the corresponding interface separation (displacement or slip at the interface). The

traction-separation law was applied by assuming the isotropic condition in the fracture energy,

in which GIC = GIIC = GIIIC = GTC. The critical fracture energy (GTC) was determined as:

GTC ¼
1

2
� S� d ð4Þ

where S is the peak shear load and δ is the displacement at failure.

The elastic modulus of the traction-separation law was obtained as the initial slope that

relates the interface shear strength to the displacement given as:

Ks ¼
Smax

d
init
s

ð5Þ

The onset interface shear failure takes place when the corresponding interface traction

exceeds its maximum interface shear strength. The model interface shear strength was consid-

ered as isotropic. The damage was assumed to initiate when the quadratic interaction function

containing the interface shear stress (nominal stress) ratios reaches 1.0. The relevant expres-

sion is:

tn
t0
n

� �2

þ
ts
t0
s

� �2

þ
tt
t0
t

� �2

¼ 1 ð6Þ

where tn is the normal traction, ts and tt are the transverse tractions, and t0
n; t

0
s , and t0

t are the

nominal tensile and shear strengths, respectively.

In the analysis, the energy-based Benzeggagh-Kenane (BK) damage evolution criterion

given as:

GTC ¼ GIC þ GIIC � GICð Þ
Gshear

GT

� �Z

ð7Þ

Fig 7. Evolution of the boundary conditions to simulate the loading sequence.

https://doi.org/10.1371/journal.pone.0252050.g007
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was adopted where Gshear = GII+GIII, GT = GI+Gshear, and η is the BK material parameter. For

isotropic failure, GIC = GIIC and η was taken as 1.

The obtained interface properties for the composite concrete are summarized in Table 1.

The interface shear strength and fracture energy are the parameters that control the peak load

of the concrete interface, while the elastic shear stiffness replicates the linear elastic pattern

found in the experimental results.

The refinement meshes for monolithic plain concrete were carried out for all the surface

textures with the element size of 5 mm, 15 mm, and 20 mm. From the converged outcome, an

average element size of 20 mm was considered in all the models. The employed numbers of

nodes and elements for each model are summarized in Table 2.

The horizontal load-interface slip relationship was plotted for each normal stress loading

condition. The interface shear strength was determined from the average maximum value of

all nodes on the interface layer.

Experimental results

Horizontal load-interface slip relationship

The relationships of horizontal load and interface slip in the presence of normal stresses for

different surface textures are shown in Fig 8. It can be noticed that the horizontal load

increases linearly with interface slip until failure. The failure load is described as the peak shear

Table 1. Interface properties for the composite concrete.

Surface Texture Normal Stress (N/mm2) Interface Shear Strength (N/mm2) Elastic Shear Stiffness (N/mm2) Fracture Energy (N/mm)

Smooth 0 0.73 0.48 1.37

0.5 1.51 0.98 2.80

1.0 1.81 0.75 4.12

1.5 2.11 2.02 2.63

Indented 0 1.55 0.70 5.68

0.5 2.55 0.87 5.54

1.0 3.22 0.82 9.78

1.5 3.72 1.14 15.83

Transversely roughened 0 3.78 0.66 25.54

0.5 4.84 1.03 22.14

1.0 6.00 1.38 21.25

1.5 6.51 1.54 26.10

https://doi.org/10.1371/journal.pone.0252050.t001

Table 2. Finite element mesh densities for all models.

Surface Texture Size (mm) Total Number of Elements

Node Continuum Element Interface Element

Smooth 5 141398 126000 3600

15 6615 4800 400

20 3072 2025 225

Indented 5 147681 263880 3720

15 7917 11760 480

20 4000 5490 300

Transverse 5 157746 276960 3600

15 11718 17320 600

20 7296 10620 450

https://doi.org/10.1371/journal.pone.0252050.t002
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load before the breakage of the cohesion bond at the interface [30]. The failure load increases

corresponding to the rise in the normal stress from 0 N/mm2 to 1.5 N/mm2. At the attainment

of the failure load, slipping was developed and eventually resulted in the separation from the

two concrete layers.

After the peak shear load was reached, a linear drop trend can be observed in the load mag-

nitude following the increment of the interface slip, indicating the beginning of interface bond

failure. The corresponding lowest load magnitudes were close to 0 kN for all the specimens

except in some cases depending on the applied normal stress. The state at which the peak load

is attained before the concrete layers are separated is referred to as the pre-crack interface

shear strength. During the early loading process, both the interface slip and the horizontal load

increased gradually under the static friction condition. In this stage, the horizontal load broke

the interface bond by exceeding the pre-crack interface shear strength. The transversely rough-

ened surface specimens recorded the greatest peak shear loads ranging from 311.77 kN to

577.30 kN for all normal stress conditions before the interface bond was broken. This was fol-

lowed by the specimens with the indented surfaces and then those with smooth surfaces with

peak shear loads between 136.73 kN and 335 kN as well as between 60.3 kN and 178.3 kN,

respectively, as exhibited in Fig 9. This implies that although the specimens with indented sur-

faces were cast with corrugated steel, they achieved lower bonding strength when higher com-

pressive stress was applied compared with those with transversely roughened surfaces due to

smooth surface condition in the former specimens. This confirms that the rougher surface tex-

ture produces a comparatively higher interface shear strength.

In the simulation, the damage initiation was computed at the peak shear load while the

propagation was initiated at the softening portion of the curve. It can be seen in Fig 8 that the

softening curve progresses in a decreased manner until it reaches a certain load due to the

Fig 8. Horizontal load–interface slip relationship under various normal stresses: σn = (a) 0 N/mm2, (b) 0.5 N/mm2, (c)

1.0 N/mm2, and (d) 1.5 N/mm2.

https://doi.org/10.1371/journal.pone.0252050.g008
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residual of the applied normal stress. The bi-linear relationship of the traction-separation

behavior is observed as a sudden interface slip jump after reaching the maximum load. This is

then followed by a gradual drop in load with a large increase in the interface slip for all models.

The drop indicates that the interface is broken or damaged.

The comparative differences in the peak shear loads between the FE model and experimen-

tal test are 3.17%, 9.94%, 10.92%, and 4.69% for σn = 0 N/mm2, 0.5 N/mm2, 1.0 N/mm2, and

1.5 N/mm2, respectively. The specimen under σn = 0 N/mm2 shows that its corresponding hor-

izontal load increases linearly with a clear yield. At this point, the plasticity takes place with lit-

tle hardening in following the perfectly plastic properties. In the FE model, the elastic behavior

of the interface layer was assumed as isotropic for the concrete topping, hence, the slight differ-

ence in stiffness between the FE model and the experimental test. However, the linear elastic

behavior of the FE model at σn = 0.5 N/mm2 is close to the experimental test.

The load-deformation curves of transversely roughened specimens show that the peak

shear loads of both the experimental test and the FE model are close to each other with the per-

centages of difference ranging from 1.02% to 3.66%. Meanwhile, the interface slips of the

experimental specimens at peak shear load are 29.36% and 33.02% lower than the FE model.

This is because the surface of the transversely roughened specimen was modeled as cohesive

behavior by assuming that the failure occurred at the concrete topping. However, in the exper-

imental test, the interface between the concrete base and concrete topping can be considered

as having a full bonding.

Interface shear strength. Table 3 shows the resulted interface shear strengths obtained

from both experimental tests (EXP) and FE models. The interface shear strengths for the experi-

ment specimens were calculated using Eq (1) while those for the FE models were extracted from

the average maximum interface shear stress from all nodes on the interface layer. 6% to 29%,

4% to 14%, and 3% to 21% differences are detected between the modeled and experimental

results for smooth, indented, and transversely roughened specimens, respectively. Hence, a

good agreement of the FE models with all experimentally obtained outcomes can be noticed.

Interface failure mode

It was observed that the composite slab failed under the simultaneous actions of normal stress

and “push-off” loadings in two specific modes; adhesive and cohesive failures. The rupture of

Fig 9. Peak shear loads of various interfacial conditions under different normal stresses.

https://doi.org/10.1371/journal.pone.0252050.g009
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the interface bond is referred to as the adhesive failure, in which separation occurs at the inter-

face zone while the chipping of concrete base or topping is referred to as the cohesive failure.

The smooth and indented specimens failed by the adhesive mode where a thin slice of concrete

topping adhesive could be detected on the smooth and indented surfaces as depicted in Fig 10

(A) and 10(B). However, the transversely roughened specimens failed by the cohesive mode

where the failure occurred partially along the interface bond and in the concrete topping as

shown in Fig 10(C). Furthermore, chipping was observed at the concrete base as small pieces

were broken and disintegrated along the interface, which was found to happen slightly more

in the concrete topping than the concrete base. This is because the roughness of the concrete

base held the adhesive better than the concrete topping. The cohesive failure occurred when

the applied horizontal load exceeded the bond strength at the concrete interface.

Numerical analysis

Interface shear stress distribution analysis

Fig 11 shows the interface shear stress evolution and distribution patterns of all models. In

general, the stress patterns of all models are almost the same for all the applied normal stresses.

The magnitudes of the shear elevate corresponding to the normal stress from 0 N/mm2 to 1.5

N/mm2.

In Fig 11(A), the interface shear stresses of the smooth surface model increase steadily until

the 40 mm length. These stresses then start to decrease steadily as the length increases before a

drop in magnitude is more pronounced beginning from 260 mm to 300 mm lengths. An

inspection of the model output confirms that the maximum stress occurred at the edge of the

vicinity of the crack tip nodes in front of the loading point as shown in the deformed shape in

Fig 11(A). The higher stresses at these nodes inflicted the slipping between the two concrete

layers. The crack was initiated at the side of higher stresses. Then, the crack propagated along

with the interface once the stress started to decrease. A sudden failure occurred at the interface

bond when the stress proceeded outside the cohesive zone to the fracture zone.

The interface of the indented model is found to have high stresses at the edge of the com-

posite concrete, which is also at the onset of the crack propagation, as demonstrated in Fig 11

(B). Although the undulations of the surface texture restrained the two concretes from a total

separation, the high stress developed at the undulations between the concrete topping and

Table 3. Interface shear strength from the experimental and modeled results.

Surface Texture Normal Stress, σn (N/mm2) Interface Shear Strength
τFEM
τEXP

τFEM (N/mm2) τEXP (N/mm2)

Smooth 0 0.62 0.87 0.71

0.5 1.28 1.36 0.94

1.0 1.54 1.83 0.84

1.5 1.78 2.40 0.74

Indented 0 1.41 1.64 0.86

0.5 2.31 2.40 0.96

1.0 2.91 3.10 0.94

1.5 3.35 3.88 0.86

Transversely roughened 0 2.93 3.63 0.81

0.5 3.87 4.91 0.79

1.0 4.80 6.22 0.77

1.5 5.21 5.06 1.03

https://doi.org/10.1371/journal.pone.0252050.t003
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concrete base caused the slipping of the interface as shown in the deformed shape in Fig 11(B).

The stress was found to be increasing until the 37.5 mm length. This is likely to be the critical

region for the indented surface before the strength reduction occurred. The stress started to

decrease and increased alternately in a downturn manner under all the considered applied

normal stresses until the 150 mm length. The fluctuation of the interface shear stress was likely

to occur in such a fashion due to the restraint offered by the indented morphology along with

the interface. As the load was increased, a major shear crack was developed and extended from

the loading point to the 150 mm to 193 mm lengths. This caused a sharp drop in the interface

shear stress. However, once the system was re-stabilized, the interface continued to resist the

shear as the stress once again rose sharply until the point of 221.36 mm length, which is at the

highest stress for all considered normal stresses. The strength at the interface began to weaken

as the stress decreased until it made a sharp drop between the 262.50 mm and 300 mm lengths

to complete the crack propagation along the interface.

Fig 11(C) exhibits that the interface shear stresses of the transversely roughened model

increase consistently from the point of loading until the 5 mm length before decreasing at the

10 mm length. At the 35 mm length, stresses decreased slightly and became almost constant

before rising between the 275 mm and 300 mm lengths. The highest stress was observed at 285

mm length due to the roughened surface resistance against the completion of the crack propa-

gation at the interface. The interface layer in the concrete topping broke apart at this stage

Fig 10. Failure mode at the interface regions.

https://doi.org/10.1371/journal.pone.0252050.g010
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Fig 11. Interface shear stress (i) evolution relationship and (ii) distribution at peak shear load.

https://doi.org/10.1371/journal.pone.0252050.g011
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whereby at the end of the crack tip, the roughened surface became distorted. This is supported

by the simulation of the cohesive failure mode of the interface based on the assumption that a

small part of the concrete topping was cut-off close to the interface. Then, the sudden drop in

shear was observed at the end of the 300 mm length. Since the surface was roughened, the fluc-

tuation of high and low stresses depended on the irregularities of the surface in the FE model.

In general, the maximum stresses in all models occurred at the edge of the vicinity of the

crack tip nodes in front of the loading point at 10% of the length along the interface leading to

a slippage between the two concrete layers. Then, the crack propagated along the interface

once the stress began to decrease gradually due to the restraint provided by the surface texture

roughness. Then, a sudden failure occurred in the critical region when the stress went outside

the cohesive zone to the fracture zone at around 90% of the length along the interface.

Conclusions

The ‘push-off’ integrated with the normal stress testing method was employed to study the

interface shear properties of the bonding of concrete base and topping. The composite con-

crete was designed such that the shear failure was the dominating mode. For a detailed under-

standing of the shear stress formation, FE simulation was also conducted.

Based on the findings obtained from the research work, the following conclusions can be

drawn:

i. The failure shear load increased corresponding to the rise in the normal stress from 0 N/

mm2 to 1.5 N/mm2.

ii. The roughness of the top surface of the concrete base influenced greatly the interface shear

strength of the concrete-to-concrete bond, from which the transversely roughened speci-

men exhibited the highest strength as compared with those with smooth and indented

interface with the ranking: Transversely roughened > indented > smooth.

iii. A bi-linear relationship was observed in the horizontal load-interface slip curve for all

interface textures.

iv. The smooth and indented surface textures failed by the adhesive failure mode where a thin

slice of the concrete topping adhesive was observed on the top surface of the concrete base.

However, the transversely roughened surface was dominated by the cohesive failure mode,

in which the concrete chipping was observed on the top surface of the concrete base at

failure.

v. The crack tip edges suffered the highest stress caused by the increase of the interface shear

stress during loading, which resulted in the breakage of the interface bond.

vi. Differences in the interface shear strengths between the FE models and experimental test

specimens were 6% to 29%, 4% to 14%, and 3% to 21% for the smooth, indented, and trans-

versely roughened surfaces, respectively, exhibiting good agreement between the two

approaches.
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6. Santos P, Júlio EN. Interface Shear Transfer on Composite Concrete Members. ACI Structural Journal

2014; 111(1).

7. Mansour FR, Bakar SA, Ibrahim IS, Marsono AK, Marabi B. Flexural performance of a precast concrete

slab with steel fiber concrete topping. Construction and building materials 2015; 75:112–20. https://doi.

org/10.1016/j.conbuildmat.2014.09.112

8. Loov RE, Patnaik AK. Horizontal shear strength of composite concrete beams. The PCI Journal, Chi-

cago IL. 1994;48–69.

9. Mohamad ME, Ibrahim IS, Abdullah R, Rahman AA, Kueh AB, Usman J. Friction and cohesion coeffi-

cients of composite concrete-to-concrete bond. Cement and Concrete Composites 2015; 56:1–4.

https://doi.org/10.1016/j.cemconcomp.2014.10.003
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