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Abstract
Afiber optic sensor formonitoringmercuric (Hg2+) ions in the aqueous sample have been developed
based onmodified cladding. To fabricate aD-shaped sensing zone onto themultimode opticalfiber
lengthwise polishingwas utilized using amechanical end and edge polishing system. The produced
sensing region has dimensions of 10mm×125 μm×62 μm (l×w×h). A 2 μmthin layer of
Al2O3 nanoparticles sensitizedwith 4-(2-pyridylazo)-resorcinol was deposited onto the sensing
element ofmultimodefiber optic sensor tomake it sensitive and selective forHg2+ ions. The analytical
results demonstrate that the sensing device has a linear response forHg2+ ions concentration over a
range from4 to 16 ppmalongwith a 4 ppm limit of detection in an aqueous sample at room
temperature. The selectivity of the sensor is examined for the recognition ofHg2+ ions in presence of
other cations such as zinc and/or lead ions up to 16 ppm in an aqueous solution. Themainmerits of
this fabricated sensor are easy and safe installation, rapid response, enhanced linear response range,
and better selectivity towardsHg2+ ions.

1. Introduction

Metals alongwith their corresponding ions are abundant.Man-made exploitations have reformed and impeded
natural cycles and cause to liberate of themetal ions in aquatic andworldly systems. Certainly, heavymetals are
important for human health aswell as for other organisms.

In contrast, certain heavymetals and their ions are often extremely toxic ormay cause significant health
effects, with a very limited dosage of thesemetals or ions [1–4]. Therefore, it is crucial tomeasure the exact
amount ofmercury and other toxic elements in various earth’s atmosphere including rocks, soils, air, water,
plants, animals, and even humans. Conventionally, electrochemical analysis [5–7], mass spectrometry [8–10],
atomic absorption spectrometry [11, 12],fluorometry [13–15], luminescence spectroscopic techniques [16–18]
are applied to detect the analyte in the sample of concern. Indeed, there is a significant challenge that remains
around the research community despite the tremendous analytic progress ofmetal ions detection, and efficient
assessment [19–21]. Besides, themajority of analytical techniques irrespective of themode andmedia of
application, the evolvingworking conditions demandmore sensitive, swift, rapid, and selective sensing
devices [22, 23].
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During recent years, fiber optic sensors have gained escalating interest in the field of chemical, biochemical,
and environmental science applications due to their potential tomonitor analytes in real-time and in situwith
minimum interruption to samplewith higher sensitivity and desire selectivity.Moreover, the immune to
electricity in the sensing systemoffiber optic chemical sensorsmakes themmore suitable towork in a harsh
environment [24–26]. In principle, optical fibers are insensitive to the external environment and are designed to
transfer data without affected by an external environment. Researchers working on optical fiber sensors have
proposed various techniques tomake an opticalfiber sensitive to its surrounding environment [27–29]. Among
them, one of the common techniques is to remove a certain portion of cladding so that the core is prone to the
external environment. Consequently, alteration in the surroundingmediumbeing sensedwill cause a
predictable change in light transmission characteristic of output light signals. Traditionally heat and pull
technique [30] and chemical etching technique [31]. The sensing produced through the heat and pull technique
is highly sensitive to the external environment. From a practical point of view, the huge loss of light signal and
extremely fragile structuremake these devices less suitable. On the other hand, unwanted residual cladding and
poor surface roughness aremajor setbacks of the chemical etching technique. Alternatively, CO2 laser or
femtosecond lasermachining can be used to produce a sensing zone onto the opticalfibers [32–34]. In general,
CO2 lasermachining can be used to strip the cladding of plastic optical fiberwith desired dimensions. However,
CO2 lasermachining cannot be used to produce a sensing zone onto the silica-based optical fibers. The
femtosecond laser pulse is utilized to fabricate theD-shaped zone onto the silica-based opticalfibers [32].
However, the lend of the sensing zone of the fabricated device was only 1 mm,whichmakes this reported device
less suitable for sensing applications.

In this work, amodified claddingD-shapedfiber optic sensor is presented for the successful detection of
mercuric ions concentration in an aqueous solution. A sensing zonewas produced onto themultimode optical
fiber using the side polishing technique. Themainmerits of the side polish technique are safe, fast, irrespective of
thematerial of the optical fibers. This technique can be used to fabricate the sensing zone of all kind of optical
fiber (e.g., plastic or silica-based opticalfibers), the surface roughness of the sensing zone can also be control by
choosing appropriately sized aluminumoxide polishing film andfinally the dimension of the sensing zone also
controllable. A thin film of aluminumoxide nanoparticles was employed asmesoporous transparent supports
for 4-(2-Pyridylazo)-resorcinol (PAR), which acted as a sensingmembrane. The performance of the sensor for
different levels ofmercuric ions concentration in the sample is analyzed. The turn-onmethodwas applied to
evaluate the response time of the sensing device. The performance offiber optic chemical sensors (FOCS) has
also been examined in presence of other potentialmetal ions (zinc and lead).Moreover, a comparative analysis
of the present results alongwith previous studies from the literature indicated ameasurable advancement in
detection technology.

2. Fabrication ofD-shapedfiber optic sensor

ULTRAPOL end& edge polishing system (model 3690.1) together with 30μm layer of aluminumoxide
polishing filmwere employed to fabricate D-shaped sensing region of 62.5/125multi-mode fiber. The edge and
ends of thewaveguide were polished using a designed customdie. Sincemechanical alterationwas required to
polish along the length of optical fiber. In order to generate aD-shaped sensing zone obtained by the lengthwise
polishing of opticalfiber, cast acrylic sheets were used for designing and fabricating the customdie.

Figure 1. Schematic illustration of a polishing system.
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A schematic illustration of the polishing systemwith arrowed lineswhich shows the pathway of opticalfiber
in die is shown infigure 1. The angle between the tangential line of the polished end of dye and incoming light or
light out ends is denoted as ‘θ’. A light bluewith a rectangular-shaped layer is a customized die with a dimension
of 5.0 cm×1.0 cm×0.5 cm. It wasmade of a cast acrylic sheet and placed on the surface of aluminumoxide
polishing film.Multimode opticalfiber is threaded through both holes of the die and tightly fastenedwith
cellophane tape to the upper surface of the die to avoidmalposition during the entire polishing process.

It is essential to have a strong contact between the polishing film and the surface that ismeant to be polished.
Hence, a special holding stripwas utilized in the center of the die structure. In order to have various angles
concerning the horizontal plane between 20° and 45°, two tiny holes were drilledwith the desired distance
between themon the polished side. Both holes were drilledwith a diameter of 1 mmeach approximately. For the

Figure 2.Conceptual illustration ofD-shaped opticalfiber sensor.

Figure 3.Power loss of each polishedMMF (during and after the polishing process), three sets of singleMMF (each set contains 5
optical fibers)were polished until transmission power loss was reached at 2 (±0.02), 4 (±0.02), and 6(±0.02) dB, respectively.

Figure 4.Average transmission power loss as a function of residual cladding on the polished surface of D-shapedMMF.
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sake of optimumperformance during the polishing process, the variation angles we re-tested. The systemused
has the capability of polishing awaveguide surface up to 8 inches in length. It was observed that the length of the
polishing surface with an angle lower than 20° is not capable tomaintain stresses resulting from the rotatory
motion of the polishing disk below and slowly causes the fiber to break. Needlessly, the length of the polishing
surface rises beyond the aforementioned range. Similar results were observed for angles higher than 35°.
Nevertheless, it was found that the angle at 30°was themost appropriate for the optimumpolishing
performance.

A conceptual illustration ofD-shaped optical fiber is illustrated infigure 2.Where l andw are the length and
width of the polished surface, respectively. Three sets of singlemulti-mode opticalfibers were polished until the
transmission power loss of eachfiber set was at−2±0.02,−4±0.02, and−6±0.02 dBm, respectively. The
prepared set ofmulti-mode opticalfibers contained 5 opticalfibers. Each fiber from each set was polished
separately and its power transmissionwasmonitored in real-time and in situ throughout the entire polishing
process. The power transmission loss of each polishedfiberwas recorded during and after the polishing process,
as shown infigure 3. Readings after the polishing process were taken by unplugging the optical fiber from the
polishing system. Table 1 summarizes the average transmission power loss as a function of residual cladding on
the polished surface ofD-sectormulti-mode optical fibers during and after the polishing process, while figure 4
is a graphical presentation of table 1.Where 0 residual claddingmeans thefiber is polished at the edge of the core
andminus signmeans the core of the fiber is polished.

3. Chemicals

All reagents usedwere of analytical grade and employed as purchased regardless ofmore purification.Mercury
(II)nitratemonohydrate (Hg(NO3)2·H2O), Zinc nitrate hexahydrate(Zn(NO3)2 · 6H2O), Lead (II)nitrate
(Pb(NO3)2), Potassium iodide(KI), Nitric acid (HNO3), Sulfuric acid (H2SO4), Buffer Solution (pH7)were
purchased fromMerck.While 4-(2-Pyridylazo)-resorcinol (PAR), Aluminumoxide nanoparticles (Al2O3)
(50–60 nmparticle size (TEM), 20wt.% inH2O), andHydroxypropyl cellulose were bought fromSigma-
Aldrich.Doubly distilled water (DDW)was used throughout this work.

4. Preparation and deposition of sensingmembrane onfiber optic sensor

Thin-film of Al2O3 nanoparticles was employed asmesoporous transparent supports for PAR. The sol-gel
methodwas adopted for the synthesis of sensingmembrane proposed by J.P.Hernández et al [35]. The dip-
coating techniquewas employed to deposit the sensingmembrane onto the sensing region ofMMF. The
preparation process was divided into threemain phases. In the first phase, the paste was prepared, followed by
the deposition of the prepared paste onto the sensing element ofD-shapedmulti-mode fiber and annealed.
D-shapedMMFwas treated inH2SO4 and indicator dyewas immobilized onto the sensingmembrane and hence
fabrication of the fiber optic chemical sensorwas completed.

The sol-gelmethod is as follows: A 15 ml of Al2O3 colloidal suspension and 0.35 g of hydroxypropyl cellulose
weremixed slowly in aflask under vigorous stirring. Thismixture was stirred for seven days at 65±3 °C.
Afterward, the resulting paste was let to be cool down and stored in the refrigerator until required for the further
process. The reaction conditions and themorphology of the filmswere studiedwell and reported [35, 36].

For the sake of proper viscosity, at the time of deposition onto theD-shapedMMF, each 0.5 g preparedAl
paste was diluted into 0.6 ml of absolute ethanol and dip coating techniquewas adopted. A robotic armwas used
for the dipping process. The up/down velocity of the robotic armwas varied from5 μmto 35 μmper second
depending upon the viscosity of the paste. To ensure reproducibility a thin layer of 5 μmof paste was deposited
onto the polished surface ofD-shapedMMF.During the deposition process,microscopicmeasurements were
continuously taken after every 2 to 3 cycles of coatings. Before taking eachmicroscopicmeasurement, the

Table 1.Power loss as a function of the residual cladding.

Operating

wavelength (nm)
Input optical

power (dBm)
AverageOptical power loss (dB) Length of the

sensing zone

Residual

cladding (μm)
During polishing

process

After polishing

process

1550 nm 12 dBm 2(±.02)dB 1.68 dB 10 mm ≈ 2μm

1550 nm 12 dBm 4(±.02)dB 3.58 dB 10 mm ≈ 0μm

1550 nm 12 dBm 6(±.02)dB 5.72 dB 10 mm ≈−1μm
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D-shapedMMF sensor could dry at room temperature for 5 min. As 4 μmthis thin layer of paste is deposited
onto theD-shapedMMF, it was annealed at 450 °C for 90 min for solidification purpose of the paste. After
solidification at 450 °C, the thickness of the deposited filmwas found about 2 μm.Thefiberwas treated in
H2SO4 at pH 1 for 20 min and let dry at 125 °C for 90 min, to enhance the stability of the sensingmembrane. For
the immobilization of the indicator dye onto the sensingmembrane, the sensorwas immersed in 0.3 mMPAR-
ethanol for 15 to 45 min.

5. Experimental setup

A schematic diagramof the experimental setup formodified claddingD-shapedMMF sensor forHg2+ ion in
aqueous solution has been represented infigure 5. Awhite light source (DH-2000OceanOptics)with a
wavelength range of 200–2500 nmwas used as a light source. The light sourcewas connected to one endfiber
sensor, while the other end of the optical fiberwas connected to thefiber optic spectrometer (HR4000GC-UV-
NIR, ocean optic) and the spectrometer was also connected to the computer for onlinemonitoring purpose. The
sample solutions were the aqueous solutionswith variousHg2+ ion concentrations (2 ppm to 30 ppm). All
sample solutions were prepared in the laboratory. The aqueous solutionswith various concentrations of lead
and zincwere also prepared in the laboratory to study the selectivity of the sensing device. Ocean-view (ocean
optic) software version 1.4.1was installed in the computer system for onlinemonitoring.

6. Results and discussion

First, a non-sensitizedmodified claddingD-shapedMMF sensor was estimated by immersing intoDDW, once
the optical single was stable the optical intensity of blankwaterwasmeasured, and, subsequently, 4 ppmof

Figure 5. Schematic diagramof an experimental setup forD-shapedMMFMercuric ion sensor.

Figure 6. Intensity counts for the sensor after 15-, 30- and 45-minutes’ time immersing in dye-ethanol solutions.
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Hg2+ionswere added. It was found that there was no change in the optical signal, for the concentration ofHg2+

ions up to 30 ppm inDDW.Therefore, it was anticipated that spectral change in optical single recordedwith
sensitizedmodified claddingD-shapedMMF sensorwill not because of the change in RI ofDDwdue toHg2+

ions exposure.

Figure 7. (a) Intensity counts as a function of the sensor’s response with various concentrations ofMercuric ion in the sample
(sensitization time 15 min). (b) Intensity counts as a function of the sensor’s responsewith various concentrations ofMercuric ion in
the sample (sensitization time 30 min). (c) Intensity counts as a function of the sensor’s responsewith various concentrations of
Mercuric ion in the sample (sensitization time 45 min). (d)The absorption as a function of sensor’s responsewith various
concentrationsMercuric ion solutions (sensitization time 30 min).

Figure 8.The absorption as a function of sensor’s responsewith various concentrationsMercuric ion solutions (sensitization time
45 min).

6

Eng. Res. Express 3 (2021) 025001 HHQazi et al



The immobilization time of indicator dye has a significant effect on the optical properties of the sensor as it
has a direct influence on the response time and dynamic range of the sensor [37]. To investigate the optimal
immersed time, the Al coatedD-shapedmultimode FOCSswere immersed in 0.3 mMPAR- ethanol solution for
15-, 30- and 45-minutes time intervals at room temperature. Then each FOCSwaswashedwithDDw so that any
excess of indicator dye on the sensingmediumwould be eliminated. Figure 6 presents the intensity counts for
the sensor after 15, 30, and 45 min of immersing in dye-ethanol solutions. From the experiment, it was found
that sensitization time of 30 and 45 min provide amore suitable spectral to examine the sensor’s performance
forMercuric ion concentration in aqueous solutions. As shorter sensitization time (15 min)had poor spectral
changes and shorter dynamic range.

The sensor exhibited remarkable spectral changewhen it was exposed to various concentrations ofHg2+

ions solutions pH7. Figures 7(a)–(c) demonstrate intensity counts as a function of sensing devices’ response
when FOCSswere exposed to the various concentrations ofMercuric ion solutions after sensitization times of
15, 30, and 45 min, respectively. Depending upon the concentration of the analyte (Hg2+ ions) in the sample,
light propagating inside the sensingmembranewas partially absorbed, and the rest refracted back into the core
[35]. The highest peak at 656 nmwas observed, whichwas set up reference value to estimate the change in
absorption as a function of FOCS response against the various concentration ofHg2+ ions in the sample.
Figure 7(d) andfigure 8 presents the absorption as a function of sensor response for the various concentration of
Hg2+ ions at 656 nm. The concentration ofHg2+ ionswas varied from4 ppm to 20 ppm in aqueous solutions.
To estimate the response time of theD-shapedmultimode FOCSswere immersed in 0.3 mMPAR- ethanol
solution for 45 min at room temperature absorptionwas taken as a function of sensor response for the various
concentration ofHg2+ ions at 656 nm. The concentration ofHg2+ ionswas varied from4 ppm to 20 ppm in
aqueous solutions. The response of the sensor was recorded after every 30 s for 5 min. Figure 9 presents
absorption as a function of the sensor’s response timewhenwas expose to the various concentrations ofHg2+

ions solutions. The absorptionwas almost exponentially increased in the firstminute of exposure to theHg2+

ions, after work it is gradually stable. Finally, there is no change in an optical single after about 4 min of exposure
to theMercuric ion. Therefore, the sensor response time is 4 min.

Figures 8 and 9 demonstrate the variation in absorption versus various concentrations ofHg2+ ions in the
sample solutions. It was found that an increase inHg2+ ions concentration in sample solutions causes a linear
increase in absorption and hence fabricated FOCS has a linear response forMercuric ion concentration ranges
from4 ppm to 20 ppm in aqueous solutions. The gradient of 0.97 linear responsewas determinedwhen it was
sensitized for 45 min in 0.3 mMPAR-ethanol solution and it was 0.84when it was sensitized for 30 min in the
same solution. The selectivity of the sensor was also determined by adding Zn(NO3)2· 6H2O) and (Pb(NO3)2)
ions in the sample solutions. The absorption of the sensor was alsomonitored in presence of 16 ppmHg2+ ions
by adding Zn(NO3)2· 6H2O) and/or (Pb(NO3)2) ions up to 16 ppm respectively, in the sample solution. It was
found that the presence of Zn(NO3)2 · 6H2O) and/or (Pb(NO3)2) ions does not affect the output signal. It was
concluded that the sensor has selectivity and sensitivity only towardsHg2+ ions in the samples of concern.

Besides the sensitivity and selectivity, reversibility of the analyte binding is another important characteristic
of the sensing device. In fact, the reversibility of analyte binding determines whether the singing device is
disposable (1time use) or it is a reusable device. To analyze the reusability of the reported sensor, first Al coated
D-shapedmultimode FOCSwas immersed in 0.3 mMPAR- ethanol solution for 45 min at room temperature.
Afterward, absorption is taken as a function of sensor response for 16 ppm concentration ofHg2+ ions at
656 nm. To extract Hg2+ ions from the sensing film, FOCSwas immersed in 0.5 mMKI-solution for 5 before
taking the sensor’s response at the same operating wavelength. Figure 10 represents the successive reversibility

Figure 9.The absorption as a function of sensor’s response timewith various concentrationsMercuric ion solutions (sensitization
time 45 min).
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Table 2.Comparison of the presented FOCSwith reported optical chemical sensor for the determination ofMercuric ions.

Analyte Reagent or indicator Sample

Linear

response range LOD pH Selectivity

Response

time (mins)
Detection

method References

Hg2+ Styryl (1,4,7,10-tetrathia-13-azacyclopentadecanyl)
methyl coumarin (STAMC)

Aqueous

solutions

0–28 μM 0.15 μM 7 Highly Selective 11 min Fluorescence turn-on [38]

Hg2+ Acenaphtoquinoxaline Aqueous

solution

2–4 ppm 40 ppb — Selective — Fluorescence turn-on [39]

Hg2+ CdSe/ZnSQD Aqueous

solution

1–1000 nM 1 nM 7 Less selective 2 min Fluorescence [40]

Hg2+ Ag-Fe bimetallic- 3-(Trimethoxysilyl) propyl
methacrylate

RiverWater 10–50 nM 1.8 nM 5 Selective — Absorption [41]

Hg2+ Rh–3 S Aqueous

solution

2–80 μM 2 μM 7.3 Highly Selective — Absorption/

fluorescence

[42]

Hg2+ Glucose capped silver nanoparticles (AgNPs) TapWater 2–200 ppb 5 ppb — Highly Selective 13 min Absorption [43]
Hg2+ silver nanoparticle (CAgNP) Aqueous

solution
10–50 μM 10 μM 9 Selective 5 min Absorption [44]

Hg2+ Chitosan (CS)/poly acrylic acid (PAA) Aqueous
solution

0–100 μM&
100–500 μM

0.0823 nm/μM&
0.017 nm/μM

5.41–10.51 Less selective in the
presence of Ag+ and

Fe3+

40 min Reflection [45]

Hg2+ Rhodamine 6 G Aqueous

solution

10–200 ppm 1ppm — N/A — Absorption [46]

Hg2+ (PAH/PAA+AuNPs)n Aqueous

solution

1–20 ppb 0.7 ppb 7.6 Less Selective — Localized Surface

PlasmonResonances

[47]

Hg2+ Gold nanoparticles (AuNPs) Aqueous

solution

1–30 μM 0.52 μM 3 Less selective 10 min Localized Surface

PlasmonResonances

[48]

Hg2+ polyelectrolyte (PE)- gold nanoparticles (AuNP) Aqueous

solution

2–5 ppm — — N/A 10 min Changes in the sur-

rounding refractive
index

[49]

Hg2+ bis(2,2-bipyridyl-4,4-dicarboxylate) ruthenium
(II) bistetrabutylammoniumbis-thiocyanate

Aqueous
solution

2 ppm to 6 ppm 2ppm 7.0 Selective 5 Absorption [35]

Hg2+ PRA Aqueous
solution

4 ppm to 16 ppm 4ppm 7.0 Selective 5 Absorption This work
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cycles by alternatively immersed FOCS in 16 ppm concentration ofHg2+ ions and 0. 5 mMKI-solution, while
immersed in each solutionwas 5 min beforemonitoring the sensor’s response. It is observed the sensitivity of the
FOCSHg2+ is gradually decreased after each reversible process.

The analytical results obtained from the researchwere also compared to the previously published analytical
results in the literature. Table 2 represents prominent factors including (a) analyte of concern (b) reagents and
indicators, (c) immobilizationmaterial (if any), (d) sample or solution inwhich analyte was analyzed, (e) linear
response range, (f) limit of detection, (g)working pHvalue or range inwhich sensor’s performancewas
optimized, (h) response time and (i) detectionmethod, irrespective to sensing scheme employed to determine
theMercuric ions in the sample. It is clear from the cited literature that all these devices are struggling to achieve
sensitivity and selectivity simultaneously, without compromising on response time. Themost sensitive device
was based on bis(2,2-bipyridyl-4,4-dicarboxylate) ruthenium(II) bistetrabutylammoniumbis-thiocyanate [35].
But this reported device has a very short range of limit of detection i.e., 2 ppm to 6 ppm, only. It can also be seen
in the table thatmost of the reported devices are also suffering from less selectivity. It is evident from the table
that the sensor presented by this study has enhanced sensitivity towardsHg2+ ions in an aqueous solution.
Moreover, the sensor described here has an enhanced dynamic range i.e., 4 ppm to 16 ppmwhichwas about
170% enhanced to some of its competitors as shown in table 1.

7. Conclusion

In this work, aD-shapedMMFFOCS formonitoring the concentration ofHg2+ ions in an aqueous solution
were introduced. To fabricate aD-shaped sensing zone onto themultimode opticalfiber lengthwise polishing
was utilized using amechanical end and edge polishing system. A 2 μmthin layer of Al2O3 nanoparticles
sensitizedwith 4-(2-pyridylazo)-resorcinol was deposited onto the sensing element of FOCS tomake it sensitive
and selective forHg2+ ions. The analytical results demonstrate that the reported sensing device has a linear
response forHg2+ concentration over a range from4 ppm to 16 ppmalongwith a 4ppm limit of detection in
aqueous solutions at room temperature. In addition, this linear response range is about 170% enhanced
compared to some of its competitors. Furthermore, the selectivity of the sensor has also been examined for the
determination ofHg2+ ions in presence of other cations such as Zn(NO3)2 · 6H2O) and/or (Pb(NO3)2) ions up
to 16 ppm in an aqueous solution sample. Themainmerits of this reported sensor are easy and safe fabrication,
rapid response, enhanced linear response range, and better selectivity towardsHg2+ ions.
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