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ABSTRACT 

 

 

 

The uniaxial ratchetting characteristics of fibre glass reinforced epoxy 

laminate have been investigated in the present project. The specimens were subjected 

to cyclic axial stress with a constant mean stress of 40 MPa and a varying amplitude 

stress of 26.67 MPa and 53.33 MPa. Tests were also performed on 50 mm diameter, 

Glass fibre Reinforced Epoxy (GRE) straight pipe. The pipe was subjected to a 

constant internal pressure of 1.875 MPa and a cyclic axial load. The finite element 

model in ABAQUS has also been simulated in similar loading case. The comparisons 

between experiment and simulation results were observed. The effect of fibre 

orientation on the rate of ratchetting was also investigated at the present project. The 

uniaxial and biaxial ratchetting strain was observed to increase with a number of 

cycles but decreased the rate of ratchetting. The specimen showed no further 

ratchetting rate and exhibited shakedown after some strain accumulation.  On the 

basis of experiment and simulation, it appears that ratchetting would occur in the 

circumferential direction for a composite pipe subjected to constant internal pressure 

and cyclic displacement with no ratchetting observed in axial direction. A direction 

in fibre orientation seemed to have effect on the rate of ratchetting. Thus, the 

increasing of fibre angle from the axial load axis will increase the rate of ratchetting. 
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ABSTRAK 

 

 

 

Perilaku ratchetting satu paksi ke atas laminat fibre glass reinforced epoxy 

telah dikaji dalam projek ini. Spesimen ini dikenakan tegasan paksi berkitar pada 

tegasan min malar 40 MPa dan tegasan amplitud 26.67 MPa dan 53.33 MPa. Ujian 

ke atas paip lurus jenis Glassfiber Reinforced Epoxy (GRE) berdiameter 50 mmm 

turut dijalankan. Paip ini telah dikenakan tekanan dalaman 1.875 MPa secara malar 

dan kitaran terikan paksi. Simulasi kaedah unsur tak terhingga menggunakan 

ABAQUS juga telah dilakukan dengan aplikasi beban yang sama. Perbandingan 

keputusan daripada eksperimen-eksperimen dan simulasi-simulasi turut dianalisis. 

Kesan arah orientasi fiber ke atas kadar ratchetiing juga dikaji dalam projek ini. 

Terikan ratchettting sepaksi dan dwipaksi menunjukkan pertambahan dengan 

bilangan kitaran tetapi kadar ratchetting berkurang. Spesimen menunjukkan tiada 

lanjutan ratchetting dan berlaku shakedown selepas beberapa pengumpulan terikan. 

Berdasarkan eksperimen dan simulasi, ia menunjukkan ratchetting hanya berlaku 

dalam arah lilitan paip komposit tersebut apabila dikenakan tekanan dalaman secara 

malar dan kitaran terikan paksi dengan tiada ratchetting berlaku dalam arah paksi 

paip. Arah dalam orientasi fiber juga memberi kesan ke atas kadar ratchetting. 

Pertambahan sudut fiber dari paksi arah beban akan meningkatkan kadar ratchetting. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Introduction 

 

Piping networks are often employed in various industrial applications. Generally, 

piping systems in heavy industries such as power plants, offshore platforms, marines etc. 

are designed for normal operation loads (pressure) along with cyclic loads, such as 

earthquake. Cyclic excursions into the plastic range can lead to degradation and failure 

of such piping due to accumulation of deformation. The strain accumulation induced by 

cyclic loading is called ratchetting. Ratchetting can be either due to thermal processes or 

due to mechanical cyclic loading. In the present project, however, only mechanical 

ratchetting has been investigated. 

 

Prevention of ratchetting is a difficult problem in the design of a component 

subjected to cyclic loads that may lead to inelastic deformation. During such loading, 

material and structural aspects interact. Large deformation of a piping system is possible 

under combination of primary (constant) and secondary (cyclic) loads. In such a case, a 

small amount of plastic strain, which is not reversed in each cycle, may lead to 

unacceptably large accumulated strain.  
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1.2 Problem of Interest 

 

There are numerous studies on ratchetting behaviour. In the last two decades, 

uniaxial and biaxial ratchetting behaviours were studied experimentally and theoretically 

by some researchers, as reviewed by Ohno (1997), Bari and Hassan (2002)  and Abdel-

Karim (2005) and recently done by Chen et al. (2004), Kang et al. (2004), Feaugas and 

Gaudin (2004), Mayama et al. (2004), Vincent et al. (2004), Abdel-Karim (2005), Gupta 

et al. (2005), Johansson et al. (2005), Khoei and Jamali (2005),Yaguchi and Takahashi 

(2005) and so on. The existing results showed that the ratchetting varies depending on 

the material type. Based on the Armstrong–Frederick non-linear kinematic hardening 

rule (1996), many constitutive models have been constructed to simulate the uniaxial 

and biaxial ratchetting. Examples of these models have been created by Chaboche and 

Nouailhas (1989), Ohno and Wang (1993), Chaboche (1994), Delobelle et al. (1995), 

Jiang and Sehitoglu (1994), Abdel-Karim and Ohno (2000), Kang et al. (2002), Gao et 

al. (2003), Vincent et al. (2004), Yaguchi and Takahashi (2005), Chen et al. (2004) and 

so on. The above-referred works were only focused on the ratchetting behaviour and its 

constitutive model on metallic material. 

 

Ratchetting behaviour has also been observed in polymer materials, such as 

epoxy resin and Chen and Hui (2005) conducted series tests to study the ratchetting 

behaviour of PTFE under cyclic compression load, where the effects of loading rate, 

mean stress and stress amplitude on the ratchetting behaviour were discussed.  

 

However, researches on ratchetting behaviour of composite materials are still 

relatively few. More investigations are necessary for in-depth understanding of the 

ratcheting phenomenon of these materials. More recently, composite pipes has further 

gained its importance in the offshore oil and gas industry due to its light-weight, 

corrosion resistance, and the new invention of Tension Leg Platforms (TLPs) for deep-

water oil and gas exploration and production. Since the composite pipe is very important 

in the design and assessment of structure components, it is necessary to examine the 

ratchetting response of composite pipe. In order to understand the ratchetting behaviour 



 

 

3

for composite pipe, an experimental and simulation study was performed based on the 

similar experiment set-up for metallic material which already investigated previously.  

 

 

 

1.3  Research Objectives 

 

The objectives of this research project are: 

 

a) To derive the mathematical model for ratchetting rate of metallic 

material. 

b) To obtain the ratchetting rate of metallic material using finite element 

program (ABAQUS).  

c) To investigate the ratchetting behaviour of fibre glass reinforced epoxy 

plate and pipe experimentally.  

d) Validate the experiment results with finite element program (ABAQUS). 

e) To investigate the effect of fibre direction to ratchetting rate of composite 

materials. 

 

 

 

1.4   Scope of Research 

 

In this work, the main objective is to investigate the ratchetting behaviour of 

fibre glass reinforced epoxy. First, the dependence of the ratchetting of metallic 

materials on mean stress, stress amplitude and stress ratio are observed. When the 

ratchetting response of a metallic material is sufficiently understood and simulated, the 

ratchetting of the fibre glass reinforced epoxy are investigated in similar loading cases 

by performing a systematic experiment and simulation. Then, the verification between 

experiment and finite element simulation is discussed in detail. Finally, the effect of 

fibre direction to ratchetting rate of composite material is investigated. 




