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A B S T R A C T   

Microbes such as Escherichia coli (E. coli) can easily contaminate raw chicken meat in clean conditions, causing 
decay and unpleasant scents. This study aims to characterize gas patterns by comparing fresh chicken meat and 
E. coli bacteria contaminated chicken meat based on shelf life using a Gas Sensor Array (GSA) system (MQ2, 
MQ3, MQ7, MQ8, MQ135, and MQ136) on electronic nose. The findings revealed GSA capability to detect a 
variety of typical gas patterns formed by the samples. This gas detection property is indicated by the appearance 
of the variance in the sensors output voltage pattern for each sample variation. The data for fresh and 
contaminated samples were classified by the random forest (RF) classifier with 99.25% and 98.42% precision, 
respectively. Furthermore, the support vector machine (SVM) classifier correctly identified the fresh and 
contaminated samples with 98.61% and 86.66% accuracy, respectively. This finding offers insight for GSA 
capability in classifying chicken meat contaminated with E. coli using an RF and SVM.   

1. Introduction 

The consumption of chicken meat, especially broiler is increasing 
every year. However, this increasing consumption rate is not followed 
by improvement in the quality control system of chicken meat produc-
tion. In traditional markets chicken meat is sold uncovered, exposed to 
ambient air at room temperature and not thoroughly cleaned or washed, 
so it is easily contaminated with bacteria (Hygreeva and Pandey, 2016). 
The pH value in sliced chicken muscles is about 7.0 and it decreases 
during anaerobic glycolysis (postmortem glycolysis) process. After rigor 
mortis, the chicken meat pH value becomes 5.5–6.4 and the final opti-
mum pH value in acceptable chicken meat fall between 5.5-5.9. Meat 
that contains water, is rich in nitrogen and having acidic pH can be a 
suitable growth medium for microorganisms such as bacteria (Hygreeva 
and Pandey, 2016). The maximum limit of microorganism contamina-
tion in chicken meat is 1 × 106 CFU/g. 

Chicken meat (poultry) is highly potential to be infected by Escher-
ichia coli (E. coli) (O157: H7), which is a pathogenic microorganism 
causing hemorrhagic enteritis in human (Astuti et al., 2019a,b). This 
contaminated meat can lead to several diseases such as diarrhea, dys-
entery, kidney and bladder infections, as well as pneumonia and men-
ingitis (Oliver, 2019; Pradhana et al., 2020). Meat contamination can 
happen through the transfer of fecal pathogens originating from feces or 
digestive tract into muscle tissue during cutting process. Meat damage or 
decay is characterized by the presence of fishy, rancid or other un-
pleasant odors and so called off odor (Bueno et al., 2013). This decay is 
also followed by the formation of sticky mucus on the meat surface from 
the production of dextran, exopolysaccharides or the growing microbe 
cells. The color change in chicken meat is caused by hydrogen sulfide 
(H2S) production during poultry meat microbes decay (Smolander et al., 
2002). In other studies, it is stated that the color changes in decayed 
chicken meat were occurred due to the presence of CO and N (Salinas 
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et al., 2012). 
The frequently used conventional method for meat damage and 

spoilage testing is the Eber test. This test gives a qualitative result in the 
form of gas output on the tube wall, where the amino acid chain will be 
broken by strong HCl acid so that NH4Cl (gas) will be formed. It is also 
known that fresh, cold, and frozen meat will not produce NH4Cl after 
being tested using Eber solution since there is no NH3 gas production 
(Premarathne et al., 2017). Meanwhile, decayed meat will emit white 
gas (NH4Cl) because it produces NH3 which indicates the presence of 
E. coli bacteria. The Eber test is less practical since it requires additional 
HCl to break down amino acids and it is not real-time. To overcome this 
problem, practical instruments and methods should be used to generate 
faster data analysis, then it leads the researchers to develop an Elec-
tronic nose (e-nose) system. 

E-nose olfactory system has been developed and used in various 
fields. This system is useful, among others, in testing the quality of food 
products, namely (i) monitoring process, (ii) determining shelf life, (iii) 
evaluating damage, (iv) evaluating toxicity and (v) quality control 
studies (Peris and Escuder-Gilabert, 2009). The disadvantage of E-nose 
is its inability to display information about the compounds in the sample 
as offered by the GC/MS analysis technique. This system is based on a 
comprehensive approach called ‘electronic volatile fingerprinting’ 
(O’Sullivan et al., 2003). 

In the food industry, e-nose can be used as odor identification to 
monitor production processes, such as detecting pathogenic fungi that 
attack strawberry crops (Pan et al., 2014). Arshak’s research in 2004 
proved that e-nose is able to sense the existence of microorganism 
pollution in food products, by sensing the odor patterns result coming 
from the organism’s metabolic processes (Arshak et al., 2004). In 2015, 
Triyana succeeded in making a gas sensor that detects the aroma of 
tempeh during fermentation to verify the tempeh aroma profile related 
to microorganisms growth (Triyana et al., 2015). Based on its advan-
tages, which are rapid and non-destructive detection, the e-nose has 
been widely used in many types of meat evaluation (Wijaya et al., 2017). 
Whereas in medical field, e-nose is also able to detect bacterial biofilms 
that cause many oral diseases, such as Streptococcus mutans (Astuti et al., 
2019a,b). 

In recent years, the development of electronic sensor technology 
such as electronic tongue and e-nose has shown favorable application for 
pattern detection in daily life (Wojnowski et al., 2017). This study aims 
to characterize the fresh chicken meat and E. coli bacteria contaminated 
chicken meat based on the shelf time by using gas sensor array (GSA) 
system on the e-nose. 

2. Material and methods 

2.1. E. coli specimen 

Specimens of E. coli were acquired from Central Health Laboratory 
Surabaya, Indonesia. Bacteria cultures on Trypticase Soy Agar medium 
(Merck) were added to 10 mL of Trypticase Soy Broth (Merck) medium 
and shaken to give an optical density of 0.5 McFarland (10− 13 CFU/mL). 
Then the liquid culture was stored at 37 ◦C temperature for 24 h. Af-
terward, bacterial density was measured using an ELISA reader (λ = 480 
nm). 

2.2. Chicken meat preparation 

One Kg of broiler chicken meat obtained from the local market was 
diced into 2 × 2 cm size then classified as 2 groups. The first group, 
which contained 300 g of meat, was placed in a glass beaker and was not 
given any treatments. The second group, containing equal weight of 
meat, was intentionally contaminated with E. coli bacteria. The samples 
were tightly closed to avoid contamination from other bacteria, then 
stored in an incubator at 37 ◦C for 24 h. Gas produced in chicken meat 
was then to be observed by using e-nose at 4 h interval. 

2.3. Gas sensor 

In this study, e-nose system containing 6 sensors, i.e MQ2, MQ3, 
MQ7, MQ8, MQ135, and MQ136. The e-nose instrumentation system 
uses Arduino Uno Atmega 328B and data collection system linked to a 
computer device using LabVIEW software. Each sensor is capable of 
detecting a certain type of gas (Astuti et al., 2019a,b). MQ2 can detect 
LPG and propane 200–5000 ppm, butane: 300–5000 ppm methane: 
5000–20000 ppm, H2: 300–5000 ppm and Alcohol:100–2000 ppm. MQ3 
can detect alcohol, benzene, CH4, hexane, LPG, CO and air with detec-
tion range 0.1–10 ppm. MQ7 can detect CO, H2, LPG, CH4, Alcohol, air 
with detection range 20–2000 ppm. MQ8 can detect H2, LPG, CH4, CO, 
Alcohol, air with detection range 60–1500 ppm. MQ135 can detect NH3, 
air, alcohol, NH4, toluene, acetone with detection range 10–300 ppm 
and benzene:10–1000 ppm. MQ136 can detect air, CO, NH4 and H2S 
with detection range 10–300 ppm. Fig. 1 shows the e-nose experimental 
set up for this study. 

The principle diagram of e-nose showed in Fig. 1. Before the series of 
sensing processes, e-nose preheating is carried out for 30 min. The series 
of sensing processes take place in 3 stages, namely baseline, sensing, and 
purging. In the baseline process, pipe 3 will inhale the target clean air as 
a control and flow into the inlet hose to the chamber with the valve 
closing pipes 1 and 2 so that the clean air is not mixed with the odor from 
sample. The baseline process lasts for 60 s because in that time span all 
sensors are in a steady state. In the sensing process, the valve closes pipe 
3 and opens pipe 1 leading target odor to flow into the chamber. Slowly 
the odor of the sample fills the chamber and is responded by the sensor 
to produce a certain voltage output. The sensing process lasts for 100 s. 
In the purging process, the valve closes hoses 1 and 3, opening hose 2 
allowing the odor of the sample that has been sensed to flow back into 
the sample tube. The purging process which lasts for 120 s aims to clean 
the gas contained in the chamber. When the target gas is contained in the 
chamber, the sensing mechanism by the gas sensor takes place so that 
each gas sensor can produce an output as voltage values. The flow rate of 
gas is 0.9 L/m. 

2.4. Treatments 

The detection of chicken meat quality performed based on the con-
centration of gas produced by chicken meat at various storage times. The 
samples were divided into 7 groups. Group K is a control group of 
chicken meat without E. coli bacterial contaminants by measuring the 
response of the gas sensor array at time variations of 4; 8; 12; 16; 20; and 
24 h. Group T is a control group of chicken meat with E. coli bacterial 
contaminants by measuring the response of the gas sensor array at time 
variations of 4; 8; 12; 16; 20; and 24 h. The sampling frequency of 
sensors are 180 with sensing time 280 s. The flow rate of gas is 0.9 L/m. 
Afterward, the data from sensor detection were classified by the random 
forest (RF) and support vector machines (SVM) classifiers and then 
continue to results analysis. 

2.5. Computational analysis 

2.5.1. Feature extraction 
Feature extraction is a compulsory part before sensor-based data 

classification. There are many techniques available for feature extrac-
tion i.e principal component analysis (PCA), textural and statistical 
features. In (Tozlu et al., 2021), the researchers investigated whether or 
not different diseases (e.g., stable coronary artery disease, myocardial 
infarction) can be diagnosed using human breath on an electronic nose 
by utilizing statistical features such as mean, skewness, kurtosis, and 
derivate variance. They were able to classify the disease with 97.9% 
accuracy. In the current study design, we utilized six statistical features: 
mean, kurtosis, median, standard derivation, skewness, and variance. 
These features were extracted using MATLAB. The list of statistical 
features: 
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Mean(K) =
1
N
∑N

I=1
KI (1)  

kurtosis(K) =

∑N
i (Ki − K)4

Nσ4 (2)  

Median=median(K) (3)  

Skewness(K) =

∑N
i (Ki − K)3

Nσ3 (4)  

variance(K) =
1
N
∑N

i=1
(Ki − K)2 (5)  

Standard  Deviation(K) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
N
∑N

i=1
(Kk − K)2

√
√
√
√ (6) 

In feature extraction process, the original data were normalized 
using min-max scaler to map the values between (0,1). The formula of 
min-max scaler is given below: 

xscaled =
x − xmin

xmax − xmin
(7) 

After scaling the dataset, the feature extraction process was applied. 
All features were extracted using windowing method, in this method one 
record was considered as a one window. Each window gave six statistical 
features which are mentioned above. The sample of collected features is 
shown in Table 1. After feature extraction, the featured values were fed 
into machine learning models for classification. 

2.5.2. Artificial neural network (ANN) 
An ANN is the mathematical function of animal brains. Neuron in 

animal brain uses the dendrites to retrieve signal while an ANN defines 
the importance of inputted signal and then makes the decision whether 
to send the signal to the next neuron. When we feed a signal to the ANN 
network it retrieved by dendrites (input variable x), each input signal 
will be multiplied by weighted (w), the value of weight (w) assigned 
according to the importance of the signal and generate an output signal 
(y). The input data are calculated by the neuron cell body, and the signal 
passed the cell body according to its activation function. When we pass 
input to the dendrite, the activation function may be represented using 
the below formula: 

y(x)= f

(
∑N

k =1
wkxk

)

In the above formula, the N represents the input signal (dendrites), 
and w is referring to the weight, that multiplies with inputs (represented 
by xk). The summation of this formula is feed into the activation function 
f (x), and the y (x) is the output from the activation function. The 
strength of ANN can be determined as model of a complex pattern of the 
input signal by making input data correlations. Despite having some 
weakness, they can create overfitting, that will reduce the accuracy 
(Chang et al., 2018; Chen et al., 2020). We used the Weka tool to build a 
classification model. 

2.5.3. Support Vector Machines (SVM) 
SVM classifier is popular due to hyperplane creation, also called a flat 

boundary, this hyperplane creates homogenous partitions by dividing 
the space. By doing this, SVM is powerful enough to build a complicated 
relationship. Through kernel trick, the SVM classifier can separate the 

Fig. 1. Diagram of procedure and experimental set-up.  

Table 1 
Sample features data for chicken meat mixed with E. coli  

No. Mean Median Standard deviation Skewness Kurtosis Variance Label 

1 3.013 3.274 0.539 − 0.658 1.616 0.291 unhealthy 
2 3.043 3.279 0.564 − 0.518 1.467 0.318 unhealthy 
3 3.065 3.279 0.542 − 0.573 1.584 0.294 unhealthy 
4 3.088 3.305 0.489 − 0.589 1.543 0.240 unhealthy 
5 3.013 3.275 0.539 − 0.658 1.616 0.291 unhealthy 
6 2.374 2.617 0.653 − 0.639 1.853 0.427 healthy 
7 2.387 2.604 0.621 − 0.568 1.833 0.386 healthy 
8 2.226 2.447 0.448 − 0.689 1.723 0.201 healthy 
9 2.247 2.418 0.468 − 0.576 1.738 0.219 healthy 
10 2.183 2.370 0.425 − 0.598 1.722 0.180 healthy  
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data among higher features space. The SVM kernel can be represented 
by the following formula: 

K
(

xi
→, xj

→) = φ(xi
→) ×

(
xj
→)

In the above equation ϕ(x) is referring to a function that can shift the 
features vector xi and xj, then merge both features into a single feature. 
To classify different domains of data, many kernel functions of SVM 
have been developed. Linear SVM classifier does not affect the trans-
formation of data. The polynomial SVM kernel using degree d, transform 
the data by adding simple non-linear. A radial base kernel is another 
type of SVM kernel that is quite similar to ANN, it can classify different 
types of data efficiently (Lantz et al., 2013; Chen et al., 2020)). 

In current study we aim to classify fresh and contaminated chicken 
meat. So, SVM is categorized into supervised learning algorithm in 
machine learning, that analyse the given dataset and find out the pat-
terns in data: this supervised algorithm can perform classification as well 
as regression analysis (Wei and Wang, 2014; Brudzewski et al., 2004). 
Based on statistical learning theory, Cortes and Vapnik proposed SVM as 
an efficient and highly-precised classification approach (Cortes and 
Vapnik, 1995). Here are some mathematical steps of SVM algorithm 
implementation.  

1. SVM algorithm usually determine the regression model function by 
using following minimization function. 

min
1
2
w2 + c

∑m

i=1

(
ξ*

i + ξi
)

s.t.

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜
⎜
⎝

yi − w.ξ
(
x
)
− b ≤ ε + ξ*

i

w.ξ(x)) + b − yi ≤ ε + ξi

ξ*
i . ξ ≥ 0

(
i = 1, 2 , 3, 4, ...m

)

⎞

⎟
⎟
⎠

In above equation the w shows weight of the vector, likewise 12w
2 is 

showing complexity of the model, penalty factor is indicated with c, ξ*
i 

and ξi are indicating the relaxation component, ξ(x) shows the non- 
linear transformation function, b is indicating the offset and ε is the 
upper limit of error.  

2. The Lagrange multiplier are created now, which can be represented 
by α*

i and αi. The following equations are showing the optimization 
model. 

max −
1
2
∑m

i,j=1

(
α*

i − αi
) (

α*
i − αi

)
k(Xi, X) +

∑m

i=1
α*

i (yi − ε) −
∑m

i=1
αi(yi − ε)

s.t

⎧
⎪⎨

⎪⎩

∑m

i = 1
αi =

∑m

i = 1
α*

i

0 ≤ αi, α*
i ≤ c( i = 1, 2, 3, 4, ..m)

3. Whereas the SVM function for regression problem can be obtain by 
solving above equations. 

f (x) =
∑m

i=1

(
αi − α*

i

)
k(Xi, X) + b  

k
(
Xi,Xj

)
= exp

(

−
Xi − Xj

2

2σ2

)

= exp
(
− γXi − Xj

2), γ > 0 

In SVM calculation, two parameters are important to adjust. The first 
parameter is penalty factor which is indicated by c and the second 
parameter is kernel which is indicated by γ. 

2.5.4. Random forest (RF) 
Kam proposed the RF algorithm for the first time in 1995. The RF is 

frequently employed in wide range of practical applications (Nitze et al., 
2015; Abdel-Rahman et al., 2014). The decision tree can be created 
quickly, training hundreds of them is faster than training an ANN (Men 
et al., 2018). An RF classifier is a combination of random-trees, different 
decision trees arranged in such a way to get the diversity among trees 
(Cortes and Vapnik, 1995). RF classifier can easily classify high 
dimensionality features data (Chen et al., 2020). An RF classifier can 
reduce generalization error by increasing the number of trees in it. 
Correlation between individual trees and their strength can boost up the 
accuracy of the random forest (Breiman, 2001). The computational steps 
of RF algorithm are: The resampling can be obtained be using Bootstrap 
for generating T training sets TS1, TS2, and so on, then corresponding 
decision trees will be calculated for every training set C1, C2, C3 and so 
on. Pruning is not done because each tree is fully developed. In order to 
acquire the matching class for test set sample X, a test is run utilizing 
each decision tree C1(X), C2(X),…, CT(X). Last the test set sample X is 
chosen by voting as the individual in T decision trees with the greatest 
outputs, and the prediction is then completed. 

3. Result and discussion 

The MQ sensor is a metal oxide semiconductor (MOS) type gas sensor 
or so called chemiresistors because its tracking uses a shift in the resis-
tance of the sensing material. The sensor tracking system uses a simple 
voltage partition network, so gas content can be tracked. The value of 
the output milli voltage (mV) detected by the sensor is proportional to 
the gas concentration. If the gas content is high, the output voltage will 
also be high and vice versa. Then the MQ gas sensor analog signal is 
connected to the LM393 high precision comparator, for signal digitiza-
tion. That is why the reading of the sensor response results by the 
computer is in the unit of a voltage in mV. This voltage is generated from 
the change in the sensor resistance value which is directly calculated to 
be the voltage by the minimum circuit of the MQ sensor system. 

3.1. Gas sensor array (GSA) responses to samples 

Each GSA on the e-nose generates output voltage as distinctive pat-
terns according to the sample characteristics. The specific pattern pro-
duced by each sensor can be observed from the change in the resulting 
voltage value. The outcome of the GSA responses on the fresh chicken 
meat sample group without E. coli bacterial contaminants and with 
E. coli bacterial contaminants are shown in Fig. 2. Fig. 3 shows E-nose 
patterns in various sample groups. 

E-nose is a system that detects and recognizes the object based on its 
odor. The signal response generated by e-nose is able to manifest in the 
correlation between the concentration and the odor produced by 
chicken meat. The higher the voltage produced by e-nose, the higher the 
concentration of gas produced by chicken meat. Whereas, the fluctua-
tion of the voltage signal indicates odor that has a distinctive pattern for 
every variation in chicken meat. Fig. 2 show an increase in sensor 
response as higher voltage fluctuations in chicken meat samples 
contaminated with E.coli bacteria. Voltage fluctuation indicates that 
bacterial contaminants can produce a specific fluctuation pattern 
traceable by the sensor. The resulting stress response is adequate and 
shows a stable tendency during the sensing process. 

The sensor response pattern of each sample measured using e-nose 
shows a typical output pattern that varies depending on the type and the 
variation in shelf life (Fig. 3). It also shows the odor pattern of chicken 
meat complexity, with chicken meat contaminated with E. coli is more 
complex than the odor output pattern of E. coli bacteria. After the 
extraction process is complete, the data are refined with different 
classifiers. 

3.2. Results of classification 

Present study design demonstrated two conditions, the first was for 
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observation and classification of chicken meat, the second was based on 
chicken meat mixed with E. coli. Both conditions were further divided 
into two sub-conditions based on healthy and unhealthy meat of 
chicken. The data were labeled for supervised machine learning analysis 
in the classification of healthy and unhealthy chicken meat. Data la-
beling followed by extraction of statistical features using Matlab (section 
1.1). Statistical features of sample data are shown in Table 1. 

After retrieving statistical features, the data were classified by Weka 
tool through two classifiers: SVM and RF. Initially the classification of 
chicken meat was performed, which showed a high level of accuracy for 
chicken meat while similarly the classification on RF and SVM classifier 
portray accuracies of 99.25% and 98.61% respectively. The accuracies 
of both classifiers are shown in Table 2. 

Moreover, an experimentally amalgamized chicken meat with E. coli 

Fig. 2. Graph of GSA responses for fresh chicken meat samples with and without E. coli contaminants at shelf life of (a & b) 4 h; (c & d) 8 h; (e & f) 12 h; (g & h) 16 h; 
(i & j) 20 h; (k & l) 24 h. 
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was classified through above mentioned classifiers. For this a high level 
of accuracy achieved on RF 98.42% while SVM classifier showed 
86.66%. 

The RF classifier had higher accuracies for fresh chicken meat and 
contaminated meat, respectively, of 99.25% and 98.42% accuracy. 
These values are more precise and accurate than those recorded by 
Mirzaee-Ghaleh et al. (2020) in fresh and thawed chicken meat with 
accuracies of 95.2% and 94.67%, respectively, using the fuzzy K-nearest 
neighbors (F–KNN) algorithm (Mirzaee-Ghaleh et al., 2020). The 

novelty of current study is in terms of the use of RF classifier produced 
higher accuracy than F–KNN algorithm, through e− nose which act as 
guideline for future researchers. 

The current research was also more accurate than related studies that 
used PCA to detect food quality using a fuzzy wavelet network, and 
image processing and artificial intelligence to estimate the freshness of 
chicken meat, with accuracies of 95.71% and 80.2%, respectively 
(Kodogiannis, 2017; Fatahi et al., 2017). 

Fig. 2. (continued). 
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3.3. The damage indicator 

Protein content variation in meat influence the nutritional quality 
and the composition of meat. The meat consists of water, protein, fat, 
carbohydrates and ash (Ferioli and Caboni, 2010). Ammonia gas is type 
of odor generated from spoiling chicken meat, as an indicator of protein 
damages on it (Yashoda et al., 2001). This gas is generally produced by 
bacteria (Lázaro et al., 2015). Total volatile base (TVB) is one of the 
parameters for checking the freshness of fishery products in a labora-
tory. Total volatile base of nitrogen (TVB-N) consisting mainly of tri-
methylamine (TMA) and ammonia, is used as a quality criterion for feed 
ingredients. TVB-N is an appropriate criterion for determining product 
quality, including proteins component, because most TVNs containing 
NPN are also utilized as indicators to verify protein quality in chicken 
meat. 

The essential parts of TVB-N are dimethylamine and ammonia 
(Fallah et al., 2016). TVB-N indicate the proportion of volatile 
nitrogen-containing compounds in feed ingredients (Ferioli and Caboni, 
2010) and suitable to determine the product quality, especially protein 
feed ingredients (Wojtasik-Kalinowska et al., 2016). Calculation of 
biogenic ammonia concentration (BAI) was carried out as an index of the 
freshness of chicken meat due to bacteria (Lázaro et al., 2015; Kozová 
et al., 2009). Biogenic amine index has proven to be reliable as an in-
dicator in determining the freshness of poultry meat (O’Grady and 
Kerry, 2008; Silva and Glória, 2002). Ammonia (NH3) production shows 
the presence of protein damage in the sample. Damages on protein in 
chicken meat cause a decrease in ammonia production (Cohen et al., 
2007). Protein damage percentage in samples with variations of shelf 
life is shown in Table 3. 

The meat damage is also followed by the formation of sticky mucus 

Fig. 3. E-nose patterns in various sample groups.  

Table 2 
Detailed accuracy of both classifiers on chicken meat only and chicken meat mixed with E. coli  

Meat Classifier TP Rate FP Rate Precision Recall F-Measure MCC ROC Area PRC-Are 

Chicken meat only RF 0.993 0.028 0.993 0.993 0.993 0.973 1.000 1.000 
SVM 0.986 0.016 0.987 0.986 0.986 0.951 0.985 0.983 

Chicken meat mixed with E. coli RF 0.984 0.023 0.984 0.984 0.984 0.965 0.999 0.999  

Table 3 
Table of protein damage percentage by the MQ 135 sensor.  

Sensor Time (h) Chicken meat + E. coli Chicken meat  

NH3 (ppm) Level N % Broken protein % NH3 (ppm) Level N % Broken protein % 

MQ 135 4 4866.6 ± 1.3 3785.1 ± 1.2 2.3 ± 0.1 5511.3 ± 1.5 4286.6 ± 1.6 2.6 ± 0.1 
8 25651.4 ± 2.2 19951.1 ± 1.0 12.4 ± 0.3 10784.6 ± 1.9 8388.0 ± 2.0 5.2 ± 0.1 
12 31914.5 ± 2.8 24822.4 ± 2.3 15.5 ± 0.6 12545.2 ± 2.0 9757.4 ± 1.5 6.1 ± 0.1 
16 35214.5 ± 3.5 27389.1 ± 2.2 17.1 ± 0.6 21920.2 ± 2.0 17049.1 ± 2.5 10.6 ± 0.2 
20 27392.8 ± 2.8 21305.5 ± 3.4 13.3 ± 0.3 15559.2 ± 1.8 12101.6 ± 1.4 7.5 ± 0.2 
24 26705.5 ± 3.3 20771.0 ± 2.6 12.9 ± 0.4 2150.1 ± 1.2 1672.3 ± 1.3 1.1 ± 0.1 

MQ 136 4 5310.1 ± 1.0 4130.1 ± 1.0 2.5 ± 0.1 19203.8 ± 2.6 14936.3 ± 1.5 9.3 ± 0.1 
8 6328.9 ± 1.0 4922.5 ± 1.4 3.1 ± 0.1 21125.9 ± 1.5 16431.2 ± 1.6 10.2 ± 0.1 
12 25276.5 ± 2.6 19659.5 ± 2.2 12.2 ± 0.2 24170.1 ± 1.2 18798.9 ± 2.6 11.7 ± 0.1 
16 25917.2 ± 2.3 20157.8 ± 2.2 12.5 ± 0.2 26708.9 ± 2.6 20773.6 ± 2.5 12.9 ± 0.2 
20 22967.1 ± 2.5 17863.2 ± 1.6 11.1 ± 0.2 23040.8 ± 1.6 17920.6 ± 2.5 11.2 ± 0.1 
24 17313.6 ± 2.9 13466.1 ± 1.0 8.4 ± 0.2 21993.1 ± 2.7 17105.7 ± 1.6 10.6 ± 0.1  
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on the meat surface resulted from the production of dextran, exopoly-
saccharides or the number of microbial cells growth. On the other hand, 
the discoloration in chicken meat is caused by the hydrogen sulfide 
(H2S) produced during the meat’s microbial decomposition. When the 
protein in chicken meat is damaged, the production of alcohol, ketones, 
and hydrocarbons (methane and propane) increases significantly over 
time (Lázaro et al., 2015). In another study, it was reported that color 
changes in chicken meat with decay occurred because of the production 
of CO and N (Xiao et al., 2014; Li and Suslick, 2016). 

E-nose is a system that detects and recognizes the object based on its 
odor. The main component of e-nose is the gas sensor with function to 
measure pollutant gas compounds in the air such as carbon monoxide, 
hydrocarbons, nitrous oxide, and others. Gas sensors generally detect 
chemical changes occur in the sensor room, therefore particular sensors 
are usually placed in a closed room. Heated SnO2 (tin dioxide) metal 
oxide crystals at a certain high temperature in air, will cause oxygen to 
be adsorbed on the crystal surface with a negative charge emitted by the 
presence of electron donors on the crystal surface which is transferred to 
the adsorbed oxygen resulting a positively charged space layer. It will 
produce a surface potential that can inhibit the electrons flow which 
gives rise to electrical resistance. In the presence of a reducing gas, the 
density of negatively charged adsorbed oxygen on the semiconductor 
surface of the sensor is reduced, so that the barrier height at the grain 
boundary is reduced. The reduced barrier height results in reduced grain 
sensor resistance in a gaseous environment. The higher concentration 
value of the sensed gas, the lower its resistance value and inversely the 
higher the voltage value measured (Triyana et al., 2015). 

The voltage pattern of sensor for each sample measured using e-nose 
shows a typical output pattern that varies based on the sample type and 
shelf life variation. The longer shelf life of chicken meat does not 
guarantee gas concentrations continue to increase due to changes in the 
protein content in chicken meat. Protein damage in the chicken meat 
started with the fermentation of glucose and glycogen and the break-
down of proteins will form H2S, indole and amine ammonia compounds. 
Meat spoilage is also an intensive bacterial decomposition of organic 
substances which forms odorous gases (Wanniatie et al., 2014). Hence, 
the odor gas has role as an indicator of decreased freshness of meat. 

In this study, we developed a data acquisition system using 6 gas 
sensors with different specifications for each type. We tested them on 
chicken meat samples involving treatments of storage period (shelf life) 
at room temperature, utilizing SVM and SR methods to determine the 
stored chicken meat quality for consumption. We compared the per-
formance results of this classifier with a chemical analysis for meat 
protein content. Although we cannot generate a theoretical contribution 
to the method, we can still provide a theoretical explanation of why the 
meat is not acceptable to be consumed based on detected gas contami-
nation. At this time, we are still unable to come up with quantitative 
conclusions about the number of bacteria in the sample or the rate of 
bacterial growth in chicken meat. Another limitation of this research is, 
we only observe the voltage response detected by the gas sensors from 
samples. The sensors reading results have not been compared with 
analytical methods such as gas chromatography mass spectrometry 
(GCMS) to determine the composition of gas compounds. However, we 
believe that in the future this research will be able to provide a quan-
titative analysis of the bacterial growth rate in chicken meat with more 
comprehensive data. This quantitative analysis is derived from the 
relationship between sensor response as a function of gas concentration. 
More bacteria will produce higher amount of gas, so with the correct 
transfer function we can calculate the number of bacteria in the sample. 
Moreover, in the future this research can be conducted by utilizing the 
deep learning models that will help to improve classical feature 
extraction techniques, and deep learning can be helpful to implement 
real time scenario in e-nose. 

4. Conclusion 

We have demonstrated that the GSA can detect the type of gas in the 
sample, which is indicated by the appearance of the variance in the 
sensors output voltage pattern for each sample variation. The data for 
fresh and contaminated samples were classified with 99.25% and 
98.42% precision, respectively by the RF classifier. Furthermore, the 
SVM classifier correctly identified the fresh and contaminated samples 
with accuracies of 98.61% and 86.66%, respectively. This finding offers 
insight into a GSA capability in classifying chicken meat contaminated 
with E. coli using an RF and SVM. Limitation of this study is sole 
observation of the voltage response generated by the gas sensor to the 
sample only. The results of the voltage reading produced by the sensor 
have not been compared with analytical methods such as gas chroma-
tography mass spectrometry (GCMS) in determining the composition of 
gas compounds. 
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