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A B S T R A C T   

The removal of irrelevant and insignificant genes has always been a major step in microarray data analysis. The 
application of gene selection methods in biological datasets has greatly increased, supporting expert systems in 
cancer diagnostic capability with high classification accuracy. Penalized logistic regression (PLR) using the 
elastic net (EN) has been widely used in high-dimensional cancer classification in recent years to estimate the 
gene coefficients and perform gene selection simultaneously. However, the EN estimator does not satisfy the 
oracle properties. This paper proposes the PLR using the adaptive elastic net (AEN), abbreviated as PLRAEN, to 
address the inconsistency. Our method employs the ratio (BWR) as an initial weight inside the L1-norm of the EN 
model. Several experiments were performed on a simulation study for a different number of predictor variables, 
sample sizes, and correlation coefficients and also on three public gene expression datasets to evaluate the 
effectiveness. Experimental results demonstrate that the proposed method consistently outperforms two other 
contemporary penalized methods regarding classification accuracy and the number of selected genes. Therefore, 
we conclude that PLRAEN is a better method to implement gene selection in the high-dimensional cancer 
classification field.   

1. Introduction 

New technologies address the immense growth of data. These tech
nologies help researchers transfer huge chunks of information into 
organized data. Big data might have irrelevant or redundant features 
(gene expressions). Therefore, researchers prefer to pick important 
genes by selecting a small subset of significant features from available 
datasets. Gene selection speeds up the learning process and improves the 
work of the model [1,2]. Using microarray technology, researchers can 
classify both cancerous and normal tissues, depending on gene expres
sion profiles. Recently, many studies were conducted on gene expression 
datasets to determine the varieties of cancer. They also forecast clinical 
results to diagnose patients with cancer [3–5]. 

Microarray datasets of gene expression have many properties that 
obstruct the evolution of these techniques. One of these properties is the 
high dimensionality of the datasets. The gene expression dataset in
volves several genes, p, with only a limited number of observations, n. 
This means, in the matrix representing gene expressions, the number of 
columns is much larger than the number of rows, p≫ n [6]. Another 

problem is that microarray data usually suffers from a high level of 
technical noise. Therefore, it is crucial to overcome these two problems 
to reasonably increase the Classification Accuracy (CA) associated with 
microarray data [7]. 

In the last three decades, statisticians have developed many selection 
methods to select important genes. These methods fall into three main 
categories: First, the filter category. It involves the most popular feature 
selection methods, where each gene is independently examined 
regardless of its group performance. The second is the wrapper category. 
It uses various algorithms to evaluate the process of selecting gene 
groups. Although the wrapper methods are more efficient in feature 
selection than the filter methods, they are computationally expensive, 
such as forward gene selection and backward gene elimination. The 
third is the embedded category, which combines the advantages of the 
filter and wrapper categories. It includes regularization (penalizing) 
methods that can simultaneously perform modeling and gene selection 
[8–10]. 

Penalized logistic regression (PLR) is one of the most widely used 
penalty-based regularization methods. It is used to select genes and 
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classify them. Penalized methods belong to the class of embedded 
methods, efficient in selecting and classifying genes. In recent years, 
logistic regression (LR) has received tremendous consideration. Penal
ized methods add a kind of penalty term to the LR to perform selection 
and classification altogether. Many LR models can be used with different 
penalties. One of these penalties is called “Least Absolute Shrinkage and 
Selection Operator” (also known as LASSO). LASSO is based on L1-norm 
[11]. Another penalty method is the so-called “Smoothly Clipped Ab
solute Deviation” (SCAD) [12]. Other penalties are the elastic net [13], 
the adaptive L1-norm [14] and the adaptive elastic net (AEN) methods 
[15,16]. 

Although LASSO is capable of selecting features, it has three short
comings [17,18]. First, it is related to the number of features that LASSO 
selects. When the dataset is high dimensional, LASSO cannot select more 
genes than the sample size. The sample size selected by LASSO is bound 
above by n. Second, the LASSO fails to consider the grouping effect when 
selecting genes. LASSO is expected either to select the whole group of 
highly correlated genes (if they are related to the disease) or to leave it 
all (if they are unrelated). However, LASSO selects only one or a few 
members of each highly correlated group of genes related to the study. 
Hastie and Zou [13] proposed the EN to overcome some of these 
shortcomings. The EN method employs a penalty that is linearly 
composed of L1-norm and L2-norm. Third, the LASSO method is biased 
in gene selection because it penalizes all gene coefficients on an equal 
basis. As a result of this weakness, LASSO lacks the oracle properties 
[12]. To solve the challenges due to the lack of oracle properties, Zou 
[14] developed a new regularization technique called the adaptive 
LASSO technique (ALASSO). Some weights were used to penalize each 
coefficient inside the L1-norm-based penalty. In the ALASSO, modified 
weights are used to penalize the coefficients in the L1-norm-based 
penalty. 

The L1-norm penalty model is one of the most common approaches in 
penalized methods. A drawback of the L1-norm penalty model is that it 
equally penalizes all genes, causing the selection procedure to be 
inconsistent [12,14]. In this study, a penalized logistic regression model 
with adaptive elastic net (PLRAEN) is proposed to improve the gene 
selection performance. This is done by employing a ratio (BWR) as an 
initial weight inside the L1-norm with the EN model to classify people 
concerning catching cancer correctly. This weight, in some sense, 
reflects the importance of genes individually. Experiments demonstrate 
that our method, compared to other similar methods, has the highest 
selection accuracy. 

The main contributions of this paper are summarized as follows. 

• This paper proposes PLRAEN to address inconsistencies in gene se
lection and classification.  

• The ratio BWR is employed as an initial weight inside the L1-norm of 
the EN model. 

• PLRAEN has the adaptability advantage over the other used penal
ized methods in encouraging grouping effect and selecting genes 
consistently in high dimensional data with logistic regression 
models.  

• The proposed method can be seen effectively under a different range 
of correlation values. 

Besides this introduction, the previous related work is reviewed in 
Section 2. Section 3 provides a brief introduction to related works 
concerning penalized LR models. The PLRAEN method is presented in 
Section 4. Some evaluation metrics are presented in Sections 5. The 
results and the experimental study intended to evaluate the efficiency of 
PLRAEN compared to the EN and the AEN methods are presented and 
debated in Section 6. This paper is then concluded in Section 7. 

2. Related work 

Conventionally, statistical learning methods have been used to select 

genes independently. Among these methods, a general hybrid adaptive 
classifier ensemble [19], Nested cross-validation with ensemble feature 
selection and classification model [20], as well as support vector ma
chine (SVM) and its extensions [21,22], have been commonly used in 
cancer classification for gene selection. The L1-penalized logistic 
regression is becoming increasingly relevant and popular when dealing 
with high data and focusing on feature selection and classification per
formance. However, when the penalties of various coefficients are all the 
same and unrelated to the data, the LASSO estimates can be problematic. 
Several previous studies have proposed methods to select the genes more 
efficiently by adding various penalty techniques. LASSO and its exten
sions [23–27] have been used to select genes using the L1 norm penalty 
in logistic regression. Penalized logistic regression has been constructed 
using a Bayesian regularization term [28,29]. A few such methods use 
multi-stage sparse logistic regression models with L1 norm penalty [5], 
while others use AEN [15,30], SCAD penalty [31] and weighted L1 
penalty. These approaches have been successfully applied to gene se
lection and improve classification accuracy. However, none of the pre
vious works propose a ratio (BWR) as an initial weight inside the 
L1-norm with the EN model for gene selection in cancer classification. 

3. Penalized logistic regression models 

LR is one of the most popular machines learning algorithms for bi
nary classification, where the response variable values are coded as zero 
(0) and one (1). For example, while classifying cancer, the response 
variable takes either (1) for cancerous cases or (0) for non-cancerous 
cases. In various classification fields, classical LR with a penalty is 
incorporated to perform gene selection and classification simulta
neously. In this study, the PLR model is used to address the gene 
expression classification problems. It penalizes the model because there 
are too many genes. In LR, the regression equation is non-linearly 
related to the linear combination of the predictor variables. 

For illustration purposes, gene expression profiles are often repre
sented as a matrix X ∈ Rn×p ​ (n ≪p), where each column denotes a gene, 
and each row indicates a sample. The entry xi,j indicates the expression 
value of the jth gene of the ith sample and xi = (xi1, xi2, ..., xip) is the ith 

input sample. Let y = (y1, ..., yn)
T be the response vector, where yi is the 

corresponding classification label that takes values of (0) or (1). The 
response variable y is classified according to a linear combination of the 
n × p matrix with real entries; written XTβ. The symbol XT denotes the 
transpose of the design matrix X and β is a vector of the dimension p of 
the unknown coefficients (β = (β1, ..., βp)

T
). In general, in LR, the 

response variable y has a Bernoulli distribution, and the probability that 
y is equal to 1 given the value of xis denoted as π(x) is 

p
(
yi = 1

⃒
⃒xij
)
= π(xi) =

exp
(

xT
j βj

)

1 + exp
(
xT

j βj
), j = 1, 2, ..., p (1)  

f (yi)= πyi
i (1 − πi)

1− yi , i = 1, 2, ..., n (2) 

The likelihood function of LR is given as 

L(β, yi)=
∏n

i=1
f (yi) =

∏n

i=1
πyi

i (1 − πi)
1− yi (3) 

Then, the log-likelihood function is: 

ℓ
(

β, yi

)

=
∑n

i=1
{yi log π(xi)+ (1 − yi)log(1 − π(xi)} (4) 

LR is a powerful discriminative method used in classification (vari
able selection). Despite its efficiency in linear models related to regular 
data, the LR is not applicable as a classification tool when the dataset is 
high dimensional because the design matrix is not invertible. Conse
quently, it fails to provide reliable estimates for the regression 

A.M. Alharthi et al.                                                                                                                                                                                                                            



Informatics in Medicine Unlocked 24 (2021) 100622

3

coefficients. Additionally, when datasets of genes are high dimensional, 
for example, when there are several genes (or features in general), the 
overfitting problem arises. Moreover, its estimators may also suffer from 
multicollinearity [32]. 

From a statistical viewpoint, the other (unrelated) genes might 
generate noise and lower the classification performance. Therefore, 
statisticians usually prefer to apply gene selection methods that can 
remove unrelated and redundant genes to improve CA. Besides LR, the 
classification methods available include the penalizing logistic regres
sion method used to eliminate high dimensionality and improve the CA 
[33]. Although penalization methods are commonly used in high 
dimensionality, Doerken et al. [34] demonstrated that the methods 
could also perform well in low dimensional data. 

In PLR, a positive penalty term is added to the log-likelihood function 
forcing some coefficients to become zero to obtain a sparse solution. PLR 
imposes a penalty term on the equation of the logistic model that has too 
many genes. Accordingly, under some constraint on the coefficients, the 
coefficients of less contributive genes become either very close to zero or 
exactly zero. This process is also known as regularizations. The setting of 
the method is as follows. 

The penalized log-likelihood equation is expressed as 

PLR= − ℓ(β, yi) + λg(β) (5)  

where, ℓ(β, yi) denotes the log-likelihood as Eq. (4), g(β) denotes the 
penalty term, and λ is a regulation factor used to tune the penalty 
amount. Then the PLR of Eq. (5) is minimized with respect to the λ to 
find the coefficients estimates. The penalty is used to decrease the esti
mates’ variances and force them to be biased, resulting in improved 
prediction accuracy [35]. These penalizing methods are from a class of 
embedded selection methods frequently used in classification and 
feature selection in high-dimensional datasets [36]. 

Before solving the PLR minimization problem, let the response vector 
y is centered and the columns of X (genes) are usually standardized so 
that 

∑n
i=1yi = 0, ​

∑n
i=1xij = 1, ​ and ​

∑n
i=1x2

ij = 1 for j = 1,2, ..., p. 
Standardization sets the intercept term (β0) to zero. β is estimated using 
LASSO (L1-norm penalization) as follows. 

β̂LASSO = argminβ

[

−
∑n

i=1
{yi log π(xi)+ (1 − yi)log(1 − π(xi))}+ λ

∑p

j=1

⃒
⃒βj

⃒
⃒

]

,

(6)  

where, λ is the tuning parameter. When λ = 0, Eq. (6) decreases to the 
usual minimum likelihood estimator. As λ→∞, penalization forces all 
predictor variables to be zero. 

Another important penalized method that is used in gene selection is 
the EN. It was invented by Hastie and Zou [13] to address the weak
nesses of LASSO. EN combines L2, and L1 norms to address genes with 
high correlation and select relative genes at once. PLR, based on EN 
penalty, is given in the following equation: 

β̂Elastic = argminβ

[

−
∑n

i=1
{yi log π(xi) + (1 − yi)log(1 − π(xi))}

+λ1

∑p

j=1

⃒
⃒βj

⃒
⃒+ λ2

∑p

j=1
β2

j

] (7) 

Eq. (7) indicates the EN estimator depends on two regulation factors 
that assume only non-negative values, λ1 and λ2. Eq. (7) gives a PLR 
solution. 

The ALASSO technique was first introduced by Zou [14] to solve the 
overestimation problem of LASSO by replacing the L1 penalty with 
weighted penalty [37]. Zou amended the L1-penalty by assigning 
different weights to different coefficients. The assigned weights could be 
based on Ridge, LASSO, or other shrinkage techniques. The penalized 
logistic model associated with ALASSO is defined as follows: 

β̂LASSO = argminβ

[
∑n

i=1
{yi log π(xi) + (1 − yi)log(1 − π(xi))}

+λ
∑p

j=1

⃒
⃒βj

⃒
⃒

(⃒
⃒
⃒
⃒β̂

initial
j

⃒
⃒
⃒
⃒

)γ

⎤

⎦, ​
(8)  

where, λ, γ ≥ 0 and ̂β
initial
j is an initial estimate for each βj estimated using 

the LASSO technique or other shrinkage techniques. Here we set γ = 1, 
for simplicity. 

Like the EN method, other penalized regression methods can achieve 
grouping effect, such as AEN methods proposed by Refs. [15,16], who 
proposed two AEN estimators. They added the adaptive weight into the 
L1-norm penalty within the EN. The two AEN approaches are different in 
their adaptive weights. Zou and Zhang [15] construct the adaptive 
weight using the EN estimator. However, Ghosh [16] used the 
least-squares estimator to construct the adaptive weight. For fixed λ2, 
the PLR using AEN of β is given by: 

β̂AElastic = argminβ

[

−
∑n

i=1
{yi log π(xi) + (1 − yi)log(1 − π(xi))}

+λ1

∑p

j=1
wj
⃒
⃒βj

⃒
⃒+ λ2

∑p

j=1
β2

j

] (9)  

where wj = (|β̂|)− γ
, ​ j = 1, 2, ..., p is the modified weight produced by 

the ̂β initial estimator. Here γ is a non-negative constant. Eqs. (6)–(9) are 
solved by an algorithm called coordinate descent [35]. 

4. The proposed method 

Regarding gene expression classification, classification efficiency 
should be enhanced to provide a reliable gene selection process and a 
deeper understanding of the classification question. High dimensionality 
may negatively impact a classifier’s classification efficiency by raising 
the possibility of overfitting and extending the computation time. 
Furthermore, specific classification approaches are not explicitly appli
cable to the study of microarray gene expression data. When imple
menting classification methods to analyze data-on-data sets of gene 
expressions, it is important to exclude unrelated genes from the datasets 
to guarantee accuracy. 

It is noticed that when the correlations between each pair of genes 
are very high, the EN method works efficiently. The authors of [38] 
noticed that if the genes are not highly correlated (|r| is less than 0.95), 
the reliability of EN somewhat decreases. Another problem is that EN 
fails to consider the correlation nature of genes [39]. Moreover, Zou and 
Zhang [15] noticed that EN does not satisfy the oracle property and that 
the grouping effect problem remains. To solve the EN problems, the AEN 
was established by Zou and Zhang [15], and Ghosh [16] by adding an 
L2-norm penalty to ALASSO. 

Initially, to select genes, Dudoit et al. [40] performed it based on the 
ratio (BWR) of the sum of squares between gene groups (BSS) to the sum 
of squares for each gene within groups (WSS), defined as 

BWR(j)=
BSS(j)
WSS(j)

=

∑
i
∑

kI(yi = k)
(

xkj − x.j
)2

∑
i
∑

kI(yi = k)
(

xij − xkj

)2, ​ (10)  

where, I(.) is an indicator function, x.j is the mean of column j that 
represents the expression level of gene j across all samples and xkj is the 
mean of the values of gene j across samples of class k, where k = 2 [40, 
41]. In this study, we also have exactly two classes. 

Selecting the initial weight is critical for AEN. Therefore, to improve 
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the selection of genes and ensure classification accuracy, we propose a 
new weight based on the ratio (BWR) as an initial weight inside L1-norm 
with the EN. 

The jth component of the p− dimensional weight vector w =

(w1,w2, ...,wp)
T is given by: 

wj =
1

|BWR(j)|
, j = 1, 2, ..., p, (11)  

where, BWR(j) is the ratio of the gene j, in defined as Eq. (10). 
The proposed weight assigns a relatively larger weight to the gene 

with a low-value ratio and a smaller weight to the gene with a high ratio. 
Moreover, the adjusted L1 part of the penalty performs gene selection by 
setting some coefficients to exactly 0, and the L2 part of the penalty 
encourages the group selection by shrinking the coefficients of corre
lated genes toward each other. Accordingly, the L1-norm can reduce 
inconsistency. After assigning weight to genes, the PLRAEN can select 

Table 1 
Confusion matrix of classification.   

Prediction ( + ) Prediction ( − )

Actual ( + ) True Positive (TP) False Negative (FN) 
Actual ( − ) False Positive (FP) True Negative (TN)  

Table 2 
Classification and variable selection performance of the PLRAEN and the 
competitor methods over 100 partitions when ρ = 0.55.  

Methods Model 1   Model 2   

CA% TP FP CA% TP FP 

n = 100, p = 1,000        
EN 91.12 (0.08) 5 28 92.32 (0.11) 6 27 
AEN 92.00 (0.09) 5 22 92.00 (0.09) 5 25 
Proposed 96.00 (.007) 6 17 94.03 (0.07) 6 18 
n = 100, p = 5,000        
EN 92.00 (0.06) 6 23 92.00 (0.07) 7 36 
AEN 92.00 (0.09) 5 22 92.00 (0.14) 7 34 
Proposed 94.21 (0.05) 6 13 96.30 (0.11) 8 20 
n = 100, p =

10,000        
EN 86.20 (0.07) 8 29 89.11 (0.06) 8 38 
AEN 89.58 (0.11) 8 28 91.84 (0.12) 7 39 
Proposed 92.00 (0.05) 8 21 96.04 (0.05) 8 22 
n = 200, p = 1,000        
EN 86.02 (0.07) 5 29 88.23 (0.06) 6 26 
AEN 88.31 (0.09) 5 21 91.10 (0.16) 6 25 
Proposed 94.41 (0.05) 6 17 95.00 (0.07) 8 18 
n = 200, p = 5,000        
EN 92.00 (0.07) 6 23 92.00 (0.14) 7 36 
AEN 93.24 (0.09) 6 22 93.18 (0.17) 7 33 
Proposed 95.00 (0.06) 6 14 96.04 (0.12) 8 21 
n = 200, p =

10,000        
EN 86.00 (0.07) 8 29 88.17 (0.06) 8 38 
AEN 91.05 (0.09) 7 30 91.00 (0.16) 7 38 
Proposed 95.00 (0.07) 8 22 94.08 (0.08) 8 22 
n = 300, p = 1,000        
EN 86.77 (0.07) 5 29 88.64 (0.06) 6 27 
AEN 90.20 (0.09) 5 21 91.26 (0.16) 6 25 
Proposed 96.00 (0.04) 6 17 94.57 (0.07) 7 19 
n = 300, p = 5,000        
EN 91.08 (0.04) 6 23 95.00 (0.11) 7 36 
AEN 92.16 (0.09) 6 25 94.00 (0.12) 7 34 
Proposed 96.00 (0.07) 7 14 98.00 (0.11) 8 21 
n = 300, p =

1, 0000        
EN 88.07 (0.06) 8 29 95.21 (0.14) 8 38 
AEN 92.00 (0.09) 8 28 92.00 (0.11) 8 37 
Proposed 98.00 (0.07) 8 21 98.00 (0.09) 8 23  

Table 3 
Classification and variable selection performance of the PLRAEN and the 
competitor methods over 100 partitions when ρ = 0.95.  

Methods Model 1   Model 2   

CA% TP FP CA% TP FP 

n = 100, p =

1, 000        
EN 86.06 (0.07) 7 26 88.31 

(0.06) 
8 25 

AEN 88.00 (0.09) 7 24 90.00 
(0.11) 

8 29 

Proposed 92.10 (0.05) 8 16 96.00 
(0.07) 

9 20 

n = 100, p =

5, 000        
EN 91.00 (0.08) 6 34 92.04 

(0.11) 
7 37 

AEN 90.27 (0.09) 6 35 92.07 
(0.11) 

7 43 

Proposed 94.17 (0.07) 7 18 96.00 
(0.11) 

9 22 

n = 100, p =

10,000        
EN 88.13 (0.06) 8 38 92.00 

(0.14) 
8 38 

AEN 90.00 (0.09) 8 37 92.00 
(0.11) 

8 41 

Proposed 94.08 (0.07) 8 22 96.12 
(0.10) 

9 21 

n = 200, p =

1, 000        
EN 91.82 (0.08) 8 26 92.65 

(0.11) 
8 25 

AEN 92.00 (0.09) 6 24 92.10 
(0.12) 

7 24 

Proposed 95.04 (0.07) 8 16 95.00 
(0.11) 

9 21 

n = 200, p =

5, 000        
EN 86.72 (0.09) 6 34 85.21 

(0.17) 
7 37 

AEN 90.11 (0.11) 7 34 88.00 
(0.11) 

8 33 

Proposed 94.20 (0.07) 8 20 93.12 
(0.09) 

9 22 

n = 200, p =

10,000        
EN 86.88 (0.08) 8 38 86.42 

(0.17) 
8 38 

AEN 88.16 (012) 7 37 90.00 
(0.11) 

8 32 

Proposed 93.18 (0.07) 8 21 94.32 
(0.11) 

9 21 

n = 300, p =

1, 000        
EN 86.14 (0.07) 8 26 88.00 

(0.09) 
8 25 

AEN 88.00 (0.09) 7 24 88.00 
(0.11) 

7 21 

Proposed 94.10 (0.05) 8 16 94.00 
(0.07) 

9 18  

n = 300, p =

5, 000       
EN 95.08 (0.07) 6 34 95.12 

(0.14) 
7 37 

AEN 95.16 (0.09) 7 34 95.00 
(0.11) 

7 33 

Proposed 96.14 (0.06) 8 19 96.23 
(0.06) 

9 19  

n = 300, p =

1, 0000       
EN 86.12 (0.07) 8 38 88.17 

(0.06) 
8 38 

AEN 88.00 (0.09) 8 35 88.00 
(0.12) 

8 37 

(continued on next page) 
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important genes with higher accuracy. The details of the PLRAEN al
gorithm are presented here. The PLRAEN equation has a global 
maximum as it has a convex form. Therefore, the coordinate descent 
algorithm is implemented to solve PLRAEN.

5. Method evaluation 

Here, we evaluate the performance of the proposed method. The 
three common evaluation metrics of a predictive model, particularly in 
the healthcare setting, are the classification accuracy (CA), sensitivity 
(SEN), and specificity (SPE) [42]. The formulae for computing these 
metrics indicate the confusion matrix predicted vs. actual results shown 
in Table 1. 

CA is a key efficiency measurement and is computed using Eq. (13). 
Average accuracy is an average of the accuracy results obtained from 
many cross-validation experiments. As CA does not differentiate be
tween false positives and false negatives, SEN and SPE measurements 
are considered. SEN computes the TP rate, while SPE computes the TN 
rate. The SEN and SPE formulae are given by Eqs. (14) and (15), 
respectively. 

These metrics (criteria) are defined as: 

CA=
TN + TP

FP + TP + TN + FN
× 100% (13)  

SEN =
TP

FN + TP
× 100% (14)  

SPE =
TN

TN + FP
× 100% (15) 

Here, TP, FP, TN, and FN denote the number of true positives, false 
positives, true negatives, and false negatives, respectively. The higher 
values of the evaluation criteria indicate better classification 
performance. 

The one-way analysis of variance (ANOVA) was performed to prove 
the stability of the results for the proposed method. This was performed 
in addition to Tukey’s honestly significant difference (HSD) test to 
evaluate the proposed method’s classification results compared to the 
other two methods. 

6. Results and discussion 

This section uses both simulation data and real microarray datasets 

Table 3 (continued ) 

Methods Model 1   Model 2   

CA% TP FP CA% TP FP 

Proposed 92.00 (0.07) 8 21 92.30 
(0.09) 

9 22  

Table 4 
The characteristics of the three used datasets.  

Datasets Samples(n) Genes(p) Classes 

Bip 61 22,283 31 control/30 bipolar disorder 
Sco 54 22,283 15 normal/39 sick 
Aut 146 54,613 64 healthy/82 autism  

Table 5 
The averaged criteria over 100 times for the training dataset.  

Dataset Methods # Genes Training set 

% CA % SEN % SPE 

Bip EN 48 93.69 (0.05) 93.70 (0.05) 93.97 (0.05)  
AEN 44 95.62 (0.06) 94.31 (0.07) 94.51 (0.06)  
Proposed 52 97.70 (0.04) 96.55 (0.06) 95.98 (0.05) 

Aut EN 72 95.39 (0.001) 95.38 (0.002) 95.82 (0.02)  
AEN 76 94.28 (0.002) 95.48 (0.003) 94.94 (0.02)  
Proposed 76 97.64 (0.04) 98.87 (0.02) 97.28 (0.03) 

Sco EN 248 92.63 (0.02) 91.39 (0.04) 91.84 (0.02)  
AEN 247 91.39 (0.02) 93.86 (0.02) 92.18 (0.04)  
Proposed 264 96.93 (0.03) 95.80 (0.02) 95.55 (0.03)  

Table 7 
One-way ANOVA for the classification accuracy over 50 partitions in the 
training set.  

Datasets Source Df SS MS F P-value 

Aut Methods 2 0.02935 0.014675 35.18 0.000 (*)  
Error 147 0.01411 0.000523    
Total 149 0.04346    

Bip Methods 2 0.03858 0.019288 9.516 0.0001 (*)  
Error 147 0.29797 0.002027    
Total 149 0.33655    

Sco Methods 2 0.0845 0.04225 88.02 0.0001 (*)  
Error 147 0.07057 0.00048    
Total 149 0.15507    

(*) Significant at. α = 0.05 

Table 6 
The averaged criteria over 100 times for the testing dataset.  

Dataset Methods Testing set 

% CA % SEN % SPE 

Bip EN 87.97 (0.05) 88.77 (0.05) 86.58 (0.04)  
AEN 88.46 (0.07) 90.72 (0.06) 88.41 (0.06)  
Proposed 93.45 (0.04) 93.69 (0.05) 92.80 (0.04) 

Aut EN 90.07 (0.05) 91.64 (0.04) 90.55 (0.03)  
AEN 90.14 (0.04) 90.46 (0.04) 90.64 (0.06)  
Proposed 93.78 (0.04) 94.57 (0.04) 92.64 (0.05) 

Sco EN 89.58 (0.05) 88.36 (0.07) 89.63 (0.03)  
AEN 87.78 (0.03) 90.23 (0.02) 90.40 (0.02)  
Proposed 91.72 (0.03) 93.97 (0.03) 92.87 (0.02)  
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to illustrate the effectiveness of the proposed method, PLRAEN. 

6.1. Simulation study 

The data is simulated under the following framework. Two simula
tion models are considered for the logistic regression model to cover two 
practical scenarios: the correlation among predictor variables and the 
correlation between a group of predictor variables. The sample size, n,
takes three values: 100, 200, and 300, where each n was randomly split 
into two parts: 50% for the training and 50% for the testing dataset. In 
addition, we considered the number of the predictor variables p =

1, 000, ​ 5,000, and 10,000 because the magnitude of this number af
fects the resulting estimator in terms of variable selection; particularly, 
the value of FP [43–45]. Further, because we are interested in the 
groping effect, in which the pairwise correlation value is considered 
more important, three values of the pairwise correlation are considered 
ρ = {0.55, ​ 0.95}. According to create low and high correlations among 
variables, these values are chosen, respectively [45–47]. In total, we 
have two models that consider the logistic regression model as follows: 

Model 1: The data was generated according to the logistic regression 
model as 

Y ∼ B
(

exp(Xβtrue)

1 + exp(Xβtrue)

)

, (16)  

for both the training and the testing datasets. In this model, we set the 
following: The true vector βtrue = (1.5, ​ 1, ​ 0.8, ​ 0.7, ​ − 0.6, ​ 
9, ​ − 3, ​ 2, ​ 0, ​ . ​ . ​ . ​ , ​ 0)T , with nonzero variables q = 8, and zero 
variables= p − q. The predictor variables matrix X is generated from a 
multivariate normal distribution N(0, ​ Σ), where Σ is the covariance 
matrix with Σi,j = ​ ρ|i− j| (i, ​ j ​ = ​ 1, ​ 2, ​ ..., ​ p) and, therefore, the 
predictor variables are correlated. 

Model 2: The data was generated from Eq. (16). In this model, we set 
the following: The true vector βtrue = ​ (1.5, ​ 1, ​ 0.8, ​ 0.7, ​ − 0.6, ​ 9,
​ − 3, ​ 2, ​ 1, ​ 0, ​ . ​ . ​ . ​ , ​ 0)T

, with nonzero variables q = 9 and zero 
variables = p − q. The nonzero predictor variables are generated as 

Group ​ 1 ​ : ​ xj = v1 + ε, ​ v1 ∼ ​ N(0, ​ 1), j ​ = ​ 1, ​ 2, ​ 3;
Group ​ 2 ​ : ​ xj = v2 + ε, ​ v2 ∼ N(0, ​ 1), j ​ = ​ 4, ​ 5, ​ 6;
Group ​ 3 ​ : ​ xj = v3 + ε, ​ v3 ∼ N(0, ​ 1), j ​ = ​ 7, ​ 8, ​ 9, ​  

while the zero predictor variables are generated as xj ∼ N(0, ​ 1), j ​ =
​ 10, ​ 11, ​ . ​ . ​ . ​ , ​ p − q. Therefore, the predictor variables within each 

group were correlated, while the predictor variables from different 
groups were uncorrelated. To ensure that the correlations among vari
ables within each group are 0.55, and 0.95, the ε was generated ac
cording to ε ∼ N(0, ​ 0.8), and ε ∼ N(0, ​ 0.01), respectively. 

In an elastic net, there are two tuning parameters λ1 and λ2, and, 
therefore, two-dimensional surface cross-validation (CV) is need. 
Following [13,38], first, we fix λ2 = {0, ​ 0.01, ​ 0.1, ​ 1, ​ 10, ​ 100},
then for each λ2 value, 10-fold CV was employed to find the best value of 
λ1.

The simulation process was repeated 100 times for each model. The 
median of CA with different values of n, ​ p and ρ are presented in Ta
bles 2 and 3, respectively. The values in the parentheses denote the 
corresponding standard deviation. The number of truly relevant vari
ables selected (TP) and the number of irrelevant variables not selected 
(TN) are recorded to quantify variable selection performance. For 
comparison purposes, the proposed method’s performance was 
compared with other existing methods, namely EN and AEN. 

Tables 2 and 3 summarize the classification and variable selection 
performance of the PLRAEN and the competitor methods over 100 
partitions for ρ = 0.55 and ρ = 0.95, respectively. As is shown in Ta
bles 2 and 3, in all cases, our proposed method consistently attained the 
highest CA for the logistic regression simulation models; thus, it gave the 
best predictive performance. For the number of TP and TN, the proposed 
method performed well in selecting the true nonzero correlated vari
ables. It reduced the model selecting of the true zero variables in all 
cases. This implies that our proposed method can select the true relevant 
variables. 

To sum up, the simulation results seem to indicate that the perfor
mance of PLRAEN is superior to the EN and AEN in terms of variable 
selection and CA. It has the adaptability advantage over the other used 
penalized methods in encouraging grouping effect and selecting vari
ables consistently in high dimensional data. Moreover, PLRAEN can be 
used successfully in various correlation values. 

6.2. Real data studies 

The proposed method (PLRAEN) is applied to three well-known gene 
expression datasets with different numbers of genes and different sample 
sizes to evaluate its performance and demonstrate its advantages over 
the other competitive methods. These datasets are publicly available 
and previously used by many researchers. Three public datasets have 
been used in this study to evaluate the performance of our method. First, 
the Bipolar disorder (Bip) dataset. Its sample size was 61, including 31 
control observations and 30 observations with bipolar disorder. Gene 
expressions of 22,283 human genes are captured using Affymetrix 
technology [48,49]. The second is the Sarcoma (Sco) dataset. It involved 
the expression profiles of 22,283 human genes measured on 54 patients; 
where 15 people were normal, and 39 people had the disease [49,50]. 
The third is the Autism (Aut) dataset, which represented the gene ex
pressions of 146 children from peripheral blood lymphocytes (PBL). The 
complete RNA was obtained using Affymetrix Human U133 Plus 2.0, 
including 39 expression arrays for microarray experiments. This dataset 
contained 54,613 genes, 82 with autism and 64 were healthy. Further
more, this dataset has been recently analyzed by Refs. [18,51,52]. The 
main characteristics of the three datasets are summarized in Table 4. 

The proposed PLRAEN method is effective through comparative 
experiments with two other methods, namely EN and AEN, where they 

Table 8 
P-value of Tukey HSD test for classification accuracy in the training set.  

Datasets Proposed vs EN Proposed vs AEN EN vs AEN 

Aut 0.000 (*) 0.000 (*) 0.0184 (*) 
Bip 0.000 (*) 0.047 (*) 0.1049 
Sco 0.000 (*) 0.000 (*) 0.0147 (*) 

(*) Significant at α = 0.05 

Table 9 
One-way ANOVA for the classification accuracy over 50 partitions in the testing 
set.  

Datasets Source Df SS MS F P-value 

Aut Methods 2 0.045 0.022501 50.13 0.000 (*)  
Error 147 0.06598 0.000449    
Total 149 0.11098    

Bip Methods 2 0.09209 0.04604 42.33 0.000 (*)  
Error 147 0.15991 0.00109    
Total 149 0.252    

Sco Methods 2 0.03045 0.015224 9.559 0.0001 (*)  
Error 147 0.23412 0.001593    
Total 149 0.26457    

(*) Significant at α = 0.05 

Table 10 
P-value of Tukey HSD test for classification accuracy in the testing set.  

Datasets Proposed vs. EN Proposed vs. AEN EN vs. AEN 

Aut 0.000 (*) 0.000 (*) 0.9888 
Bip 0.000 (*) 0.000 (*) 0.7407 
Sco 0.000 (*) 0.0487 (*) 0.0677 

(*) Significant at α = 0.05 
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and the proposed method were applied to the datasets considered. Each 
dataset was randomly subdivided into two parts, the training (70%) and 
the testing (30%) parts to perform CV. The cross-validation was con
ducted ten times using the training subset to select the optimal values of 
λ1 and λ2. The result was an average of 100 replications of the experi
ment. The value of the tuning parameters for each method was allowed a 
value in the interval [0, 100]. The implementations of these methods 
were done in R using the Glmnet package. 

Tables 5 and 6 summarize the average number of important genes 
chosen by the corresponding method (# genes), CA, SEN, and SPE for 
the training and the testing subsets of the original dataset when applying 

the proposed method, EN, and AEN. The corresponding standard devi
ation is written in parenthesis. 

Table 5 shows that our proposed PLRAEN method has the highest 
average number of selected genes among all other methods, where it 
selected 52 genes for the Bip dataset. In comparison, EN and AEN 
selected 48 and 44 genes, respectively. 

Tables 5 and 6 show that in each dataset, the mean of CA, SEN, and 
SPE in the training and testing parts produced by our method are higher 
than the measures produced by EN and AEN. For example, the training 
(testing) CA of the proposed method was 97.64% (93.78%) in the Aut 
dataset, greater than 95.39% (90.07%) for EN and 94.28% (90.14%) for 

Fig. 1. The CA in the training and testing parts for the three datasets by the three methods.  
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AEN. We also observe that PLRAEN in the testing set had the highest 
sensitivities of 93.69%, 94.57%, and 93.97% for the Bip, Aut, and Sco 
datasets, respectively. Furthermore, the highest specificities of the 
training set were 95.98% (Bip), 97.28 (Aut), and 95.55% (Sco) for 
PLRAEN. 

In addition to the Tukey HSD test, one-way ANOVA was performed to 
evaluate our method’s obtained classification results. Upon rejecting the 
null hypothesis, a Tukey HSD test provides us more details about the 
differences between each pair of the three methods. Tables 7 and 9 
summarize the ANOVA results for the CA in the training and the testing 
parts. The results indicate significant differences among the three 
methods, for all datasets, regarding the CA. Moreover, the Tukey HSD 
test was implemented to acquire details about the differences between 
the PLRAEN and the other applied methods. Tables 8 and 10 lists the p- 
value of each pair of methods. The PLRAEN demonstrated significant CA 
performance regarding the EN and AEN. 

Further examining our method’s CA performance, Fig. 1 indicates 
that the mean of CA in all three datasets (Aut, Bip, and Sco) resulting 
from our method is higher than the corresponding average of CA from 
other methods. The box plot related to the proposed methods shows that 
the CA distribution is more symmetric and more stable as its spread is 
the least among the other methods. This shows that our method per
forms better than others. 

To further highlight the performance of the PLRAEN, we compared 
the obtained results for the same dataset (Autism), regarding the number 
of selected genes and CA, with other three methods: the Bayesian lasso 
quantile regression (Blassou) reported by Ref. [26], the adaptive 
penalized logistic regression (APLR) proposed by Ref. [18], and 
SCAD-support vector machine using firefly algorithm (FFA1) presented 
by Ref. [31]. Our method selected more genes than the other three 
methods, where it selected 76 genes while Blassou, APLR, and FFA1, 
respectively, selected 13, 9, and 21 genes. Importantly, PLRAEN has the 
potential to select more genes than other methods, indicating that most 
of these additionally selected genes were probably highly correlated. 
Additionally, our method achieved a higher CA of 97.64% compared 
with 96.20% for Blassou, 93.27% for APLR, and 93.35% for FFA1. 

The proposed method’s superior classification performance was 
generally shown through three aspects: high CA, SEN, and SPE for both 
the training and testing datasets. Meeting these three aspects simulta
neously nominates the proposed method as a promising gene selection 
method. Moreover, as a classification process, our adaptive penalized 
method is the best classification process compared to competitor 
methods. This demonstrates that our method considers the weights of 
the genes. 

7. Conclusion 

Comparing the results obtained by applying the proposed method to 
simulated datasets and three well-known datasets (Bip, Aut, and Sco.) 
with other methods (EN and AEN) applied to the same datasets, we 
confirm that the performance of our method as a classification and gene 
selection process is more efficient than the other methods concerning CA 
and selection of genes. This assures that our method is a significant 
classification and gene selection method, and it may be applied to other 
cancer-related datasets. 
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