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Abstract: Bus rapid transit (BRT) is one of the strategies to promote improvements in urban mobility.
In this study, BRT scenarios, which integrate exclusive bus lanes and bus priority signal control in
mixed traffic scenarios, were modelled using a VISSIM microsimulation. Three scenarios of BRT
were modelled to represent 16:84, 38:62 and 54:46 modal splits between public transport and private
vehicles. It was found that Scenario 4 (the 54:46 scenario) offers better benefits in terms of delay
time saving and economic benefits. In general, it was found that the BRT system enhances the
functioning of the transport system and provides people with faster and better mobility facilities,
resulting in attractive social and economic benefits, especially on a higher modal split of public
transport. It is regarded as one strategy to alleviate traffic congestion and reduce dependency on
private vehicles. The finding of this study provides an insight on the effective concept of the BRT
system, which may promote the dissemination of an urban mobility solution in the city. The results
can help policymakers and local authorities in the management of a transport network in order to
ensure reliable and sustainable transport.

Keywords: bus rapid transit; VISSIM microsimulation; modal split; delay time; delay cost; sustain-
able transport

1. Introduction

The combination of the rapid growth of urban populations and economic wealth has
resulted in an increase in demand for private vehicles, hence putting significant strain
on transportation networks and infrastructures. People prefer to use private vehicles
over public transport due to obvious reasons such as safety and security [1,2], punctuality
and reliability [2–5], travel comfort and convenience [2,4,6,7], travel time and cost [6] and
quality [8]. The increasing number of vehicles has inevitably led to the increased level of
congestion especially during peak hour periods [9–11] and led to greater exposure to road
accidents [12–14] and environmental problems [15,16]. While private vehicles including
motorcycles have helped to improve the mobility needs in developing countries, there are
valid reasons to worry about the rising trend of single occupancy vehicles such as the need
for bigger and wider spaces. Road development, including widening roads or building
new ones, often works for temporary relief only as the number of vehicles on the road
grows at a faster rate than the expansion of the road network. Hence, the enhancement of
public transport services is particularly important and could provide a practical solution to
alleviate urban mobility issues.

Bus rapid transit (BRT) is adopted as one of the key strategies in relieving traffic
problems in major cities [17–24]. BRT is a leading mode of public transit due to its high
capacity and minimum operating costs compared to other types of public transporta-
tion [11,19]. It provides better service quality in terms of frequency of service, reliability
and travel speed, increased ridership [22,25,26] and accessibility [27] and improved urban
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livelihoods [28]. Due to this, BRT could attract private vehicle users to change their mode
of transport [29]. The improvement of environmental conditions such as noise reduction,
better air quality and energy consumption was also a positive impact of the BRT sys-
tem [30]. The development of BRT resulted in an increase of urban density, population
density and economic impact, which, in turn, brings potential land-use transformation to
the surrounding area [31–34].

The integration of an intelligent transportation system (ITS) and exclusive bus lanes
with a priority control system has substantially improved the overall operation of BRT [35–38].
Chen et al. [39] evaluated signal priority for BRT under heterogenous traffic conditions
using a VISSIM microscopic simulation, and it was found that the BRT system improves the
delay time for BRT vehicles with little negative impact on the overall system. Ye and Xu [40]
found that the proposed transit signal priority for BRT at a signalised junction improves
the delay of all vehicles. Zhou et al. [37] proposed an active signal priority control method
for BRT vehicles that runs on median-road exclusive BRT lanes at a single junction. In this
study, eight signal priority controls for eight BRT arrival modes were tested in VISSIM
modelling, and it was found that there was a reduction in the average passenger delay
by 13.43–25.27% and an improvement in the travel speed of BRT vehicles by 7.10–7.55%.
Islam et al. [41] introduced a numerical framework of a transit signal priority system for
BRT, namely the Bus Priority System Optimal Dynamic Traffic Assignment with Signal
Control, which considers dedicated bus lanes, bus routes, and priority for public bus trans-
port in mixed bus–car scenarios. It was found that the developed framework reduced total
system-wide passenger travel time and minimised the total intersection delay of the buses.
Yue et al. [42] proposed that shared threshold constraints such as road section operation
efficiency, station queuing probability and runtime can be used as guidance in a strategy
for sharing BRT exclusive lanes with conventional buses, with the departure volume of
conventional buses used as the shared threshold control index. Generally, the strategy
of sharing BRT exclusive lanes with conventional buses improves the overall operational
efficiency of an urban public transportation system. In most cases, the need to address
urban mobility issues has been the initial intention for the implementation of BRT.

Though BRT implementation has been widely known to produce better performance
for its users in a well-designed city plan, the effects of BRT implementation on mixed traffic
in developing countries is unknown and needs to be addressed. There are some unique
characteristics that become constraint factors to the implementation of such a system in
developing countries, especially Malaysia, such as insufficient demand for the BRT system
due to the user’s acceptance of public transport and the difficulty in obtaining system
integration. The BRT system requires good system designs that integrate signal control
priority and an exclusive lane at a junction. It is challenging to provide such a system
as most roads are critically congested, especially during peak hours. Rapid motorisation
is seen as a result of rapid economic development in Malaysia. Due to the increasing
development of the city, providing efficient urban public bus transportation has become a
challenge [43]. It was reported by the Malaysian Institute of Road Safety Research [44] that
the number of registered vehicles in Malaysia had increased from 8 million in 1997 to more
than 27 million in 2016, representing an increase of more than 300% in 19 years, whereas
the population has only had an increase of 146% in the last 19 years.

In an attempt to improve urban mobility, specific strategies need to be developed and
evaluated prior to their implementation. The efficiency of the BRT system is evaluated
through a case study of a selected junction in Johor. This study attempts to investigate the
conceptual framework of the BRT system and its impact on the road network in Johor. It
considers the role of signal priority and an exclusive lane at a junction in influencing the
operational efficiency and cost associated with BRT. In this paper, BRT strategies such as
changes in modal split between private vehicles and public transport (BRT) are developed
and tested in a VISSIM microsimulation model. While traffic simulation models will
never be able to completely capture reality, they are possibly the best way to test possible
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strategies for traffic management before they are implemented. The findings of this study
provide insights into future practices of BRT in Malaysia.

Following this introduction, Section 2 describes the methodology. The results and
discussion are presented in Section 3. Finally, conclusions are presented in Section 4.

2. Materials and Methods
2.1. Site Description

Johor state is located at the southern part of Peninsular Malaysia and had a total popu-
lation of 3.76 million in 2019 (about 9% of the 32.7 million total population of Malaysia) [45].
The traffic volume in Johor for 2019 was 2.1 million [46]. Johor Bahru district is the capital
city of Johor and contributes 1.6 million of the population with a 1.3% annual population
growth rate.

The study stretch is located about 250 m from the residential areas of Taman Impian
Emas. It is centrally located in Johor Bahru district. Taman Impian Emas covers an area
of 2953 acres located about 13 km north-west of Johor Bahru city centre, with more than
4000 units of homes and the number is still growing. Other than private vehicles, the area is
accessible by a limited number of buses. The study stretch at Jalan Bukit Impian is located
in Corridor 9, which is one of the proposed BRT corridors as indicated in the Johor Public
Transport Masterplan (2015–2045) [47]. Corridor 9 with a length of 31.2 km is proposed to
connect Kangkar Pulai and Kempas–Bukit Indah as shown in Figure 1.
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Jalan Bukit Impian carries a high traffic volume during peak hours because the road
connects the city business district and educational institutes to residential areas. Figure 2
shows the close-up area of Jalan Bukit Impian.

2.2. Data Collection

Automatic traffic counters (ATCs) were installed for one week on all junction ap-
proaches to obtain traffic volume and speed data. Figures 3 and 4 show the daily traffic
volume and peak hour traffic volume at the junction for one week. On average, 50,209 ve-
hicles per day travelled on the junction at Jalan Bukit Impian.
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The detailed traffic characteristic of the highest peak hour volume is shown in Table 1.

Table 1. Peak hour traffic volume (veh/h).

Direction
Turning Volume (veh/h)

Left-Turn Through Right-Turn Total

North 512 - 994 1506

South-West 478 1589 - 2067

North-East - 814 267 1081

Total 4654

The traffic composition of the road section consisted of 80.6% passenger cars, 9.1%
motorcycles and the rest of the traffic were heavy vehicles, as shown in Figure 5.
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The junction operates under a fully vehicle-actuated signal control and all the ap-
proaches have an equal priority. The signal timing data of the site, as indicated in Table 2,
were adopted in the modelling strategies. The Visual Vehicle-Actuated Program (VisVAP),
a built-in program in VISSIM, was used in coding the signal timing of the junction.

Table 2. Signal timing data.

Parameters Value (s)

Minimum Green 5

Maximum Green 40

Minimum Intergreen 4

Minimum Amber 3

Minimum Red 1

Figure 6 shows the desired speed distribution for motorcycles, passenger cars and
heavy vehicles.
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2.3. Base Model Development

A simulated model was developed based on the data collected on site at the T-junction
of Jalan Bukit Impian to test the BRT strategy. The existing layout of the road, the highest
peak hour traffic volume, desired speed distribution and signal operation of the junction
were coded in a VISSIM microsimulation to model the base case scenario. Ten simulation
runs were performed with an initial random seed value of 199 with a 210 increment in
each random seed value. All the simulations were run for a total time of 4500 s including a
temporal warm-up period of 900 s to ensure accurate simulation results.

Model error checking is an essential step after the base model development. This is
to ensure that the base model runs as intended and rectification can be done if necessary.
Model calibration is the process by which the model is fine tuned to replicate observed field
conditions within a relatively small margin of error [48,49]. The calibration of the model
was conducted based on the driver’s behaviour, while the validation was conducted based
on traffic counts and traffic performance [48,50,51]. The driving behaviour characteristics
mainly include car-following behaviour and lateral distance. The psycho-physical Wiede-
mann 99 car-following model and lane-changing behaviour parameters in VISSIM were
adjusted to simulate drivers’ behaviours at the junction [48,49]. Through literature search,
it was found that there are a few parameters of the car-following model that are critical to
the model development and that could achieve realistic model outputs, such as standstill
distance (CC0), time headway (CC1) and additional following distance (CC2) [52,53], as
well as look ahead distance and look back distance [54,55]. The values for the car-following
model and lane-changing parameters were chosen based on the values that best replicate
the field conditions. The waiting time before diffusion in lane-changing behaviour parame-
ters was set to 200 s following the recommendation by WSDOT [48]. The parameter set is
shown in Tables 3 and 4.

Table 3. Parameters of car-following behaviour.

Parameters
Look Ahead Distance (m) Look Back Distance (m) Standstill

Distance,
CC0 (m)

Following
Distance,
CC1 (s)

Longitudinal
Oscillation,

CC2 (m)Min Max Min Max

Default 0.00 250.00 0.00 150.00 1.50 0.9 4.00

Modified 0.00 267.06 0.00 147.64 1.22 0.9 2.00
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Peak hour vehicle volume and speed characteristics of the traffic were validated to
make sure the model represented the real site situations. The root square mean percentage
error (RSMPE) and the Geoffrey E. Havers (GEH) technique were used to determine the
validity of the model developed in this study [48]. Figure 7a,b shows the validation analysis
for traffic volume and speed.

Table 4. Lane-changing behaviour.

Lane Change Default Min Max Modified

Max. deceleration—own (m/s) −4.00 −4.57 −3.66 −4.50

Accepted deceleration—own (m/s) −1.00 −0.76 −1.22 −1.00

Max. deceleration—trailing (m/s) −3.00 −3.66 −2.44 −3.66

Min. headway (front/rear) (s) 0.50 0.46 1.83 0.50

Waiting time before diffusion (s) 60 - - 200
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Traffic volume and speed data for both field data and simulated data were compared,
as shown in Figure 7. The RSMPE and the GEH values for both traffic parameters are
within the validation threshold of 5% and 3%, respectively; hence the base model was
validated [48]. A calibrated and validated model is essential in model development to
ensure a valid and reliable evaluation [56–58]. The calibrated and validated base case
model was then expanded further to model the bus rapid transit (BRT) strategies.

2.4. Bus Rapid Transit (BRT) Scenario Model Development

The proposed BRT system at the junction has a dedicated BRT lane with signal priority
in mixed traffic scenarios. In the BRT scenarios, the road section is widened to accommodate
an additional 9 m lane width for two-way directions of BRT. The median on the existing
layout is replaced with a BRT lane. The existing geometrical layout of the junction such
as the number of lanes and turning movements remains unchanged. All parameters such
as driving behaviour, lane-changing behaviour, reduced speed areas and simulation run
parameters are same as the base case model. The occupancy of the vehicle was 1.21, 1.41
and 10.54 for motorcycles, passenger cars and buses, respectively [43]. The layout of the
BRT scenario on the road network is shown in a red-painted road segment in Figure 8.
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In the BRT scenarios, three different modal split scenarios were modelled. The modal
split between bus rapid transit (BRT) and private vehicles were pre-specified and modelled
as 16:84 (Scenario 2), 38:62 (Scenario 3) and 54:46 (Scenario 4) to replicate the short-term,
medium-term and long-term goals of public transport in Johor, respectively. The Iskandar
Regional Development Authority’s transformation plan was used as a basis to develop the
modal split scenarios used in this study but with a more condensed scenario [58].
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The recall and extension methods were incorporated in the vehicle-actuated signal
control to accommodate the BRT scenarios. The BRT lane became a priority approach on
the junction. When a bus is detected on the priority approach during red signal indication,
the recall method is used in which the green time is given to the bus. The extension
method is used when a bus is detected on the priority approach during the end of green
time indication so that the bus can pass through the junction without having to stop. The
similar condition of phase demand requirement as in the existing signal control system is
embedded in the recall and extension methods. The phase is given to the priority approach
if one of these conditions are met: (1) no vehicles are present on the current phase; (2) signal
phase has reached minimum green time and gap out time; or (3) the phase has reached
maximum green time.

3. Results and Discussion
3.1. Vehicle Delay

The results collected from the VISSIM were compared between the base case and
the BRT scenarios as shown in Figures 9 and 10. Figure 9 shows that generally the im-
plementation of BRT caused an increase in average delay time compared to the base case
scenario. Scenario 4 (54% public transport) had the lowest average delay per vehicle per
junction and it is slightly higher than the base case scenario. The results for all approaches
in each scenario are presented in Figure 10. All non-priority approaches (S-W, N-E and
N) experienced a higher delay with BRT implementation. With the BRT implementation,
Scenarios 2, 3 and 4 imposed a higher delay to all non-priority approaches and bus priority
approaches, respectively. For the S-W approach, the BRT scenarios imposed an increase
in average delay time compared to the base case by 50.1%, 13.4% and 1.8% for Scenarios
2, 3 and 4, respectively. Similarly, for the N-E approach, compared to the base case, there
was an increase in average delay time for Scenarios 2, 3 and 4 by 40.7%, 31.5% and 16.8%,
respectively. For the N approach, the BRT scenarios caused an increase in average delay
time compared to the base case by 69%, 55.2% and 49.3%, respectively, for Scenarios 2, 3
and 4. This shows that creating bus priority by extension and recall methods gives less
benefits to non-priority stages as a higher number of recalls and extension time will cause
higher delays to non-priority approaches. Among all scenarios, Scenario 4, which had a
higher proportion of public transport, was seen as the best strategy.
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3.2. Economic Evaluation

The delay was then used to evaluate the economic benefit of the modal split changes
of the scenarios. The monetary value used in the analysis is an average nominal labour per
person per hour which is RM40.10 per person per hour (USD1 = RM4.14) [59]. The delay
cost was calculated based on delay time per person. Figure 11 shows the total delay costs
for each of the scenarios.
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As shown in Figure 11, Scenario 2 (modal split: 16% BRT and 84% private vehicles)
shows the highest delay cost among all scenarios. It can be seen that the bus priority signal
control caused a frequent call to buses; hence, there were higher delays due to frequent
stops of private vehicles in Scenario 2. However, as the ratio between BRT and private
vehicle increases, more benefits in terms of travel time savings are expected due to the
reduction of private vehicles on the road. Figure 12 shows the summary of benefits gained
from the BRT scenarios.
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Based on Figure 12, Scenario 4 brings more benefits compared to other scenarios.
Scenario 4 incurred about 10.8% more in average delay and 20.4% reduction in total delay
cost compared to the base case. Among all other scenarios, Scenario 4 incurred the smallest
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increment in average delay and the highest reduction in total delay cost relative to the
base case. It is perceived that as more people opt to use public transport instead of private
vehicles the congestion on the road network can be reduced, thus providing a smoother
travelling experience and better financial benefits.

4. Conclusions

Based on a microsimulation-based evaluation, in general, the BRT system improved
the operation of the transport system and providing faster and better services to people in
terms of mobility, resulting in an attractive value for society and the economy. Practically,
in whatever situation, it is expected that there is a trade-off between private vehicle delay
and public transport delay at the signalised junctions, especially when we look into an
individual approach of the junction. However, the positive impact of the utilisation of BRT
at signalised junctions is seen to be more significant compared to the negative consequences.
As the number of people opting for public transport is higher, the social and economic
benefits are prevalent. It was found that Scenario 4 with 54% public transport had more
benefits compared to other scenarios, where it provided the lowest average delay to vehicles
and the most positive saving in total delay cost. By the development and expansion of
public transport systems, the total cost of delay reduces significantly due to the fact that
more people can be transported on public transport; hence there is less congestion on the
road and lesser delay time for people. The implementation of BRT is seen as an important
strategy towards sustainable transportation in Malaysia. This study contributes to the
conceptual design of BRT implementation for developing cities at micro level, which has
limiting conditions.

This study has used an assumption that the total traffic volume would be the same
for all modelled scenarios at the selected location. This acts as a controlled variable in
this study. Therefore, it would be recommended to apply demand forecasting rate for
different scenarios to accommodate the different years of target. The study can be further
extended to include BRT development in a higher level of network system to allow for a
more realistic evaluation, as there are many possible considerations that influence the BRT
operation and general traffic.

To the best of our knowledge, there are many factors shaping BRT’s ambitious strategy.
Firstly, the powerful political will of the authorities with the right amount of investment in
public transport should be the ultimate strategy. In Asia, most countries are experiencing an
increasing trend in motorisation and the number of vehicles is expected to continue to grow.
Therefore, BRT should be regarded as an alternative for urban transport by policymakers
in many large cities in Asia, including Malaysia. This would involve a radical change in
urban mobility transformation in the adoption of a new BRT system and its acceptance in
the urban population. The introduction of a BRT system is a bold step to minimise reliance
on private cars, thus providing socially and economically viable transportation. However,
the success of any transportation strategies relies on the fast and reliable services of public
transport. Therefore, it is important that BRT receives priority over other vehicles with the
addition of a dedicated bus lane.

The findings from this study may help relevant authorities in providing better urban
planning and traffic management strategies for future traffic conditions in Malaysia. It
provides a basis to formulate an effective strategy of BRT in a mixed traffic environment.
The findings of this study serve as an entry point to highlight future directions of urban
mobility in Malaysia.
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