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ABSTRACT
River sedimentation is an important indicator for ecological and geomorphological assessments of
soil erosion within any watershed region. Sediment transport in a river basin is therefore a multi-
faceted field yet being adynamic task in nature. It is characterizedbyhigh stochasticity, non-linearity,
non-stationarity, and feature redundancy. Various artificial intelligence (AI) modeling frameworks
have been introduced to solve river sediment problems. The present survey is designed to pro-
vide an updated account of the latest and most relevant AI-based applications for modeling the
sediment transport in river basin systems. The review is established to capture the subsequent devel-
opments in the advanced AI models applied for river sediment transport prediction. Also, several
hydrological and environmental aspects are identified and analyzed according to the results pro-
duced in those studies. The merits and constraints of the well-established AI models are further
discussed in much detail, particularly considering state-of-the art, modeling frameworks and their
application-specific appraisal, and some of the key proposed future research directions. Together
with the synthesis of such information to drive a new understanding of models and method-
ologies related to suspended river sediment prediction, this review provides a future research
vision for hydrologists, water scientists, water resource engineers, oceanography and environmental
planners.
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1. Introduction

River systems are often regulated formultipurpose usage,
such as, but not limited to, water supply, irrigation,
navigation, flood control, and hydropower generation

CONTACT Zaher Mundher Yaseen zaheryaseen88@gmail.com, yaseen@al-ayen.edu.iq

(Evaristo &McDonnell, 2019). In addition, river systems
are used for wastewater disposal platforms. For instance,
the drain water from textiles, pharmaceutical, mills and
other factories (Bhagat & Tiyasha, 2013; Bhagat et al.,
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2018; Yaseen, Zigale, et al., 2019). Effective utilization
of a river system’s resources and the mitigation of risk
posed to this system usually requires water treatments
with different forms of civil structures and hydrologi-
cal control systems (Kisi et al., 2019; Yaseen, Mohtar,
et al., 2019). Furthermore, altering the watershed runoff
conditions by increasing the land use intensity for agri-
cultural or recreation activities, and by removing the
vegetation cover for urbanization, building roads and
highways constructions, or mining operations can signif-
icantly affect the dynamics and the morphology of a river
system (Heathcote, 2009). When a river system’s equi-
librium is disturbed by human-induced activity, it often
tends to adjust to a new equilibrium state by scouring
the bed, depositing the sediments, or changing its over-
all planform. Such changes may be localized or may also
extend over a long reach. The issues of aggradation and
degradation, siltation of reservoirs, channel scours dur-
ing a flood event, local scour around the structures, and
river bend migration, are the examples of such changes
to a natural river system. Excessive amount of sediment
in water creates problems for the operation of hydraulic
machinery (Betrie et al., 2011; Walling & Collins, 2008).
Large concentration of sediment also affects the over-
all quality of water. Therefore, addressing such problems
requires an prediction of suspended loads, which rep-
resent about 95% of the total sediment loads (Simons
& Şentürk, 1992). Development of a reliable suspended
sediment transport model still remains a challenge due
to the complex character of a river system’s geometry
that governs the water velocity, and the turbulence struc-
ture of flow, which in turn, control the sediment-carrying
capacity of the water flowing through the river system
(Armanini et al., 2015).

Despite the importance of sediment transport in envi-
ronmental pollution, its pattern understanding from the
engineering point of view is less than satisfactory, per-
haps due to the complex interrelations of a large number
of variables that influence the transport process (Sho-
jaeezadeh et al., 2018). Traditionally, hydrologic studies
have relied on similitude analysis through experiments,
because there appear to be no reliable and comprehen-
sive theoretical formulae that can describe the two-phase
phenomenon of fluid and sediment transport. Numer-
ous analytical and experimentalmethods were developed
to compute sediment transport variables. Some of these
methods describe the geometric boundary and its resis-
tance to water flow, sediment transport rate, and mass
conservation of sediment. This article aims to review
some of the useful and practical artificial intelligence
(AI) models that have been applied to model suspended
sediment in a river system. The AI-based models are

described in the next section after reviewing the relevant
literature related to suspended sediment transport.

Accurate prediction of the amount of suspended sedi-
ment in rivers and streams is critically important for the
operation of canals, diversions, and dams (i.e. hydraulic
structures) (Cigizoglu, 2004; Liu, Zhou, et al., 2019;
Sharafati et al., 2019; Suif et al., 2016). In watershed
systems, sediment transport and erosion are a complex
hydrological and environmental problems so the impact
of sediments present in a river in terms of the global uti-
lization of surface water resources has become a major
research area (Greig et al., 2005;Malagó et al., 2017; Sinha
et al., 2019). Several natural processes influence sedi-
ment dynamics in river basins, including deforestation,
overgrazing, and agricultural activities that erode the
soil surface and contribute much of the sediment input.
Given the difficulty faced by physical-deterministicmod-
els (e.g. issues associated with initial or boundary con-
ditions, stochasticity of river flow, and non-stationarity
of the flow), the prediction of sediment load in a river
is more likely to be achieved using AI-based modeling
frameworks that are capable of handling nonlinear rela-
tionships between water flow and environmental factors.

It is of prime interest to the present discussion that
we consider suspended sediment prediction as a complex
and nonlinear process, given the several influencing fac-
tors (Bhagat, Tung, and Yaseen, 2020). In general, these
factors, which are likely to drive our understanding of the
causal inference that exists between sediment transport
and its related predictor variables, could be classified into
four primary categories as Afan et al. (2016):

(i)Meteorological origin (such as precipitation character-
istics and erosive effect of rainfall).

(ii) Hydrological origin (such as base flow, runoff
amount, and floodwater rates).

(iii) Geological origin (such as river basins’ soil charac-
teristics).

(iv)Watershed geomorphology (drainage pattern, topog-
raphy, and hypsometry).

Due to its interdisciplinary nature, sediment trans-
port remains a widely explored research area, spanning
across several methods that have been developed for the
prediction (estimation) and the forecasting of suspended
sediment in rivers (Williams & Berndt, 1976). However,
the adoption of purely physical or deterministic methods
can be inaccurate or rather time-consuming (particularly
incorporating the initial or boundary conditions into the
physical-based models that differ significantly for differ-
entwatersheds). Furthermore, suchmethods can be over-
parameterized due to the nonlinear and complicated
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nature of suspended sediment transport in river bodies.
Even though such spatial data can be obtained from satel-
lite or other remotely sensed sources, they are difficult to
obtain at the precise level of initial condition for differ-
ent watersheds and also, theymay need calibration before
they are ready to be used as a physical model input (Akay
et al., 2008).

The determination of physical processes involved in
the transportation of suspended sediment towater bodies
is important for the practical implementation and putting
in place the necessary measures to mitigate sediment
deposition (Adams et al., 2018; Sadeghi & Singh, 2017).
Several studies have recently reported the issues associ-
ated with active storage and estimation of a reservoir’s
lifespan (DeVente et al., 2005). The issue of reservoir sed-
imentation is thus a universal problem, which, if solved,
can be of universal value. Another issue is the progression
of reservoir sedimentation that is generally is a complex
transport mechanism (Verstraeten et al., 2003).

Various studies have been shown that the complexity
of physical processes related to the current-flow density
can contribute to the difficulty in predicting the con-
centration of suspended sediment (Leisenring &Morad-
khani, 2012; Wu et al., 2018). The density current-flow
refers to the specific flow pattern experienced. This can
happen when the water-specific gravity of the inflow tur-
bidity is greater than that of water in the reservoir (Wang
et al., 2019). The water of high relative density settles at
the base of the reservoir andmaintains its flow under rel-
atively clean water. However, there is a clear demarcation
between the two fluids of varying densities. A conceptual
model’s capability to represent reality is a function of its
conceptual background; hence, it is necessary to ensure
that such models are built using out-of-range data. Thus,
the dynamics of density current flow can be established
using a conceptual model developed with reliable data in
the first stage.

Water pollution is another sedimentation-related
problem of interest to the present study (Tiyasha &
Yaseen, 2020). Soil degradation by water erosion causes
the transportation of pollutants from the soil surfaces
into the river bodies (Halecki et al., 2018; Zhao et al.,
2017). Numerous models and empirical equations have
been developed for soil losses estimation, especially to
estimate the size distribution of sediments leaving the
field, e.g. empirical equations and physically based mod-
els (Rice & Church, 1996). The physically-based models
usually operatewith a high quality, and huge data volume,
which sometimesmay be greater than the actual available
amount of data in the study area. These data are often
required to develop the empirical relationship(s) between
the watershed and relevant predictors, and they must
be fed as initial conditions, or empirical constants into

the physics-based equations for model validation pur-
poses. On the other hand, the composition of sediment-
associated with individual events cannot be predicted by
such empirical equations, prompting the need for the
often unavailable data (Cigizoglu & Alp, 2006).

Suspended sediment load (SSL) has been modeled
using several methods like empirical or AI models
(such as those using data-driven approaches), hydraulic/
numerical methods (such as sediment transport or
physics-based models), statistics-based models (such as
copula function or joint distribution models), as well
as physical/mathematical models (such as distributed
physically-based and lumped conceptual models) (Ab
Ghani & Azamathulla, 2014; Merkhali et al., 2015). In
this respect, some studies have attempted to analyze the
pattern of SSL in stream flow by using one factor such
as high flow and a flood event during individual hydro-
logic events, and these have been achieved mainly by
the use of mathematical models (Duy Vinh et al., 2016;
Fang & Wang, 2000; Huang et al., 2015; Lenzi & Marchi,
2000). These studies have reported that the relationship
between SSL and the flow rate is not so robust, and that it
is likely to follow a non-constant (i.e. non-linear) trend.
Furthermore, most of these studies have pointed out a
lag between the peak of SSL and that of the flow rate.
Regarding the hydraulic/numerical models, these tend to
be time-consuming and rather complicated because they
involve solving a set of differential equations in 2-phase
stream flow discharge and sediment transport (Demirci
& Baltaci, 2013; Jha & Bombardelli, 2011). Mathematical
models may not work favorably, unless the true spatial
distribution of the data for most of the important vari-
ables e.g. evaporation and precipitation are provided and
are of relatively high quality. They also require data on
the spatial changes in watershed properties; hence, such
models involve a prolonged modeling process. Owing to
the unavailability of required data in most developing
countries, the results deduced from physical and math-
ematical models are often uncertain and can be imprac-
tical for diverse watershed regions (Afan et al., 2016).

Traditionally, either simple statistical models (e.g. sed-
iment rating curves (SRC)) or numerical models (e.g.
finite difference methods) have been employed to simu-
late the behavior of SSL in rivers or streams (Nguyen et al.,
2009; Walling, 1977). Recently, the emergence of arti-
ficial intelligence (AI) or machine learning (ML) mod-
els, that operate by the integration of soft computing
methods and data mining approaches, have led to many
promising results, especially in simulating nonlinear sys-
tems related to hydrological procedures to solve water
resources problems (Qin et al., 2019; Yaseen, Ebtehaj,
et al., 2019; Zounemat-Kermani et al., 2009). Consider-
ing recent developments in artificial intelligence models
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Figure 1. Frequently used keywords on river sediment prediction employing artificial intelligence models and major countries under-
taking the works.

and their implementations in modeling sediment trans-
port in river basins, it is necessary to therefore create new
grounds that can advance the past and current progress
on AI-based models.

The diverse nature of independent parameters required
to model sediment problems as well as the complicated
nonlinear process of SSL have provided motivation to

explore the capability and efficiency of AI-based tech-
niques for SSL modeling (Francke et al., 2008; Olyaie
et al., 2015; Shamaei & Kaedi, 2016). To date, several
supervised learning, AI-approaches have been developed
for the modeling of SSL. The frequently used keywords
on river sediment prediction that employed AI-models
and the countries where these works were undertaken
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Figure 2. Artificial intelligence models applied for sediment concentration prediction.

are reported in Figure 1. Determined from the literature,
these are based on the works reported in Scopus database
with Figure 2 presenting the implemented models as
being:

(i)Network-basedAImodels include algorithms, such as:
• Artificial Neural Network (ANN) (Alp & Cigi-

zoglu, 2007).
• Adaptive neuro-fuzzy inference system (ANFIS)

(Kisi & Zounemat-Kermani, 2016).
• Wavelet transformation (Rajaee, 2011).
• Bayesian network (Mount & Stott, 2008).

(ii) Tree-based AI models include algorithms, such as:
• Classification and regression trees (CART)

(Choubin et al., 2018).
• Multivariate adaptive regression splines (MARS)

(Yilmaz et al., 2018).
• M5 model tree (Senthil Kumar et al., 2012).

(iii) Support vector-based AI models include algorithms,
such as:
• Support vector machines (SVM)
• Support vector regression models (SVR)

(Zounemat-Kermani et al., 2016).
(iv) Evolutionary AI models include algorithms, such as
• Gene expression programming (GEP) (Azamathulla

et al., 2012).
• Genetic programming (GP) (Kisi et al., 2012).
• Evolutionary fuzzy inference system (Kişi, 2009).

The current study is aimed to survey the recent lit-
erature on the applicability of AI methods for sedi-
ment transport modeling, particularly over the past four
years, with the primary aim of providing a best practice,
summarized guideline on the application and enhanced
capability of AI models. The survey also highlights the
progress made in terms of AI methods and related
advanced computer-aided methodologies for modeling
river sediment transport. The review also discusses each
of the AI model’s merits and constraints, the necessity
for additional exploration of various river types, their
unresolved issues related to data collection, and recom-
mendations for future research. Since previous studies
embarked on an extensive review of the AI models (Afan

et al., 2016), this study serves as an extension recognizing
recent advancements in the deployment of AI models as
prediction tools. We also aim to make recommendations
for novel approaches that demonstrate the versatility of
AI models in river systems engineering, water resources
management and sustainability.

2. Classical (standalone) artificial intelligence
models

2.1. Introduction of classical AI models

2.1.1. Artificial neural network
Artificial neural network is a powerful computation tech-
nique that can handle non-linear relationships and com-
plex problems (Qin, Wang, Lin, Zhang, Xia, et al., 2018).
ANN models have been applied in many areas, such as
speech and image recognition, chemical research, medic-
inal and molecular biology research, and ecological and
environmental studies (Lek&Guégan, 1999). ANNmod-
els were developed, considering the problem at hand and
the solution to achieve the goal (Qin, Wang, Lin, Zhang,
and Bilal, 2018). An ANN architecture consists of three
layers, the first one is called the input layer where com-
putation of weighted sum is performed, the second layer
is used for data processing i.e. hidden layer, which can be
converted to multiple layers depending on the complex-
ity of the problem, and lastly, the final result is produced
in the output layer. Each layer is made up of neurons
which unite to form the architectural framework (Singh
et al., 2009). Conventional ANNmodels typically consist
of multi-layer feed-forward neural network with applica-
tion of backpropagation algorithm (BPNN) (Rumelhart
et al., 1988); similarly, radial basis function neural net-
work (RBFNN) applies feed-forward neural network and
one hidden layer for model execution (Chen & Cowan,
1991),multi-layer perceptron (MLP) network using feed-
forward neural network (Rosenblatt, 1961), recurrent
neural network (RNN) using backpropagation and addi-
tional layer connected to hidden layer (Du & Swamy,
2019), Levenberg-Marquart (LM), Bayesian regulariza-
tion (BR), and gradient descent and adaptive learning
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Figure 3. Typical ANN architecture for SSL modeling where w: weight and bias are justified by the training process. Most common
transfer functions are sigmoid, Gaussian and tangent sigmoid (i.e. tansig).

(Maier &Dandy, 1999; Samarasinghe, 2006). The general
architecture of three layers is presented in Figure 3.

2.1.2. Support vectormachine
SVM, based on statistical learning theory, has a resilient
conjectural statistical arrangement which makes it a
robust model. SVM has been successful in handling clas-
sification, regression and other kinds of forecasting or
predictive modeling. The SVM model is based on sta-
tistical learning theory and structural risk minimization
hypothesis. It was developed by (Cortes & Vapnik, 1995)
and since it is a kernel-based model, it is able to reduce
model’s complexity and prediction error. Usually, ker-
nel type models have good adaptability, can achieve great
results in global optimization and generalization, and
are capable of managing small samples and minimizing
empirical risk (Raghavendra & Deka, 2014). Kernels are
special nonlinear functions created by non-linear map-
ping and allow the model to separate complicated hyper-
planes. The correct selection of a kernel function is the
key to produce excellent model performance. The most
applied kernel functions are linear, polynomial, radial
basis function, and sigmoid. The modified versions pop-
ularly applied are least-square SVM (Suykens & Van-
dewalle, 1999), linear programming SVM (Zhou et al.,
2002), and Nu-SVM (Schölkopf et al., 2000). The general
architecture of the SVMmodel is presented in Figure 4.

2.1.3. Adaptive neuro-fuzzy inference system
Fuzzy logic models are a powerful tool for deal-
ing with difficult computational problems (Wang, Kisi,
Zounemat-Kermani, Zhu, et al., 2017), and can deal with
non-linearity, uncertainty, and subjective data. These
models overcome the shortcomings of numerical model-
ing. The most popularly applied model is ANFIS, whose
architecture consists of a multilayer feed-forward net-
work that utilizes a neural network learning algorithm
and can identify non-linear boundaries and fuzzy logic to
distinguish non-linear equations and together can map
the input-output space (Takagi & Hayashi, 1988) which
allows it to achieve high non-linear mapping for non-
linear time series data. The stages of ANFIS consist of
choosing the type of interference system, such as Mam-
dani, Sugeno and Tsumoto (Mamdani & Assilian, 1975;
Takagi & Sugeno, 1985), aggregation, and defuzzification.
The general five-layer design of ANFIS is presented in
Figure 5.

2.1.4. Bayesian networks (BNs)
Bayesian methods provide conformity for reasoning in
terms of the fractional beliefs under the condition of
uncertainty. Various numerical parameters imply the
degree of belief and later they parameters are combined
and manipulated as per the rules of probability theory,
considering conditional probabilities, absolute certainty,
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Figure 4. (a) Typical SVM architecture for SSL modeling where α = weight and b = bias. Most common transfer functions are linear,
polynomial, radial basis, and sigmoidal,K = support vector,m = number of support vectors,ϕ(x) = non-linear function. (b). Non-linear
SVR vapnik’s ε-insensitivity loss function.

and conditionally independent variables (Pearl, 2014).
They give rise to the conjugate form of Bayesian theorem
and graphical theory, which adhere to probability rules
for conducting interference. Thus, in a simple form, BNs
are probabilistic, directed acyclic graphical models (Gre-
gory, 2005). For experimental data analysis, a conditional
distribution is computed using the rearrangement of the
chain rule which allows for the computation of condi-
tional probability of the discrete state of any variable with

any number of parents. Additionally, nodes stipulate no
parents, indicating that random variables are not condi-
tionally dependent, and the joint nodes are conditionally
dependent which can be calculated by a joint probability
distribution which is the product of nodes and parents.
States of nodes and their conditional probability can be
allotted as per a qualitative or quantitative procedure. The
efficient BNs are as good as the proximity of dependen-
cies, thus only the most relative number of variables and
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Figure 5. Five layers ANFIS model design with most common MFs, where, θ1i = Node Output, i = node, F = final output, X1 and
X2 = Input variable, P1, P2, Q1, Q2 = Fuzzy rules.

Figure 6. Basic Bayesian network design that satisfies the local
Markov property which states that a node conditionally indepen-
dent of its non-descendants’ parent (e.g. E & F). Joint probability
(e.g. P(G|F), product of P (node|parental node)) is calculated using
the chain rule of probability.

their association with the problem should be used for
construction (Mount & Stott, 2008). Consequently, the
computational cost and complexity can increase expo-
nentially, if the number of nodes is not controlled which
may happen in real-life problems. A schematic represen-
tation of a basic Bayesian network design is shown in
Figure 6.

2.2. Bibliography

Three AImodels, including SVR, ANFIS andANNmod-
els, were employed for SSL simulation at Coruh River,
Turkey (Buyukyildiz & Kumcu, 2017). The models were
built using a daily scale of discharge (Q) and SSL hydro-
logical data, and the accuracy of prediction by the SVM
model over other implemented AI models was con-
firmed.

Kaveh et al. (2017) examined different trained ANFIS
models with parametric algorithms, such as Levenberg-
Marquardt and back-propagation. They used the daily
scale of Q and SSL dataset gathered from Schuylkill River,
United States and results showed the capability of the
applied AI models for modeling suspended sediment
load.

Bharti et al. (2017) developed an ANN, least support
vector regression (LSSVR), reduced error pruning tree
(REPT), and M5 Tree model for the modeling of Q and
SSL at the Pokhariys watershed, India. Using climato-
logical variables with monthly scale, including rainfall,
air temperature (AT), relative humidity (RH), pan evap-
oration (ETo), solar radiation, sunshine duration, and
wind speed, they showed the influence of climatologi-
cal variables on the modeled Q and SSL. However, the
performance of AI models was related to the variance
results.

Pektas and Cigizoglu (2017a) presented a traditional
perdition investigation for daily scale sediment trans-
port in Yadkin River using the feasibility of ANN and
MLR models. The ANN model reported an acceptable



ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS 1593

prediction performance. The same case study was
investigated for ANN internal tuning (Pektas & Cigi-
zoglu, 2017a, 2017b). On the same trend, ANFIS and
ANN models were implemented for sediment predic-
tion (Riahi-Madvar & Seifi, 2018). Predictive models
constructed, based on hydraulic parameters, including
hydraulic radius, water surface slope, sediment particle
dimensions, sediment shear, river discharge, and water
depth. From statistical results and uncertainty analysis,
the ANFIS model showed better results than the ANN
model. The ANFIS and ANN models were developed
for simulating suspended sediment concentration for
Thames River, London, Ontario, using daily water tem-
perature, river discharge, and electrical conductivity, and
results evidenced the potential of ANN inmodeling SSC.

Moeeni and Bonakdari (2018) combined the inte-
grated autoregressive moving average exogenous
(ARMAX)modelwithANN to predict SSL based on river
Q and SSL using daily time scale. Normalizing the data
using the exponential and Box–Cox transformations,
they found the combined model to have an excellent pre-
dictive performance. Hamaamin et al. (2018) designed
twoAImodels, includingANFIS and Bayesian regression
(BR), to predict SSL for SaginawRiver, United States, with
daily data of air temperature, rainfall, and SSL as input
variables. The models were validated against the soil and
water assessment tool (SWAT) and bothmodels provided
a reliable alternative for SWAT to predict SSL.

Gholami et al. (2018) applied the ANNmodel to eval-
uate soil erosion from Kaslilian watershed, Iran. The
Geographic information system (GIS) was used for data
pre-processing of the spatial variation of soil erosion,
where the predictors were rainfall intensity and amount,
soilmoisture, vegetation cover, slope, air, and soil temper-
ature. TheANNmodel performedwell for the watershed.

The classification and regression tree (CART), adap-
tive neuro-fuzzy inference system, multi-layer percep-
tron, and two support vector regression models were
compared for simulating SSL of Haraz watershed in
the northern region of Iran (Choubin et al., 2018).
These models were constructed, based on several hydro-
meteorological data (e.g. riverwater level, river discharge,
rainfall, and SSL). The CART model was found to be
superior, especially for one-month lead time.

Samet et al. (2019) predicted SSL in Gizlarchay River,
Maku Dam, Iran, using ANFIS, ANN, and GP using
water temperature, river discharge, and three-section
sediment sampling (CM) and found ANFIS to be far
better than ANN and GP.

Khan et al. (2019) predicted SSC of the Ramaganga
River, India, using the ANN model and with daily river
discharge and suspended sediment concentration. The
SSC prediction was promising for the watershed.

Emamgholizadeh and Demneh (2019) used daily data
of Q and SSL from Telar and Kasilian Rivers, Iran, to
construct several AI models (i.e. GEP, ANN and ANFIS)
which were validated against the SRC approach. The
evolutionary GEP model showed potential for modeling
SSL.

Bisoyi et al. (2019) employed the ANN model to pre-
dict SSL for Narmada River, India, using daily rainfall,
Q and SSL data. Considering various hydrological vari-
ables and focusing on one peak event based on monsoon
season, it was necessary to use rainfall and Q datasets.

Proper input selection is essential for predictive mod-
els (Noori et al., 2011). Kumar et al. (2019) used ANN
and ANFIS along with Gamma Test (GT) for input selec-
tion for modeling river sediment and discharge. Daily
antecedent Q and SSL from Pathagudem and Polavaram
watersheds in India for the period 1996–2010 were used.
Results showed the suitability of GT as a prior stage for
the learning process.

Singh et al. (2018) integratedGT and correlation func-
tion (CF) with AI models, including multi-layer percep-
tron (MLP), co-active adaptive inference system (CAN-
FIS), self-organizationmap (SOM), and radial basis func-
tion (RBF), and two regression models (e.g. SRC and
MLR). Models were constructed for hydrological data
obtained fromBurhabalang basin,Orissa, India. BothGT
andCFwere used to select the appropriate input variables
as a prior modeling procedure. TheMLPmodel with one
lead time of SSL and Q was the best prediction model
among all other models.

Malik et al. (2019) used the RBF, SOM, least square
support vector regression, andMARSmodelswithGT for
input selection to predict SSC from the Ashti, Tekra and
Bamini stations located at Godavari River basin, India.
They found the RBF model to be the best model.

3. Complementary artificial intelligencemodels

3.1. Wavelet transform

The limitation of various AI models to handle non-
stationary data has led to incorporate wavelet trans-
form, developed by (Grossmann Jean, 1984), as s sig-
nal preprocessing method to provide insights into time-
scaling and its relationship through numerical analy-
sis and manipulation of multi-dimensional signals. This
technique can be used for diagnostic classification and
forecasting (Nourani et al., 2014). The hybrid model
applies the wavelet transform, however, its performance
is based on the selection of a suitable mother wavelet and
decomposition level. Frequently used mother wavelets
are Daubechies-1, Daubechies-2, Daubechies-4, Haar,
db2 and db4. The two common forms of wavelet analysis
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Figure 7. Schematic diagram of hybrid wavelet-AI model: regularity condition with order N decides the choice of wavelet. Wavelet de-
noising (WDT) is applied to adjust detail coefficient. X1 and X2 = Input variables, D1-Dn = decomposition level, Y = Output variable.

are discrete wavelet analysis which deals with discrete
signals and decomposes the series into sub-signals at a
specific wavelet and decomposition level (Daubechies,
1988). The other is continuous wavelet transform which
deals with continuous signals and is useful for disclosing
series features under multi-temporal scales (Percival &
Walden, 2000). Wavelet transform is applied for wavelet
decomposition, wavelet de-noising, wavelet aided com-
plexity explanation, and wavelet aided predicting (Sang,
2013). A schematic diagram of hybrid wavelet-AI model
is shown in Figure 7.

3.2. Bibliography

A complementary predictive model, based on the inte-
gration of data-mining M5 decision tree (M5Tree) with
wavelet data pre-processing technique, was developed for
SSL prediction for the upper Rio Grande and Lighvan-
chai Rivers (Nourani et al., 2019). Discharge and sedi-
ment data with daily and monthly time scales were used
to build the predictive models, and Standalone M5Tree
and ANN models were used for comparison. The com-
plementary WA-M5Tree was found to be a robust pre-
diction model for both rivers and time scales. (Sharghi,
Nourani, Najafi, and Soleimani, 2019) coupled com-
plementary wavelet exponential smoothing (WES) with
ANNmodel to enhance predictive performance based on
time series data pre-processing as a prior stage to pre-
diction. WES-ANN was validated against autoregressive
integrated moving average (ARIMA), seasonal ARIMA
(SARIMA), and ANN models. The Upper Rio Grande
and Lighvanchai Rivers daily SSL data were used to build

the complementary predictive and benchmark models.
The proposed model exhibited improved prediction.

Himanshu et al. (2017) evaluated the wavelet SVM
(W-SVM) and SVM models for daily SSL prediction for
different lead times (1, 3, and 6 days), using the Tropi-
cal Rainfall Measuring Mission (TRMM) Multi-satellite
Precipitation Analysis (TMPA). The WSVM model was
found to be applicable for the prediction of SSL over
all targeted leads, and results showed the bias of TMPA
precipitation on SSL modeling for data-sparse regions.

Alizadeh et al. (2017) equated theW-ANNmodel and
classical ANN model for predicting multiple scale ahead
of SSC at Skagit River, United States. Daily Q and SSC
data were used for initiating the models based on the
correlated lead times. Results indicated that the W-ANN
model was superior to the classical ANN model.

Sharghi, Nourani, Najafi, and Gokcekus (2019a)
developed a complementary model based on wavelet-
emotional neural network (W-ENN) for predicting daily
and monthly SSL in Rio Grande and Lighvanchai Rivers.
The motivation of the wavelet preprocessing approach
application to establish the fact that sediment transport is
related with stochasticity, seasonality, and non-linearity.
The proposedW-ENNmodel was validated against stan-
dalone ENN and ANN models and was found to be
having potential for modeling SSL.

Himanshu et al. (2016) used an ensemble WA-SVR
model with hydrometeorological variables for the predic-
tion of SSL, including the peak values of sediment and
accumulated sediment for reservoir operation, at mul-
tiple steps ahead daily scales, including (1-, 3-, 6- and
9-days). Daily Q, rainfall, and SSL data over 40-years
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from two watersheds (i.e. Muneru and Marol) in India
were used.

Liu, Zhang, et al. (2019) used theHilbert-Huang trans-
form (HHT) to identify the time scale of daily horizon
Q, RF, SSC and normalized difference vegetation index
(NDVI) of Kuye River, China. Several predictive models,
including ANN, MLR, and their complementary version
integrated with ensemble empirical mode decomposition
(EEMD), were employed. The intrinsic mode function
(IMF) was used to detect the correlation between RF,
Q, NDVI, and SSC. The integrated EEMD-ANN model
was more accurate than MLR, ANN and EEMD-MLR.
The non-linear IMF provided antecedent values of the
predictors.

4. Nature-inspired hybrid artificial intelligence
models

4.1. Introduction to nature-inspired optimization
algorithm

Nature-inspired meta-heuristic algorithms have gained
popularity in engineering applications because of their
ability to solve optimization problems. They mimic bio-
logical incidents, attend local optima, and are flexible.
They can be divided into evolutionary-based, physically-
based, and swarm-based. Evolutionary-based methods
are inspired by the laws of evolution. They allow opti-
mizing by selecting the best individual which leads to the
better next generation. Some of the popular evolution-
ary algorithms are genetic algorithm (Goldberg & Hol-
land, 1988), evolutionary strategies (Rechenberg, 1994),
genetic programming (Koza, 1994), and gene expres-
sion programming (Ferreira, 2001). The swarm-based
method is based on the social behavior of groups of ani-
mals and insects. The most popular optimizers are (i)
Particle Swarm Optimization (PSO) found in the social
behavior of flocking birds where particles fly in the search
space to find the best result (Kennedy & Eberhart, 1995);
(ii) ant colony optimization centered around the social
behavior of ants in the ant colony to find the shortest
path to home and food (Dorigo et al., 1996); and Artifi-
cial Bee Colony (ABC) inspired by the behavior of honey
bee swarms (Karaboga & Basturk, 2007). In general, the
nature-inspired/heuristic algorithms can be combined
with AI models to serve as efficient optimization algo-
rithms with the potential to improve their accuracy and
precision (Cicek & Ozturk, 2021; Fadaee et al., 2020).
The combinedmodelsmay be called integrative or hybrid
AI models. In this study, we use the term hybrid for an
embedded AI model with a nature-inspired or heuristic
algorithm that improves the performance of a standalone
AI model.

4.2. Bibliography

Adib andMahmoodi (2017) used the hybrid (integrative)
ANN-GA model to predict annual SSL in Marun River,
Iran. Zounemat-Kermani (2017) tested several AI mod-
els (i.e. ANN, ANN-PSO, ANFIS and GEP) for modeling
SSC in highly dynamic river discharge, and sufficient lead
times were computed using mutual information. Daily
sediment data was gathered from San Joaquin River,
United States. The hybrid ANN-PSO was more efficient
and robust for SSC prediction than ANN, ANFIS and
GEP.

A new AI model, integrating genetic algorithm with
SVR model, was developed for modeling daily scale SSL
at two earth dams located in Iran (Rahgoshay et al., 2018).
Two AI models, including multivariate adaptive regres-
sion spline (MARS) andM5Tree, were developed. Results
concluded the superiority of MARS andM5Tree models.
The river discharge with three-day antecedent values had
a major correlation to predict one day ahead SSL.

Integrating the continuity equation and fuzzy pattern-
recognition into a structure of double artificial neural
networks, (Chen & Chau, 2016) developed a hybrid dou-
ble feedforward neural network model for daily SSL esti-
mation, by integrating continuity equation and fuzzy
pattern-recognition into a structure of doubleANNs. The
results showed that the hybridmodel outperformed other
three benchmarking conventional ML models.

A fuzzy C-means clustering (FCM) approach was
hybridized with an SVR model for internal parameter
optimization and the hybrid model was implemented for
predicting SSL of Sistan River, Iran (Hassanpour et al.,
2019). The proposed hybrid FCM-SVRmodel was devel-
oped using univariate modeling scheme where only daily
SSL data were used. Several benchmark models were
developed, including SRC, ANN, ANFIS and SVR, and
results demonstrated the hybrid FCM-SVR model accu-
rately predicted SSL.

A new hybrid AI model was developed based on a
binary nature-inspired optimization algorithmwith feed-
forward neural network model to quantify the monthly
sediment load of Narmada River, one of India’s largest
rivers (Meshram et al., 2019). Using ten years of Q, RF
and SSL historical data, the model was validated against
the ANFIS model and was found superior to the ANFIS
model and accurately modeled SSL.

Rahgoshay et al. (2019) hybridized SVR model with
two nature inspired optimization algorithms, including
GA and particle swarm optimization (PSO) for SSL pre-
diction. M5 Tree and MARS were used for validation
purposes. For two case studies (i.e. Veynakeh andRoyan),
located in Iran, the hybridization of PSOwith SVRmodel
was promising for modeling sediment transport.
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Yadav et al. (2018) developed two hybrid predictive
models by tuning ANN and SVR models using genetic
algorithm (GA) for modeling SSL using RF, Q, T and SSL
data fromMahanadi River, India. Two predictivemodels,
including MLR and sediment rating curve (SRC), were
used for model assessment. The hybrid models exhibited
a noticeable prediction accuracy.

5. Ensemble artificial intelligencemodels

5.1. Introduction to ensemble artificial intelligence
methods

In contrast to the conventional or stand-alone AI mod-
els, in the ensemble learning, multiple base algorithms
are trained. In other words, ensemble learning attempts
to improve the performance of conventional AI models
by combining multiple hypotheses for the same dataset.
Alternatively, ensemble learning can also be accom-
plished for conjoining the results of different models
(e.g. SVM and ANN) for the same dataset (Wang et al.,
2011). Ensemble methods are learning algorithms that
create classifiers and categorize new data points by con-
sidering weighted and unweighted voting of predictions.
The basic method is Bayesian average but newer meth-
ods have been developed, such as error-correction output
coding, bagging, and boosting (Dietterich, 2000). Ensem-
ble classifiers are more accurate than any individual
member, and two classifiers producing different errors
are considered as diverse classifiers. Additionally, diverse
classifiers are judged good since one classifier result is
unrelated to the other, giving a better voting advantage
when error rates below 0.5 are chosen. There are three
advantages over other models like ANN or decision tree:
(i) It can produce good accuracy without sufficient data;
(ii) it is constructed by running local search from many
different starting points which provide better approxima-
tion resulting in a better computational technique; and
(iii) it has better representation by using effective space
of hypothesis search (Zhang & Ma, 2012).

Random forest (RF) is a bagging type ensemble learn-
ingmethodwhich has an additional layer of randomness.
It is the combination of predictors creating a distribu-
tion pattern of trees in forest and generalizes the error
of tree power of individual trees and correlation among
them. Inputs are selected randomly so that the node can
grow (Bhagat, Pyrgaki, et al., 2021). Its accuracy is good;
it is robust to outliers and noise, faster than bagging
and boosting, and provides good internal assessment of
the error, strength, correlation and variable importance
(Breiman, 2001). The basic architecture RF is presented
in Figure 8.

5.2. Bibliography

Shamaei and Kaedi (2016) applied the ensemble stacking
method to predict SSL based on the results of two differ-
ent AI techniques, including genetic programming and
neuro-fuzzymodels. It was found that the ensemble tech-
nique drastically improved the prediction accuracy of the
single soft computing models.

6. Other applied artificial intelligencemodels

6.1. Overview of other artificial intelligencemodels

6.1.1. Classification and regression tree (CART)
Sequential binary splits, applied for explanatory variables
using a decision rule for allocating items to a group, are
the basic concept of a classification tree. CART was ini-
tially developed to handle clinical data due to its ability
to simultaneously manage combinations of categorical
variables and continuous information and search for the
best way to split the range of continuous variables into
two groups (Breiman et al., 1984). The tree was able to
split at different points or nodes till the end or leaf node.
The CART addresses linear and regression problems and
helps in linear logistic and additive logistic models for
classification problems. Binary recursive portioning is
used for splitting the sequential data into homogeneous
subsets until the condition is fulfilled. Each split depends
on the definite variable value and divides into two sub-
sets generating a binary tree structure. The construction
features include: selection of binary splits of the mea-
surement space, decision of creating a node or contin-
uous splitting and assigning each terminal node to a
class (Crichton et al., 1997). Classification components
are dependent variables, independent variables, learning
dataset and future dataset. Regression components are
prior probabilities from each outcome and cost matrix.
The progress of CART models has been fairly slow due
to the complexity of analysis in some cases. These mod-
els are effective to understand multifaceted interactions
between predictors in respect of traditional multi-variate
techniques. They can handle highly skewed data and cat-
egorical data, deal with missing data by using surrogate
variables, need little amount of input for analysis, and are
relatively simple to interpret (Lewis et al., 2000).

6.1.2. Multivariate adaptive regression splines
(MARS)
Multivariate adaptive regression spline is a flexible regres-
sion non-parametric modeling approach which can
work with high dimensional non-linear data and is the
form of expansion of spline basis function (Wang, Kisi,
Zounemat-Kermani, and Li, 2017). It utilizes the tech-
nique of recursive partitioning approach and regression
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Figure 8. Random forest (RF).

analysis (Bhagat, Paramasivan, et al., 2021; Friedman,
1991), is flexible and accurate, and can forecast continu-
ous and binary output. It has been applied in the fields of
energy, and environmental and ecological studies and can
interpret complex and nonlinear relationships between
predictors and response variable and does not make any
assumption between input and output variables (Bha-
gat, Paramasivan, et al., 2021). It consists of knots which
are breaks between regions, basic functions for distinct
intervals of predictors with two phases known as forward
and backward phases. The forward phase generates all
possible basis functions and the backward phase elim-
inates basis functions which create overfitting which in
turn improves prediction accuracy (Yilmaz et al., 2018).
The general schematic of the MARS model is shown in
Figure 9.

6.1.3. M5model tree
M5 model tree is a piecewise linear model proposed by
Quinlan (1992). It maps the inputs and the output, con-
structed in two different stages i.e. the tree growth and
tree pruning. The first stage splits the input into subsets
using a linear regression model and diminishes the error
betweenmeasured observations andpredicted values and
instantaneously creates decision tree. The second stage

consists of the pruning of tress from each leaf (Heddam
& Kisi, 2018). The basic architecture of M5 model tree is
shown in Figure 10.

6.1.4. Regressionmodel
The regression method is a baseline statistical model-
ing technique which takes account of the relationship
between variables and finds a meaningful relation and
differences. A regression model can be linear, non-linear,
or parametric and non-parametric, depending on the
type of analysis. The basic models consist of predictor
variables and response variables. The response variables
are assumed continuous, whereas predictors can be dis-
crete or continuous with various assumptions on correla-
tion. There are many frequently applied regression mod-
els, such as simple linear regression (Younger, 1979),mul-
tiple linear regression (Andrews, 1974), logistic regres-
sion (Hosmer et al., 2013), ordinal regression (Harrell,
2015), multinomial regression, and discriminant analysis
(Klecka et al., 1980).

6.2. Bibliography

Khosravi et al. (2018) developed several data mining pre-
dictive models to quantify hourly scale SSL measured
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Figure 9. Multivariate adaptive regression splines (MARS).

Figure 10. M5model tree.

at Andean Catchment, Chile. Their models were stan-
dalone reduced error pruning tree (REPT), instance-
based learning (IBK), M5P, hybrid models (i.e. bagging-
M5P, random sub-space-REPT (RS-REPT), and random
committee-REPT (RC-REPT)). The input combinations
were constructed based on Q, water temperature (WT),
and electrical conductively (EC) in addition to SSL. The

hybrid bagging-M5P data mining model accurately pre-
dicted hourly SSL in comparison with other models.

Ulke et al. (2017) inspected five different empirical
models, includingmodels of Einstein, Lane andKalinske,
Chang-Simons-Richardson, and Brooks, for predicting
SSL of three major rivers in Turkey. Themodels were for-
mulated using Q, SSL, river cross-section area, material
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size of the transported material, and Manning coeffi-
cient (n). Among the empirical formulations, the Brooks
model attained the best prediction results. However,
when genetic algorithm was integrated with the Brooks
model for internal parameters tuning, the GA-Brooks
model showed results comparable to those attained from
classical ANN and ANFIS models. The empirical model
revealed that the particles size influenced the SSL trans-
port. Overall, the GA-Brooks model exhibited an ability
for modeling SSL of this particular region.

Afan et al. (2017) employed three AI models, includ-
ing ANN, response surface method (RSM), and RSM
basis global harmony search (GHS), for modeling SSL.
The RSM model is integrated as an input selection
method prior to prediction. Daily Q and SSL over a
decade from Johor River were used to construct the
models. Results showed the viability of integrating RSM
with GHS to select the optimal antecedent records for
prediction.

Kisi and Ozkan (2016) developed a local weighted lin-
ear regression (LWLR) model for SSC prediction based
on daily discharge and suspended sediment concentra-
tion data in Eel River, United States. LSSVR, ANN and
SRC models were used for validation, and the LWLR
model showed a superior prediction performance.

Using rainfall, river flow discharge, and sediment
yield, Sudhishri et al. (2016) employed a non-linear
dynamic (NLD) model for modeling daily sediment
transport in a large mountainous watershed, BinoWater-
shed, India. Modeling was done using rainfall, river flow
discharge, and sediment yield. The NLD model showed
superior prediction results over ANN andW-ANNmod-
els. However, under-estimation was experienced during
the events of high land-sliding and flash floods.

7. Appraisal of the literature

The exploration of related studies leaves little room for
uncertainty as to the superiority of mathematical data-
driven models (viz. regression-based) and soft com-
puting data-driven models (viz. artificial intelligence or
machine learning methods) over traditional sediment
rating curve (SRC) method in simulating SSL (Singh
et al., 2018; Zounemat-Kermani et al., 2016). In a recent
review, Zounemat-Kermani,Matta, et al. (2020) acknowl-
edged the absolute superiority of neuro-computing AI
models over the traditional and statistical methods,
such as SRC, MLR or ARIMA. The findings of stud-
ies show that AI models performed better than standard
mathematical data-driven models. However, the ques-
tion is which category (network-based, tree-based, sup-
port vector-based or evolutionary-based) or what type of
AI model can be chosen as the best AI model for SSL

simulation, is still ongoing. Further research in this par-
ticular area and related hydrological areas would lead
to an answer but would also make it more indistin-
guishable and open-ended. Even though the majority of
studies affirm the promising results from AI models in
SSL simulation over traditional methods (e.g. Buyuky-
ildiz & Kumcu, 2017; Choubin et al., 2018; Singh et al.,
2018; Zounemat-Kermani et al., 2016). Different reasons
might be associated with dissimilarities in announcing
the best AI model by various studies. Indeed, existing
contrasts in the datasets applied (e.g. length of dataset,
input vector, and lead time), feature selection meth-
ods (e.g. auto-correlation, average mutual information,
Gamma Test), data preparation techniques (e.g. hold-
outmethod, cross-validationmethod), andmodel tuning
techniques (e.g. learning algorithms, model architecture,
and termination factors) could be pointed out as some
of the leading causes. In such studies (AI application to
SSL), all the details related tomodeling (e.g. data division
strategy, used algorithm or method and calibration of its
control parameters) should be provided by the modeler.
In this way, the same methodology can be repeated and
more robust conclusions about the implemented method
may be derived from the results. Wu et al. (2014) sug-
gested a protocol for ANN implementation and evaluated
it using drinking water quality data. They examined 81
journal papers since 2000 and reported that there was no
systematic protocol for the development of ANN mod-
els. The proposed protocol included the reasons why a
specific method was selected, methods used and details
of implementation, data collection and pre-processing,
input selection, data splitting, model architecture selec-
tion, and model calibration and validation (replicative,
predictive and structural). The study emphasized that
similar protocols should be developed for other AImeth-
ods to better follow the implemented methodology for
other case studies.

The literature suggests that the development of most
AI models is based on a multivariate modeling strat-
egy. The suspended sediment is modeled, based on vari-
ous hydro-meteorological variables, possibly because AI
models can establish the non-linear relationship that
describes the physical progression between the predic-
tand and the predictors by exploiting the advantages
of the randomized learning process. Sediment trans-
portmodelingwas conducted, using various hydrological
and geophysical variables as causally related predictors
(Tao et al., 2019). For modeling, it is assumed that the
predictor-predictand relationship is stationary, but this
assumption does not hold in real cases, as it depends
on the actual data. When there is a non-stationary
predictor-predictand relationship, the model results can
be uncertain. Hence, the reasons for the non-stationary
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predictor-predictand relationshipmust be identified, and
the selection of predictors must be carefully done to
prevent the presence of any non-stationarity.

Different statistical methods have been used to select
the most suitable input combinations to develop sed-
iment load prediction models. These methods are
the gamma test, correlation analysis, intrinsic mode
function, auto-correlation, average mutual information,
neighborhood component analysis, Boruta feature selec-
tion, and iterative input selection, to name a few (Ahmed,
Deo, Raj et al., 2021; Ahmed, Deo, Ghahramani et al.,
2021; Kumar et al., 2019; Liu, Zhang, et al., 2019; Singh
et al., 2018). These methods first evaluate each candidate
input’s relationwith the output separately and rank them,
and then the higher-ranked inputs are selected for model
development. However, individually highly correlated
inputs do not guarantee good performance when work-
ing together due to collinearity. Recursive Feature Elimi-
nation (RFE), a wrapper feature selection algorithm, has
shown prominence in selecting ML models’ inputs. The
RFE has been recently used to select inputs for a sed-
iment heavy metal prediction model (Bhagat, Tiyasha,
Awadh, et al., 2020; Bhagat, Tiyasha, Tung, et al., 2020)
and a sediment chemical prediction model (Sakizadeh,
2020). The advantage of RFE is its ability to select the
most suitable input combination by iteratively removing
the less influencing inputs. However, the use of different
kinds of wrappers, including RFE, is still limited in the AI
sediment prediction model development.

Despite the excellent performance of AI models
in modeling sediment transport and abstracting non-
linearities that characterize the physical process via mul-
tivariate modeling strategies, it is often necessary to build
new univariate models, which will serve as ‘time-series
prediction models.’ Such models utilize the patterns and
magnitudes of the study variables to predict their poten-
tial value in the future. This is important for most devel-
oping countries where there are limited or unavailable
hydro-meteorological data at the metrological monitor-
ing stations. Therefore, there is a need to develop such
a univariate modeling strategy for implementation using
the feasibility of soft computing models. It should be
noted that the predictive ability of AI models for univari-
ate input data applications has been verified for sediment
simulation.

The present review also points to the significant
improvement of AI models in their integration with data
pre-processing approaches to achieve a ‘complementary
modeling approach.’ Such studies point to the depen-
dence of integrative models on the input space decom-
position with several frequency-based information levels
used to enhance performance. However, according to
a recent study by Quilty and Adamowski (2018), some

of the current research studies inaccurately developed
wavelet-based AI models and thus they could not be
properly applied for practical purposes, mainly related
to forecasting applications. The issues in these research
studies are related to: (i) the potential use of future data
as an input in the development of selected models, (ii)
an inappropriate choice of the decomposition level and
wavelet filters, and (ii) the imprudent partitioning of
training and testing data. Because of not addressing the
reflection boundary conditions in applying the wavelet
decomposition, the researchers have incorrectly imple-
mented wavelet-based AI models, resulting in much bet-
ter accuracy (with a relative positive bias) than what
is normally achievable. To resolve this issue, the subse-
quent study of Quilty and Adamowski (2018) reported
a new strategy to avoid such errors and to adequately
using wavelet decomposition method. The strategic rec-
ommendation mentioned in the study should be consid-
ered in future research studies related to wavelet-based
complementary modeling approach. To demonstrate the
newly proposed approach, a few other research stud-
ies (e.g. (Al-Musaylh et al., 2020; Ghimire et al., 2019;
Prasad et al., 2017)) have already adopted maximum
overlap discrete wavelet transform for water resources,
solar radiation and energy prediction studies.

In the recent decade, the ensemble machine learn-
ing (EML) models, like stacking, bagging, and boost-
ing methods, have been used dramatically in hydrologic
modeling; and simulating sediment transport in water
bodies has followed the same trend (Oehler et al., 2012;
Sharafati et al., 2020). Literature shows that the preva-
lent approaches in generating ensemble models aim to
enhance the general capability and accuracy of individ-
ual AI models in simulating/predicting/forecasting sus-
pended sediment. This claim can be supported, based
on the results of: (i) stacking EML models (Alizadeh
et al., 2017; Shamaei & Kaedi, 2016), (ii) model averag-
ing (Wang et al., 2015), (iii) bagging EMLs (Nhu et al.,
2020), (iv) boosting EMLs (Shadkani et al., 2020) and
(v) ensemble empirical model decomposition with adap-
tive noise algorithm for multi-scale river flow prediction
(Wen et al., 2019).

There is no universal AI model that can capture the
global watershed features, mainly because each model
presents its own limitations based on the algorithm and
watershed input features. This is evidenced by the nature
of various patterns due to the ‘regionalization effect of
the model accuracy in terms of hydrological alterations.’
Meanwhile, the results of AI models have proven the
sophisticated nature of these predictive tools or the pre-
dictive algorithms when implemented in various types
of watershed areas with diverse features, while modeling
and applying the non-linear hydrological parameters.
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Optimization in engineering, specifically in hydro-
logical and water management engineering, has been a
challenge for many decades. Additionally, optimization
methods play a vital role in the training of AI models.
As an illustration, standard types of AI using mathe-
matical techniques, such as traditional gradient-based
optimization methods, were used to solve problems of
interest. Some studies reported the successful practice
of certain types of gradient-based optimization methods
like the Levenberg-Marquardt algorithm in hydrologi-
cal modeling (Qanza et al., 2019; Zounemat-Kermani,
2012). Nonetheless, due to their intrinsic shortcomings
in addressing complexities in non-linear, chaotic, and
stochastic hydrological systems, effective and reliable
nature-inspired optimization techniques, called meta-
heuristic algorithms, have been under development. Due
to their robustness and efficiency in coping with the
complexities of noisy environment, they are superior to
traditional mathematical algorithms for exploring the
problem search space (Gomes et al., 2018). Recent lit-
erature shows that several attempts have been made to
enhance the efficiency of meta-heuristic optimizers in
training ordinary AI models (Kisi & Yaseen, 2019).

Comparing different versions of AI models, it is clear
that the integratedmeta-heuristic AImodels are themost
appropriate for utilization as a potential alternative to
the existing models for modeling river suspended sedi-
ment over diverse hydrological regions. Integrated meta-
heuristic AI models represent a hybridization between
nature-inspired optimization algorithms and classical AI
models, such as ANFIS, SVR, ANN, etc (Sharafati et al.,
2021). In this regard, Fadaee et al. (2020) assessed the
capability of using integrative (hybrid) AI models in
improving the suspended sediment predictions based
on two types of meta-heuristic algorithms, namely the
butterfly optimization algorithm (BOA) and the genetic
algorithm (GA). In general, the meta-heuristic algorithm
increased the accuracy of AI models (ANFIS and ANN)
by almost eight per cent. In such studies, however, limited
data were used, and therefore, their generalization was
also limited. More comprehensive studies related to the
implementation of AI techniques with nature-inspired
algorithms, considering that various stations have dis-
tinct geographical characteristics or climate, are needed.

Different optimization algorithms have been found to
work better with different AI algorithms for suspended
sediment modeling. Rahgoshay et al. (2019) showed that
the SVR model performed better in modeling the sedi-
ment transport amount when it was hybridized with PSO
than with the GA method. However, Darabi et al. (2021)
showed that ANFIS performed better when hybridized
with sine-cosine algorithm (SCA) than certain nature-
inspired optimization algorithms, such as PSO. There are

no guidelines on which optimizer should be hybridized
with which AI algorithm for better prediction of sed-
iment load. Different AI algorithms were individually
optimized in previous studies using different optimizers
to find the bestAI-optimizer combination.However, only
a few AI and optimization algorithms have been eval-
uated. Darabi et al. (2021) examined the performance
of three AI models, namely ANN, ANFIS and RBRNN
models, with four optimization algorithms, namely sine-
cosine algorithm (SCA), PSO, firefly algorithm, and bat
algorithm, for sediment load prediction. Experiments
can be conducted using more AI and optimization algo-
rithms for comparative performance evaluation of differ-
ent AI-optimizer combinations.

It is evident from the literature that linear regres-
sion and sediment rating curves are generally used and
compared with AI methods for modeling SSL, and these
methods produce inferior results compared to the latter
methods. TheMLR and SRCmethods cannot adequately
map the hysteresis behavior of the Q-SSL relationship.
Therefore, it seems that comparison of highly non-linear
AI methods with MLR and/or SRC in modeling SSL is
not reasonable.

The other important issue in modeling SSL is that in
most studies, previous SSL values were used as model
inputs, which is hard to apply in practice because of the
difficulty in measuring SSL data especially in the case
of extreme events. On the other hand, the use of only
water level data instead of discharge carries much more
importance in modeling SSL, especially for the develop-
ing countries where effective variables are not available or
missing for most of the stations.

It is worth noting some of the limitations to the use
of AI approaches in modeling the SSL data series. It is
known that two variables, SSL and streamflow, are gen-
erally used for modeling SSL and these variables have
high spatial and temporal variability and mostly hav-
ing highly skewed distributions. The main limitations of
the implemented AI models are their low applicability
to other basins which may have different morphologi-
cal and climatic characteristics. The other limitation is
their black box nature and their physical interpretation
is a challenge and requires further analysis in quantifying
the relationship between the independent and dependent
parameters in a more reasonable way. Although the AI
methods have some advantages in localmodeling of SSLs,
their limitations need to be addressed.

8. Insights for future research direction

Although several studies have endorsed ensemble learn-
ing as a more robust and effective artificial intelligence
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paradigm, there still exists a significant gap in utiliz-
ing ensemble learning in constructing AI models for
suspended sediment concentration (Baskin et al., 2017;
Wang et al., 2011). In this sense, further research is
encouraged to explore the capability of different types
of ensemble learning, particularly novel methodologies
such as, AdaBoost and bagging techniques. Another topic
that should be pursued in the area of suspended sediment
modeling is the importance of bedload transportation
in river systems and its influence on the variations of
SSL. Although some studies consider both bedload and
SSL modeling using AI methods (Pektaş & Doğan, 2015;
Zounemat-Kermani, Mahdavi-Meymand, et al., 2020),
the vast majority of the published studies have focused
solely on the SSL as the target variable. Since employ-
ing AI models facilitates the process of encountering and
embedding different input parameters, it is suggested to
examine the effect of adding the bedload variable to the
input vector in improving the final accuracy.

There is a need to channelmore effort towards extend-
ing the current scope of research in this area. Considering
these outcomes and the extensive state-of-the-art, the fol-
lowing recommendations can be considered for future
studies:

This review provides interesting findings on AI mod-
els, especially in the area of their practical applicability.
For instance, ELM, advanced version of ANN model
has shown fast-computational learning capability, which
has been qualified as an online expert predictive system
with great real-time application potential. It has been rec-
ommended for the monitoring of sediment transport,
which contributes to the operation of reservoir systems
and development of dependable irrigation systems and
water pollution control. Another benefit of SSL predic-
tion is its importance to river engineering sustainability
from hydrological, environmental, and ecological per-
spectives. The general architecture of ELM is shown in
Figure 11.

In the single hidden layer ELMmodel, the random ini-
tialization of weight of internal network throughout the
learning process can determine its efficiency. However,
this framework can be an issue from the soft computing
viewpoint, since the learning performance of the net-
work can be affected by the single hidden layer which
can lead to inaccurate predictions. Therefore, the exten-
sion of ELM to a deep learning NN model is needed,
where recurrent hidden layers are hosted in the fea-
ture space, thereby ensuring a better determination of
the internal weight. The presence of deep-learning-based
AI models to solve hydrological related problems is yet
to be explored; however, their high accuracy and fast
training/testing times have rendered them desirable for
modeling sediment transport.

Future applications of ELM as a hydrological predic-
tion tool in areas with prominent hydrological feature
memories could hinge on the use of advanced versions of
the deep learning (DL) process which utilizes gradient-
based Long Short-termMemory Network (LSTM) along
with recurrent (or convolutional) layers (Hochreiter &
Schmidhuber, 1997) as a predictive tool. The LSTM-
based recurrent ELM can be applied in a way that LSTM
can learn to bridge the marginal time lags in the case
of discrete steps in order to enforce a constant error
flow through error carousels, thereby permitting multi-
plicative gate units to learn the open/close access to the
constant error flow. Such a model can implement input
data time-series lagged behavior, and the result can be
promising (Hochreiter & Schmidhuber, 1997; Sak et al.,
2014; Tian & Pan, 2015). The local features in space and
time can also be searched using LSTM-based ELM, since
it has a generally little computational complexity, which
can facilitate the extensive extraction of features with a
low latency of the hydrological related variable output.

Another possible future direction is the assessment of
prediction uncertainty, which has become a requirement
for most modeling within the hydrology and water qual-
ity studies (Bayram et al., 2013; WanMohtar et al., 2019).
Using the LowerUpper Bound Estimationmethod, Chen
and Chau (2019) attempted to address uncertainty anal-
ysis on a novel hybrid double feedforward neural net-
work model for producing the sediment load prediction
interval with promising results. This provides a prepara-
tory work and other uncertainty methods can be further
explored.

Beven (2016) suggested that the development of
hydrological science was being threatened by scarce
resources. Hence, the use of cost-effective soft computing
models should be considered rather than embarking on
costly experimental investigations. Therefore, this advan-
tagemust be exploited to build expert systems, which can
help solve real-world problems.

Suspended sediment flow is a complex non-linear
process that AI algorithms try to map by establishing
a relationship between inputs and output. It is often
suggested that AI models’ inputs should be selected
based on the non-linear relationship between inputs and
output, rather than using conventional linear statistical
approaches like correlation and auto-regression. In recent
years, RFE method has been integrated with AI algo-
rithms like SVMandANNtouse theRFE-SVMandRFE-
ANN to select input features based on non-linear inputs-
output relationships. For example, Pour et al. (2020) used
RFE-SVM to select inputs for a rainfall prediction model
of peninsular Malaysia using AI. Such non-linear fea-
ture selection methods can be employed to improve AI
models’ sediment prediction accuracy.
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Figure 11. Extreme learning machine general architecture.

The relationship between suspended sediment and its
driving factors may change with time. This is more likely
due to changes in rainfall and other drivers of river sed-
imentation in the contexts of climate and other environ-
mental changes. Therefore, the predictive model devel-
oped using historical data becomes obsolete within a
short period. In recent years, the forward rolling method
has been used tomake the AI predictionmodel adaptable
to changes in the input-output relationship. For example,
Khan et al. (2021) used a forward rolling AI algorithm
to develop a climate change resilient heatwave predic-
tion model for Pakistan. Such approach can be used in
modeling suspended sediment to make them robust to
environmental changes.

Sediment data is unavailable inmost of the rivers, even
in developed countries. Transformation of basin infor-
mation from one gauged catchment to another nearby
ungauged catchment is often suggested to model the
ungauged catchment’s hydrological process. Recently, AI
models have been used to predict streamflow of one
catchment using rainfall and streamflow data of nearby
gauged catchment. For example, Kim and Song (2020)
trained a convolution neural network with data of a
gauged catchment and used it for streamflow prediction
of a nearby catchment. Kratzert et al. (2019) conducted
a review on predictions in ungauged basins using AI and

its potential. A similar study can be conducted to predict
sediment flow in ungauged or poorly gauged catchments
using nearby catchment data.

Big data is considered as the future solution to complex
prediction problem. An extensive amount of data from
different sources, including satellite, dense observational
network and governmental statistics, are used. AImodels
can be used to integrate satellite high-resolution precip-
itation, land use, soil, and digital elevation model data
for real-time prediction of river sedimentation’s spatial
distribution. Such models have more potential to pro-
vide the required information for river sedimentation
management.

Obviously, the efficiency of AI models must not only
be based on its numerical accuracy, rather, but its prac-
tical implementation for water resources management
must be considered, especially, knowledge-based expert
systems. The physically-based modeling approaches, for
instance, have been proven useful and as excellent hydro-
logical methodologies. Therefore, hybridization of the AI
modeling technique with the current decision-making
outline is still a difficult task, especially when consid-
ering the complicated nature of the system physics and
availability of information.

The impact of human activity on modeling has been
noted as a significant factor missing in the extensive
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Figure 12. Proposed scheme of hybrid predictive models based on the hybridization of nature inspired optimization algorithms with
standard artificial intelligence models.

review. It is certain that human activities can significantly
affect the behavior of a basin of a multi-criteria catch-
ment; therefore, such a constructive factor must not be
neglected as it can influence model performance.

Hybrid AI models have succeeded in handling non-
stationary, random, and complex data (Tahani et al.,
2019). Consequently, these efforts should be encouraged
for the proposition of more coupledmodels in forthcom-
ing research possibilities. Various nature-inspired (NI)
optimizers have been established over the years among
which many are still unmapped in the field of river sus-
pended sediment modeling. Such optimizers are bac-
terial foraging optimization (Das et al., 2009), amoeba
based algorithm (Zhang et al., 2013), artificial plant
optimization (Cui et al., 2012), flower pollination algo-
rithms (Yang, 2012), grasshopper-insect based algorithm
(Saremi et al., 2017), wasp-insect based algorithm (Ther-
aulaz, 1991), fruitfly-insect based algorithm (Xing&Gao,
2014), glow-worm-insect based algorithm (Krishnanand
& Ghose, 2009), dragonfly-insect based algorithm (Mir-
jalili, 2016), shark optimization (Hersovici et al., 1998),
whale optimization (Mirjalili & Lewis, 2016), bean opti-
mization (Zhang et al., 2010), doves-bird based algo-
rithms (Su et al., 2009), eagle-bird based algorithms
(Yang & Deb, 2010), cuckoo search (Yang & Deb,
2009), bird mating (Askarzadeh & Rezazadeh, 2012),
monkey-animal based algorithms (Mucherino & Seref,

2007), wolf-animal based algorithms (Liu et al., 2011),
lion-animal based algorithms (Yazdani & Jolai, 2016),
and artificial fish-swarm algorithm (Li, 2003). A pos-
sible design of NI algorithm coupled with AI mod-
els applied to river sediment modeling is shown in
Figure 12.

Based on an experimental study (Juez et al., 2018)
concluded that the dynamics of fine sediment jointly
observed with discharge found in nature was different in
different reaches of the same river system. The morpho-
logical evolution of the riverbed within a reach (degra-
dation or aggradation) is controlled by the importance
of the sediment available at that location relative to the
incoming sediment. The type of hysteretical loop modu-
lated by the interaction of both the distal and proximal
supply is intrinsically related with these two types of
morphological processes of the riverbed. Consequently,
sediment processes as sediment hysteresis are difficult
to model adequately. This shows that adequately mod-
eling of SSL needs new modeling strategies considering
the inputs including the morphological changes in the
riverbed (Juez et al., 2018).
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