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Abstract The Ahlfors map is a mapping function that maps a multiply connected region onto a 
unit disk. This paper presents a new boundary integral equation related to the Ahlfors map of a 
bounded multiply connected region. The boundary integral equation is constructed from a 
boundary relationship satisfied by the Ahlfors map of a multiply connected region.    
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1. Introduction 
 
The Ahlfors map is a generalization of the Riemann map for a simply connected region. For a multiply 
connected region  of connectivity  the Ahlfors map with the base point  is 
a -to-one map. It maps each boundary component of  one-to-one onto the unit disk and maps 

 to the origin [1, 2, 3]. The Ahlfors map might prove to be useful in the problem of fluid mechanics [1]. 
Bell [1] computed the Ahlfors map for a bounded multiply connected region without the knowledge of the 
zeros of the Ahlfors map. The method in [1] is based on the generalization of the Kerzman-Stein method 
in [4]. In addition, [2, 3] also computed the Ahlfors map for an annulus region. Some integral equations 
related to the Ahlfors map have been constructed in [5-8]. The integral equations in [5, 7, 8] are based 
on the boundary relationship satisfied by an analytic function involving the Kerzman-Stein kernel, the 
Neumann kernel, the Neumann-type kernel and the Kerzman-Stein type kernel. The methods in [5-8] 
however depend on the zeros of the Ahlfors map. 
 
In this paper, we present a new boundary integral equation method related to the Ahlfors map of a 
bounded multiply connected region different from [5-8] using a boundary relationship satisfied by the 
Ahlfors map. The new boundary integral equation will be useful in computing the zeros of the Ahlfors 
map. 
 
The organization of this paper is as follows: Section 2 presents some auxiliary materials related to the 
Ahlfors map. In Section 3 we give a new boundary integral equation related to the Ahlfors map for a 
bounded multiply connected region. In Section 4 we give a conclusion. 
 

2. Auxiliary materials 
 

Let  be a bounded multiply connected region with connectivity  consisting of 
 smooth closed Jordan curves  i.e.  The curves 

 lie in the interior of the outer boundary  The inner curves  have clockwise 
orientations and the outer curve  has a counterclockwise orientation as shown in Figure 2.1. 
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Figure 2.1 A bounded multiply connected region  
 
The curves  are parameterized by periodic twice continuously differentiable 

complex-valued functions  with non-vanishing first derivatives   The 

total parameter domain  is defined as the disjoint union of  intervals of   The 

parameterization  of the whole boundary  on  is defined as   

The unit tangent to the boundary 
 
at  is given by 

                                                                                                                            (2.1) 

The Szegӧ kernel is known to satisfy the Kerzman-Stein integral equation [4, 9] 
                                                                           (2.2) 

where  

                              

 

The function  is known as the Kerzman-Stein kernel and it is continuous on the smooth boundary 

of  [4, 10]. It has the property that  if  are on a circle. Numerical implementation of 

computing the Szegӧ kernel based on (2.2) is discussed in [10]. With  and  (2.2) 
becomes 

                                                              (2.3) 

The derivative of the Szegӧ kernel has been derived in [7] as a solution of the integral equation  
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                                                                            (2.4) 

where 

 

 

and 

 

Let  be the Ahlfors function which maps  conformally onto the unit disk 
 
which 

satisfies the conditions 
  and    where  are the zeros of the 

Ahlfors map and  can be freely chosen. The boundary values for   is represented by 

                                                                         (2.5) 

where  are the boundary correspondence functions of the Ahlfors map on 
Differentiating both sides of (2.5), we have                                            

                                                                                                    (2.6) 

Taking modulus on both sides of (2.6) gives 

                                                                                                 

(2.7) 
Dividing (2.6) by (2.7) and using (2.1), we get 

                                                                                            (2.8)  
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                                                                                                            (2.9) 

The interior values of the Ahlfors map  which is analytic on  can be obtained by using the Cauchy 
integral formula 

                                                                                                  (2.10) 

For points  closed to  the method of Helsing and Ojala [11] can be used for the efficient numerical 
computation of (2.10). 
It is known that the Ahlfors map can be represented in terms of the Szegӧ kernel  and the 

Garabedian kernel  It is given by [4] 

                                                                                    (2.11) 

Since  [1], thus (2.11) can be written as   

                                                                                  (2.12) 

Thus the boundary values for the Ahlfors map can be determined completely from the boundary values 
of the Szegӧ kernel. 
 
Differentiating both sides of (2.12), we get 

 

                                                                                                                                                          (2.13) 
 
In [12, 13] an alternative formula for the derivative of the boundary correspondence function of the Ahlfors 
map has been derived by using (2.6), (2.12) and (2.13), i.e.   
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(2.15) also has the following equivalent form [14, p. 33]                                              

                                                                                    (2.16) 

The following theorem gives an integral equation for an analytic function  satisfying the interior 
non-homogeneous boundary relationship (2.15) or (2.16).  
 
Theorem 2.1.  [14, p. 34] Let  and  be any complex-valued functions that are defined on  

If the function 

 

satisfies the boundary relationship (2.15) or (2.16), then
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The symbol  in the superscript denotes the complex conjugate and the sum in (2.17) is over all those 
zeros  of  that lie inside There is no residue term if the function  has no 
zeros in  Theorem 2.1 generalizes the result in [5] which is limited to a doubly connected region.  
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where  is analytic in  and  for all  Applying log on both sides of (3.2) gives 

                                                                                (3.3) 

Differentiate on both sides of (3.3), we get 

                                                                                                              (3.4) 

so that 

                                                                                                    (3.5) 

is analytic in  and hence (3.5) can be written as 
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                                                        (3.12) 

Rearranging (3.12) and since gives 

               

                                                                                                                                                          (3.13) 
Using the fact that [15, p. 91] 

 

and after some simplifications (3.13) becomes 
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Observe that, by taking the imaginary part on both sides of (3.1), it reduces to the integral equation 
derived in [7], i.e. 
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Perhaps these 
 
orthogonality conditions could be used to find the 

 
unknown zeros  in 

the right-hand side of the integral equation (3.16). If  is a simply connected region, then (3.16) reduces 
to the Warschawski’s integral equation for Riemann map as given in [15, p. 394-395] with  i.e. 

                                                                                           (3.17) 

 

If is a doubly connected region, equation (3.1) reduces to the result given in [19] by a different approach. 
 
4. Conclusion  

 
In this paper, we have presented a new boundary integral equation (3.1) related to the Ahlfors map of a 
bounded multiply connected region which contains the special cases (3.16) and (3.17). 
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