ESTIMATION IN SPOT WELDING PARAMETERS USING GENETIC ALGORITHM

HAFIZI BIM LUKMAN

A report submitted in partial fulfilment of the requirements for the award of the degree of Master of Engineering (Mechanical)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > DECEMBER 2007

To my beloved mother, for your love and courage. This work is dedicated to my parents, Pauziah binti Awaludin, Lukman bin Shariff and my family members who love me and support me during my whole journey of education. Not to forget my fellow friends Apai, Burn, Be'ah, Noorsyam, Syafa, Bob, Karim and my fellow friends

Without you all who am I today!

ABSTRAK

Proses kimpalan rintangan titik merupakan suatu proses penyambungan yang penting terutamanya dalam industri automotif . Proses kimpalan titik menggunakan parameter yang perlu di tentukan oleh pengguna seperti arus electrik dan masa yang di ambil untuk melakukan satu proses dalam kimpalan titik. Kajian ini akan menganggarkan parameter kimpalan titik dengan menggunakan simulasi komputer. Pengenalpastian system merupakan satu bidang permodelan sebuah system melalui data dari ujikaji atau simulasi. Penggunaannya tersebar luas dalam bidang kejuruteraan dan kawalan. Algoritma genetik (GA) digunakan sebagai penganggar parameter untuk suatu struktur model. Dengan menggunakan (GA) parameter kimpalan titik akan dapat di anggarkan.

ABSTRACT

Spot welding is an important metal joining process mainly in the automotive industries. Spot welding process needed parameters define by user such as current and time to finish one cycle of spot welding process. In this study, parameter of spot welding estimate using computer simulation. System identification is the field of modeling a system from experiment or simulation data. The application has widespread in many areas especially in system and control engineering. Genetic algorithm (GA) used as parameter estimation method for a model structure. By using Genetic algorithm (GA) the spot welding parameters can be estimated.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	TITLE OF THESIS	
	DECLARATION	iii
	ACKNOWLEDGEMENT	V
	ABSTRAK	vii
	ABSTRACT	viii
	TABLE OF CONTENTS	ix
	LIST OF FIGURES	xiii
	LIST OF TABLES	XV
	LIST OF ABBREVIATIONS	xvii
Ι	INTRODUCTION	
	1.1 Introduction	1
	1.2 The Problem Statement	2
	1.3 Objectives	3
	1.4 Scope and Limitation	3
	1.5 Methodology	4
	1.6 Organization of The Thesis	4
II	LITERATURE REVIEW	
	2.1 Introduction	6
	2.2 Resistance Welding	6
	2.2.1 Types of Resistance Welds	7
	2.2.1.1 Lap Welding	7

2.2.1.2 Butt Welding	8
2.2.2 Resistance Welding Processes	9
2.2.2.1 Spot Welds	9
2.2.3 Weld Inspection	12
2.2.4 Spot Welding Parameter	13
2.2.4.1 Current	13
2.2.4.2 Pressure	13
2.2.4.3 Time	14
2.3 System Identifications	14
2.3.1 Data Acquisition	14
2.3.2 Model Structure representation	15
2.3.3 Parameter Estimation	15
2.3.4 Validation	17
2.4 Genetic Algorithms	18

III DATA ACQUISITION

3.1 Introduction	20
3.2 Operational Framework	20
3.3 Specimen Preparation	22
3.3.1 Standard of Specimen	22
3.3.2 Procedure for Specimen Prepare	23
3.4 Spot Welding Process	25
3.4.1 Resistance Spot Welding Machine	e 25
3.4.2 Machine Operation	26
3.4.3 Resistance Spot Welding	26
3.4.4 The Three Most Common Variable	les In 27
Resistance Welding	
3.4.5 Digital Tip Force Indicator	28
3.4.6 Experimental procedure	29
3.5 Flow chart for tensile shear test	30
3.5.1 Procedure for the Tensile Shear T	est 31
3.6 Data Collection	32
3.6.1 Material I: - Mild Steel	33

IV METHODOLOGY

4.1 Introduction	38
4.2 Model Structure Representation	39
4.3 Estimate Parameter Using LSE and GA	40
4.3.1 Least Square Estimation (LSE)	40
4.3.2 Genetic Algorithm Procedure	40
4.3.2.1 Set GA Parameters	41
4.3.2.2 Representation	41
4.3.2.3 Generate Initial Population	44
4.3.2.4 Evaluation	45
4.3.2.5 Selection	45
4.3.2.6 Crossover	48
4.3.2.7 Mutation	50
4.3.2.8 New Population	50
4.4 Model Validation	51
4.4.1 Performance Measure	51
4.4.2 Error Index	52

V RESULTS AND DISCUSSION

5.1 Introduction	53
5.2 Parameter Estimation Using GA And LSE For	53
Galvanized	
5.2.1 Simulation Results For Quadratic Model	54
(Galvanized)	
5.2.1.1 Current Estimation For Galvanized	54
5.2.1.1.1 GAWCEM Quadratic For	56
Galvanized	
5.2.1.1.2 Estimation Current Using LSE	57
Quadratic Model	

35

5.2	2.1.2 Time	e Estimation For Galvanized Plate	58
	5.2.1.2.1	GAWTEM Quadratic For Galvanized	59
	5.2.1.2.2	Estimation Time Using LSE Quadratic	60
		Model	
5.2.2	Simulation	n Results For Cubic Model For	61
	Galvanize	d	
5.2	2.2.1 Curr	ent Estimation For Galvanized	62
	5.2.2.1.1	GAWCEM Cubic Quadratic For	63
		Galvanized	
	5.2.2.1.2	Estimation Current Using LSE	65
		Cubic Model	
5.2.3	Compariso	on Between GAWCEM quadratic And	66
	GAWCEN	1 cubic	
5.2.4 Par	ameter Est	imation Using GA And LSE For	67
Mi	ld Steel		
5.3.1	Current Es	stimation For Mild Steel	67
5.3	3.1.1 GAV	VCEM Quadratic For Mild Steel	68
5.3	3.1.2 Estir	nation Current Using LSE Model	70
5.3.2	Time Estin	nation For Mild Steel	71
5.3	3.2.1 GAW	TEM Quadratic For Mild Steel	72
5.3	3.2.2 Estir	nation Time Using LSE Quadratic	74
	Mod	el	

CO	NCLUSION AND RECOMMENDATIONS	
6.1	Introduction	75
6.2	Conclusion	75
6.3	Recommendation	77

REFFERENCES

VI

79

LIST OF FIGURES

NO.	TITLE	PAGE
Figure 1.1	Project Methodology	4
Figure 2.1	How an Overlapped Spot Weld Is Made	7
Figure 2.2	Cross Section of Completed Spot Weld	8
Figure 2.3	Cross Section of Completed Spot Weld	9
Figure 2.4	Cross Section of Completed Spot Weld	9
Figure 2.5	Principle of Stationary Spot Welding With Close-up of	10
	Operation	
Figure 2.6	Pictorial sequence of the making of a spot weld	11
Figure 2.7	(A) Visual inspection, (B) Peel test, (C) Chisel test	12
Figure 3.1	The operational framework	21
Figure 3.2	Shape of test specimen	22
Figure 3.3	Flow chart for the specimen	23
Figure 3.4	Galvanized specimen	24
Figure 3.5	Grinding mild steel surface	24
Figure 3.6	Resistance spot welding machine	25
Figure 3.7	Machine operation	26
Figure 3.8	Digital tip force indicator	27
Figure 3.9	Flow Chart for the Experiment	28
Figure 3.10	(A) Digital tip force indicator, (B) Pressure controller	30
Figure 3.11	Specimen	30
Figure 3.12	Flow chart for the tensile shear test	31
Figure 3.13	Tensile test machine (A) Instron 4206 (B) Instron 8801	32
Figure 3.14	(A)Maximum loads versus pressure for mild steel	34
Figure 3.14	(B) Maximum loads versus time for mild steel	34
Figure 3.14	(C) Maximum loads versus current for mild steel	35

Figure 3.15	(A) Maximum loads versus pressure for galvanized	36
Figure 3.15	(B) Maximum loads versus time for galvanized	36
Figure 3.15	(C) Maximum loads versus current for galvanized	37
Figure 4.1	One point crossovers	49
Figure 4.2	Two point crossover	50
Figure 5.1	Current versus time for GAWCEM quadratic	56
Figure 5.2	Current versus pressure for GAWCEM quadratic	56
Figure 5.3	SSE for every generation using GAWCEM quadratic	56
Figure 5.4	Current versus time for galvanized-LSE Quadratic model	57
Figure 5.5	Current versus pressure for galvanized-LSE Quadratic	57
	model	
Figure 5.6	Time versus current for GAWTEM quadratic	59
Figure 5.7	Time versus pressure for GAWTEM quadratic	60
Figure 5.8	SE for every generation using GA for GAWTEM quadratic	60
Figure 5.9	Time versus current for galvanized-LSE Quadratic model	60
Figure 5.10	Time versus pressure for galvanized-LSE Quadratic model	61
Figure 5.11	Current versus time for GAWCEM cubic	64
Figure 5.12	Current versus pressure for GAWCEM cubic	64
Figure 5.13	SSE for every generation using GAWCEM cubic	64
Figure 5.14	Current versus time for galvanized-LSE cubic model	65
Figure 5.15	Current versus pressure for galvanized-LSE cubic model	65
Figure 5.16	Current versus time for GAWCEM quadratic	69
Figure5.17	Current versus pressure for GAWCEM quadratic	69
Figure 5.18	SSE for every generation using GAWCEM quadratic	69
Figure 5.19	Current versus time for mild steel-LSE Quadratic model	70
Figure 5.20	Current versus pressure for mild steel-LSE Quadratic model	70
Figure 5.21	Time versus current for GAWTEM quadratic	72
Figure5.22	Time versus pressure for GAWTEM quadratic	73
Figure 5.23	SE for every generation using GA for GAWTEM quadratic	73
Figure 5.24	Time versus current for galvanized-LSE Quadratic model	74
Figure 5.25	Time versus pressure for galvanized-LSE Quadratic model	74

LIST OF TABLES

NO.	TITLE	PAGE
Table 3.1	Dimensions for test specimen	23
Table 3.2	Maximum load for the tensile shear test (mild Steel)	33
Table 3.3	Maximum loads for the tensile shear test (Galvanized)	35
Table 4.1	Parameters	39
Table 4.2	Upper and lower limit	41
Table 4.3	Decimal value substring _j	42
Table 4.4	Example of calculation of decimal number	43
Table 4.5	The binary representation and real equivalent	44
Table 4.6	The objective function and fitness value	45
Table 4.7	The probability and cumulative probability	47
Table 5.1	Design variables for galvanized quadratic model for	55
	estimate current	
Table 5.2	The Validation Of The Experimental Between GAWCEM	55
	Quadratic And LSE Model	
Table 5.3	Design variables for galvanized quadratic model for	58
	estimate time	
Table 5.4	The validation of the experimental between GAWTEM	59
	quadratic and LSE model	
Table 5.5	Design variables for galvanized cubic model for estimate	62
	current	
Table 5.6	The validation of the experimental between GAWCEM $_{cubic}$	63
	and LSE model	
Table 5.7	Comparison between GAWCEM quadratic and GAWCEM	66
	cubic	

Table 5.8	Design variables for mild steel quadratic model for estimate	
	current	67
Table 5.9	The validation of the experimental between GAWCEM and	
	LSE model	68
Table 5.10	Design variables for mild steel quadratic model for estimate	
	time	72
Table 5.11	The validation of the experimental between GAWTEM and	
	LSE model	

LIST OF ABBREVIATIONS

GA	- Genetic Algorithm
ЛS	- Japanese Industrial Association
BS	- British Standard
GAWCEM	- Genetic Algorithm Welding Current Strength Estimation Model
GAWTCEM	- Genetic Algorithm Welding Time Estimation Model
LSE	- Least Square Estimate
SSE	- Sum Square Error
MSE	- Mean Square Error
EI	- Error Index

CHAPTER I

INTRODUCTION

1.1 Introduction

Spot welding is an advance technique in welding field. Spot welding is used in an automotive industry to combine two or more plats in producing a car. Proton and Perodua are examples of local automotive industries using spot welding to fabricate their cars. Proton has a big factory at Tanjung Malim while Perodua at Rawang. The main advantage of using spot welding technique is the machine is applicable to robot arm so that, welding work can be done faster than other technique.

In the spot welding process, two or three overlapped or stacked stamped components are welded together due to the heat created by electrical resistance. This can be done by the work pieces as they are held together under pressure between two electrodes. Spot welding may be performed manually, using robots, or by a dedicated spot welding machine and the process takes only few seconds.

Spot welds are discrete weld locations that look like small circles on the assembled components. They are not continuous, linear welds. Low volumes of components are usually done manually, whereas high volumes can be achieved the best by using robots or dedicated weld equipment. In spot welding, there are number of variables involved such as current, pressure, time, human element, type of

condition of welder, condition of electrodes and condition of surface. Some of the weld parameters are difficult to control and may cause weld problems. Others are easy to control such as the current, time and electrode pressure. Achieving good weld quality starts with a good process design that minimizes the variables during welding.

The genetic algorithm (GA) is useful as optimization techniques. GA can search the optimum parameter to produce the good quality of welding. In this study, the initial population of the genetic algorithm is created based on the range of spot welding parameter. The ranges can be estimated based on the standard were used in this study.

By using genetics algorithm, the parameters for spot welding can be optimized. Genetic algorithm can give the good parameter because it used probability concept for the optimization of welding.

1.2 The Problem Statement

Spot welding is a major bonding technique in the automotive industries Nowadays industries are using 30% of the total amount of spot weld to join a part of car. This is because difficult to the estimate welding parameters. The advantages of resistance spot welding are high speed and suitability for automation and inclusion in high production assembly lines with other fabricating operations. Spot welding is a very fast process and there are many factors that affect the quality of welds.

There are several variables to control in order to produce good quality weld like welding current (A), welding pressure (MPa) and time (Cycle). By automatic control of current, timing and electrode force, spot welds can be produced consistently at high production rates and low unit labor costs by unskilled operators.

1.3 Objectives

The main objective of this research is to estimated parameters. The study starts with investigating the spot weld and implementing the genetic algorithm to determine the parameter. In general, the objectives of the study are:-

- (i) To study spot welding and factors affecting a good spot welding.
- Using Genetic Algorithm to estimate good parameter of the welding variables. The welding variables are current and time.
- (iii) Validate the model.

1.4 Scope and Limitation

The research is subjected to the following scope and limitation:

- (i) The study is limited to resistance spot welding.
- (ii) The material of specimen is mild steel and galvanized
- (iii) The thickness of material is 2mm for mild steel and 1mm for galvanized.
- (iv) The machine used is spot welding machine (VX-100K)

The research has a few assumptions:

- Others variables such as human element, type of machine, material and surfaces are neglected.
- (ii) The machine system used is assumed stable. (Spot welding machine need air pressure to move the electrode, but the compressor does provide enough pressure needed for the machine)

1.5 Methodology

The methodology for this study is based on System Identification procedure as shown in flow chart shown in Figure 1.1 below:-

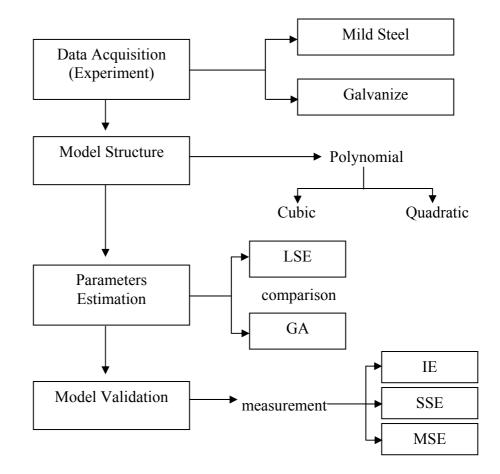


Figure 1.1 Project Methodology

Mild steel and galvanize are material used in this study. For the model structure, polynomial model was used. There are two type of polynomials model such as cubic and quadratic. LSE and GA were used for the parameters estimation. To measure the performance of the model used Error Index, Sum Square Error and Mean Square Error was used as a model validation tests.

1.6 Organization of the Thesis

This report consists of six chapters. Chapter 1 gives brief introduction about the project including objective and scope of the project.

Chapter 2 discusses about spot welding and system identification. Spot welding is several types of resistance welds, resistance welding process and spot welding parameters. In system identification there are several steps should involved as data acquisition, model structure, parameter estimation and model validation.

Chapter 3 discusses about data acquisition and describes the steps on how to collecting the data. This chapter discusses about operational framework, step in specimen preparation, spot welding process and steps to make tensile shear test.

Chapter 4 describes the methodology used in these projects which are system identification procedure and genetic algorithm (GA) procedure as the parameters estimation techniques. This chapter also discuss about the model structure used.

Chapter 5 presents the result of the simulation studies and validating GA algorithm in spot welding parameters estimation technique.

Finally, chapter 6 consists of the conclusion and the recommendation of the project for future work of this project.