Universiti Teknologi Malaysia Institutional Repository

Influence of active flow control on blunt-edged VFE-2 delta wing model

Madan, I. and Tajuddin, N. and Said, M. and Mat, S. and Othman, N. and Wahid, M. A. and Radzi, N. H. M. and Miau, J. J. and Chen, Y. R. and Chen, L. Y. (2021) Influence of active flow control on blunt-edged VFE-2 delta wing model. International Journal of Automotive and Mechanical Engineering, 18 (1). ISSN 2229-8649

Full text not available from this repository.

Official URL: http://dx.doi.org/10.15282/ijame.18.1.2021.01.0636

Abstract

This paper highlights the flow topology above blunt-edged delta wing of VFE-2 configuration when an active flow control technique called ‘blower’ is applied in the leading edge of the wing. The flow topology above blunt-edged delta wing is very complex, disorganised and unresolved compared to sharp-edged wing. For the sharp leading-edged wing, the onset of the primary vortex is fixed at the apex of the wing and develops along the entire wing towards the trailing edge. However, the onset of the primary vortex is no longer fixed at the apex of the wing for the blunt-edged case. The onset of the primary vortex develops at a certain chord-wise position and it moved upstream or downstream depending on Reynolds number, angle of attack, Mach number and the leading-edge bluntness. An active flow control namely ‘blower’ technique has been applied in the leading edge of the wing in order to investigate the upstream/downstream progression of the primary vortex. This research has been carried out in order to determine either the flow on blunt-edged delta wing would behave as the flow above sharp-edged delta wing if any active flow control is applied. The experiments were performed at Reynolds number of 0.5×106, 1.0×106 and 2.0×106 corresponding to 9 m/s, 18 m/s and 36 m/s in UTM Low Speed wind Tunnel based on the mean aerodynamic chord of the wing. The results obtained from this research have shown that the blower technique has significant effects on the flow topology above blunt-edged delta wing. The main observation from this study was that the primary vortex has been shifted 20% upstream when the blower technique is applied. Another main observation was the ability of this flow control to delay the formation of the vortex breakdown.

Item Type:Article
Uncontrolled Keywords:active flow control, delta wing, primary vortex
Subjects:T Technology > TJ Mechanical engineering and machinery
Divisions:Mechanical Engineering
ID Code:95572
Deposited By: Narimah Nawil
Deposited On:31 May 2022 12:46
Last Modified:31 May 2022 12:46

Repository Staff Only: item control page