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ABSTRACT 

 

In machining, cutting tools are used to remove unwanted material from the 

surface of a workpiece. This operation will transform the mechanical energy into thermal 

energy, generating heat at a small location. The generated heat transferred into the 

workpiece, the removed material, the environment and also the tool. This directly affects 

the tool life, the cutting performance and the quality of the products especially the surface 

finish.  

The cutting fluid is used to act as the coolant to reduce the generated heat and as 

lubricant to reduce the friction during the cutting process. This study explores the 

influence of coolant concentration on tool life, surface roughness of the product and the 

cutting force during end milling of mild steel S50C. High Speed Steel end mill of 4 flutes 

was used at various cutting conditions in the investigation. A design of experiment was 

planned, whereby the coolant concentration with cutting speed and feed being the factors 

and tool life, surface roughness and cutting forces were treated as responses. 

Mathematical models on the above responses were established based on the experimental 

results. 

The results of this experiment show that coolant concentration significantly 

affects the tool life at certain milling condition especially lower cutting speed and lower 

feed. At higher feed or cutting speed conditions, the coolant concentration or the coolant 

itself does not have any impact on the tool life. Coolant concentration does not directly 

affects the surface roughness but its’ reaction with feed does influence the results. The 

influence of coolant concentration on cutting force is not significant in this 

experimentation. 
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ABSTRAK 

 

Dalam pemesinan, mata alat digunakan untuk memisahkan bahan yang tidak 

diperlukan daripada permukaan bahan kerja. Dalam operasi ini tenaga mekanikal akan 

diubahbentuk ke tenaga haba, yang mana dihasilkan pada sesuatu tempat yang tertumpu. 

Haba yang dihasilkan akan diserap oleh bahan kerja, bahan yang dipisahkan, persekitaran 

dan mata alat. Ini seterusnya akan memberikan kesan terhadap jangahayat mata alat, 

prestasi pemotongan dan kualiti produk yang dihasilkan terutama  kekasaran permukaan 

yang dihasilkan. 

Bendalir pemotong digunakan sebagai bahan pendingin yang mengurangkan haba 

yang dihasilkan dan juga sebagai bahan pelincir untuk mengurangkan geseran semasa 

proses pemotongan. Kajian ini cuba menilai pengaruh kepekatan bendalir pemotong  

terhadap jangkahayat mata alat, kekasaran permukaan produk dan seterusnya tenaga 

pemotongan semasa proses pemotongan bahan kerja mild steel S50C. Mata alat “High 

Speed Steel” dengan 4 “flute” digunakan dalam beberapa keadaan pemotongan dalam 

experimen ini. Satu rekabentuk eksperimen dirancang dimana kepekatan bendalir 

pemotong, kelajuan pemotongan dan suapan dijadikan faktor-faktor eksperimen, 

jangkahayat mata alat, kekasaran permukaan produk dan tenaga pemotongan dijadikan  

sebagai hasil eksperimen. Model-model matematik terhadap hasil experimen dibentuk 

dari keputusan yang diperolehi. 

Keputusan experimen menunjukkan bahawa kepekatan bendalir pemotong 

memberi kesan yang ketara terhadap jangkahayat mata alat  pada keadaan pemotongan 

tertentu terutamanya apabila keadaan kelajuan pemotongan dan suapan yang rendah. 

Apabila kelajuan pemotongan atau suapan yang tinggi, kepekatan bendalir pemotong 

tidak memberi kesan terhadap jangkahayat mata alat. Kepekatan bendalir pemotong juga 

mempunyai reaksi dengan suapan dan memberi kesan terhadap kekasan permukaan 

produk. Kepekatan bendalir pemotong tidak kesan terhadad tenaga pemotongan. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 Importance of study  

 

A recent survey on world output of machine tools by 28 major 

producing countries shows that these countries produced $51.8 billion US dollars 

worth of machine tools in 2005 [1].  A machine tool here is defined as  a power-

driven machine, powered by an external source of energy. The machine tool is 

designed specifically for metalworking either for cutting, forming, physico-

chemical processing, or a combination of these techniques [1]. This shows how 

vast is metalworking industries, furthermore this statistics covers only the 

industries that are directly involved in producing machine tools. There are 

numerous other industries that are related directly and indirectly which are worth 

huge magnitude in dollar values and have significant affect towards the global 

economics.  

Today, almost all industries one way or another related and dependant 

on metalworking. The metalworking varies from extraction of precious metals to 

make jewelry, building more efficient electronics, and for industrial and 

technological applications from construction to shipping containers to rail, and air 

transport. Without metalworking, goods and services would cease to move around 

the globe.  

Machining is a major part of metalworking that plays important role in 

metal cutting and forming.  In machining, the machine tools especially cutting 

tools play an important role. This is because of their roles in producing shapes and 

forms. Their importance is not only in technical aspects but financial too due to 
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their cost. Their performance and tool life is very much an important criteria to 

every cost conscious management. 

This study involved the analyzing of the important factors that 

contribute to the efficiency of cutting tool during end milling of carbon steel using 

High Speed Steel (HSS) tool. Improving the efficiency of the machining 

performance and the quality of product produced was explored. 

 

1.2 Background of study 

 

In machining, cutting tools are used to remove material from the surface 

of a less resistant body of a work-piece. Though the geometry of cutting tools 

varies from each type of metal removing process, the basic fundamentals are the 

same. Through relative movement and application of force the removal process 

takes place. This operation will transform the mechanical energy into thermal 

energy, generating heat at small location which will affect the tool life, the cutting 

performance and the quality of the product. Cooling of this area is very critical in 

machining to have longer tool life and improve product quality. 

Here,  end milling is chosen as the area of study to determine the impact of 

process parameters and cutting fluid concentration on the performance of a 

cutting tool as well as the surface roughness and the cutting force. The tool life 

performance of the cutting tool is determined through the wear of cutting edge. 

The wear is a product of the material properties of tool such as wear resistance 

and the adverse impact of the cutting operation itself. During cutting process, the 

tool is subjected to load, friction and high temperature. Adhesion, abrasion, 

diffusion, oxidation and fatigue during the cutting operation will cause tool to 

wear. 
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The cutting fluid is used to act as the coolant to reduce the generated heat 

between the workpiece and tool and also as the lubrication agent to reduce the 

friction at the tool-chip interface. The correct selection of cutting fluid and the 

optimum concentration have a great impact on the overall performance of the 

cutting tool. Cutting fluid concentration has impact on causing too much foaming, 

rusting of workpiece and poor tool life. 

N. R. Dhar et. al. [2], investigated the effect of Minimum Quantity 

Lubricant (MQL) on temperature, tool wear and product quality in turning AISI 

9310 steel. They concluded that MQL was better than dry cutting as it reduced 

cutting temperature and produced better surface finish and dimension accuracy. 

In another study also by N.R. Dhar et. al., [3] on the effects of cryogenic 

cooling on temperature, tool wear, surface roughness and dimensional deviation 

in turning AISI 8740 steel by coated carbides, indicated that the cryogenic cooling 

by liquid nitrogen jets provided lesser tool wear, better surface finish and higher 

dimensional accuracy as compared to dry and wet or the conventional flood 

machining. 

The above studies [2,3] are the examples of today’s trend moving away 

from conventional flood or wet machining. One of the arguments put forward on 

conventional wet machining is that it fails to penetrate into the chip-tool interface, 

thus cannot remove the heat effectively. The reason behind is that the addition of 

extreme pressure additives in cutting fluids does not ensure penetration on the 

coolant. It is also claimed that cutting fluid is costly and causing serious threat to 

the environment due to its complex chemical compositions. 

There may some truth in all these claims but in wet machining, an area is 

seriously overlooked in these studies is the correct type and optimum 

concentration of cutting fluid. This area has a lot of potential as the cutting fluid 

industries grow rapidly and producing better environmentally friendly and better 

performance cutting fluids. 
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This study is not venturing on which is the better method cooling for 

machining but rather concentrate on better machining performance could be 

achieved if optimum concentration is used. 

1.3 Objectives 

This study involves the establishment of design of experiment (DOE) plan  

with 3 factor 2 level factorial design, whereby the input variables are the feed (f), 

cutting speed (CS) and the coolant concentration (CC) during end milling process 

of medium carbon steel using High Speed Steel (HSS) tool. The output variables 

are tool wear, the surface roughness of the workpiece and the cutting force. The 

main objectives of this study are: 

i to establish the relationship between coolant concentration with the tool 

wear, surface roughness and cutting force during end milling carbon steel. 

ii to determine the optimum condition of coolant concentration and 

machining parameters for tool life and surface finish. 

iii to establish mathematical models for cutting force, surface roughness and 

tool life when end milling carbon steel 

1.4 Expected results 

Higher feed and cutting speed should increase the tool wear. This is 

expected as more mechanical energy is transformed into thermal energy thus 

causing adverse effect on the cutting tools. Reducing the generated heat during 

cutting can extend the tool life. Increase in coolant concentration may improve the 

performance of the tool and should plateau at certain concentration as additional 

increase in concentration may not improve the tool performance. This is probably 

due to coolants are designed to perform best at specific concentration. Overly 

diluted coolant may reduce tool life as its function as lubricant will not be 

effective, and too much concentrated coolant results in using more coolant than 

necessary which will be a waste to the process.  




