EVALUATION OF COOLANT CONCENTRATION

ON THE MACHINIABILITY OF CARBON STEEL

DURING END MILLING

T. R. ANBARASAN THANGAVELU

This project report submitted in partial fulfillment of the requirement

for the Degrees of Master of Mechanical Engineering

(Advanced Manufacturing Technology)

Faculty of Mechanical Engineering

Universiti Teknologi Malaysia

June, 2007

This thesis is dedicated to my parents, my brothers and sisters.

ACKNOWLEDGEMENT

I would like to express my sincere gratitude and grateful appreciations to my supervisor, Associate Professor Dr. Safian bin Sharif, for his invaluable guidance, advice, encouragement and help throughout the project. Without his support and advice, this project would not be successfully completed.

My special thanks goes to Mr. Amrifan S Mohruni for giving me guidance and support throughout the experimentation and data analysis.

ABSTRACT

In machining, cutting tools are used to remove unwanted material from the surface of a workpiece. This operation will transform the mechanical energy into thermal energy, generating heat at a small location. The generated heat transferred into the workpiece, the removed material, the environment and also the tool. This directly affects the tool life, the cutting performance and the quality of the products especially the surface finish.

The cutting fluid is used to act as the coolant to reduce the generated heat and as lubricant to reduce the friction during the cutting process. This study explores the influence of coolant concentration on tool life, surface roughness of the product and the cutting force during end milling of mild steel S50C. High Speed Steel end mill of 4 flutes was used at various cutting conditions in the investigation. A design of experiment was planned, whereby the coolant concentration with cutting speed and feed being the factors and tool life, surface roughness and cutting forces were treated as responses. Mathematical models on the above responses were established based on the experimental results.

The results of this experiment show that coolant concentration significantly affects the tool life at certain milling condition especially lower cutting speed and lower feed. At higher feed or cutting speed conditions, the coolant concentration or the coolant itself does not have any impact on the tool life. Coolant concentration does not directly affects the surface roughness but its' reaction with feed does influence the results. The influence of coolant concentration on cutting force is not significant in this experimentation.

ABSTRAK

Dalam pemesinan, mata alat digunakan untuk memisahkan bahan yang tidak diperlukan daripada permukaan bahan kerja. Dalam operasi ini tenaga mekanikal akan diubahbentuk ke tenaga haba, yang mana dihasilkan pada sesuatu tempat yang tertumpu. Haba yang dihasilkan akan diserap oleh bahan kerja, bahan yang dipisahkan, persekitaran dan mata alat. Ini seterusnya akan memberikan kesan terhadap jangahayat mata alat, prestasi pemotongan dan kualiti produk yang dihasilkan terutama kekasaran permukaan yang dihasilkan.

Bendalir pemotong digunakan sebagai bahan pendingin yang mengurangkan haba yang dihasilkan dan juga sebagai bahan pelincir untuk mengurangkan geseran semasa proses pemotongan. Kajian ini cuba menilai pengaruh kepekatan bendalir pemotong terhadap jangkahayat mata alat, kekasaran permukaan produk dan seterusnya tenaga pemotongan semasa proses pemotongan bahan kerja mild steel S50C. Mata alat "High Speed Steel" dengan 4 "flute" digunakan dalam beberapa keadaan pemotongan dalam experimen ini. Satu rekabentuk eksperimen dirancang dimana kepekatan bendalir pemotong, kelajuan pemotongan dan suapan dijadikan faktor-faktor eksperimen, jangkahayat mata alat, kekasaran permukaan produk dan tenaga pemotongan dijadikan sebagai hasil eksperimen. Model-model matematik terhadap hasil experimen dibentuk dari keputusan yang diperolehi.

Keputusan experimen menunjukkan bahawa kepekatan bendalir pemotong memberi kesan yang ketara terhadap jangkahayat mata alat pada keadaan pemotongan tertentu terutamanya apabila keadaan kelajuan pemotongan dan suapan yang rendah. Apabila kelajuan pemotongan atau suapan yang tinggi, kepekatan bendalir pemotong tidak memberi kesan terhadap jangkahayat mata alat. Kepekatan bendalir pemotong juga mempunyai reaksi dengan suapan dan memberi kesan terhadap kekasan permukaan produk. Kepekatan bendalir pemotong tidak kesan terhadad tenaga pemotongan.

TABLE OF CONTENT

CHAPTER	TITLE	PAGE
	DECLARATION OF SUPERVISOR	i
	TITLE PAGE	ii
	DECLARATION OF AUTHOR	iii
	DEDICATION	iv
	ACKNOWLEDGEMENT	V
	ABSTRACT	vi
	ABSTRAK	vii
	TABLE OF CONTENT	viii
	LIST OF SYMBOLS	xii
	LIST OF TABLES	xiii
	LIST OF FIGURES	xiv
	LIST OF APPENDICES	xviii
CHAPTER 1	INTRODUCTION	1

1.1	Importance of study	1
1.2	Background of study	2
1.3	Objectives	4
1.4	Expected results	4

CHAPTER 2 LITERATURE REVIEW

	2.1	Basic Machining Theory	5
	2.2	Basic machining process	7
	2.3	Milling	8
	2.4	End milling	9
	2.5	Cutting tools	11
	2.6	Materials	15
	2.7	Machinability of carbon steel	17
	2.8	Types of Coolant and its application	18
	2.9	Effect of coolant concentration	21
CHAPTER 3	ME	THODOLOGY	22
	3.1	Design of experiment	22
	3.2	Parameter setting and responses	23
	3.3	Cutting tool used	24
	3.4	Work material	25
	3.5	Coolant	26
	3.6	Equipment	28
	3.6	5.1 CNC machining centre	28
	3.6	5.2 Toolmaker microscope	30
	3.6	5.3 Surface roughness measurement	31
	3.6	6.4 Coolant concentration measurement	32
	3.6	5.5 Tool wear image capturing	33

FER 4	EXP	PERIMENT RESULTS AND DISCUSSION	34
	4.1	Impact of Machining conditions on Tool Wear	34
	4.1.	1 Coolant Concentration of 5% versus 10% on	34
		Tool Wear	
	4.1.	2 Feed of 0.05mm/tooth versus 0.15mm/tooth on	39
		Tool Wear	
	4.1.	3 Cutting speed of 30m/min versus 100m/min on	43
		Tool Wear	
	4.1.	4 DOE analysis on Tool life ($V_B = 0.02$ mm)	47
	4.2	Impact of Machining conditions on Surface	53
		Roughness	
	4.2.	1 Coolant Concentration of 5% versus 10% on	53
		Surface roughness	
	4.2.	2 Feed of 0.05mm/tooth versus 0.15mm/tooth on	54
		Surface roughness	
	4.2.	3 Cutting speed of 30m/min versus 100m/min on	55
		Surface roughness	
	4.2.	4 DOE analysis on Surface roughness	56
	4.3	Impact of Machining conditions on Cutting Force	61
	4.3.	1 Coolant Concentration of 5% versus 10% on	61
		Cutting Force	
	4.3.	2 Feed of 0.05mm/tooth versus 0.15mm/tooth on	62
		Cutting Force	

СНАРТ _ ------ -

	4.3.3 Cutting speed of 30m/min versus 100m/min on	63
	Cutting Force	
	4.3.4 DOE analysis on Cutting Force	64
CHAPTER 5	CONCLUSION	69
REFERENCES		71
APPENDICES		73

LIST OF SYMBOLS

nt

f	- feed (mm/tooth)
CS	- Cutting speed (m/min)
CC	- Coolant concentration
DOE	- Design of Experiment
V_B	- Tool wear
СН	- Chipping
µСН	- Micro chipping
С	- Carbon
HSS	- High speed steel
TiN	- Coated with Titanium Nitrate
TiCN	- Titanium Carbonitride
TiAlN	- Titanium Aluminium Nitrite

- TiAlCrN Titanium Aluminium Cromium Nitrite
- PVD Physical Vapour Deposition
- PCB Printed Circuit Board
- PCD Polycrystalline diamond
- ASTM American Society for Testing and Materials
- AISI -The American Iron and Steel Institute
- JIS Japanese Industrial Standards

LIST OF TABLES

Table	Title	Page
Table 3.1	DOE experiment plan	24
Table 3.2	Chemical composition of work material S50C	25
Table 3.3	Physical properties of work material S50C	26
Table 3.4	Typical Physical & Chemical Characteristics	27
Table 3.5	Specification of the CNC machining Center MH 700s	29
Table 3.6	Toolmaker microscope equipment specification	30
Table 3.7	Taylor-Hobson Surface Roughness Tester equipment	31
	specification	
Table 4.1	Tool life for CC of 5% and 10% at various cutting condition	37
Table 4.2	Tool life for feed of 0.05mm/tooth and 0.15mm/tooth at various	42
	cutting condition	
Table 4.3	Tool life for CS 30m/mim and 100m/min at various cutting	46
	condition	

LIST OF FIGURES

Figure	Title	Page
Fig.2.1	Basic cutting mechanism	6
Fig.2.2	Machining and Chip formation	6
Fig 2.3	Machining processes	7
Fig 2.4	Milling processes	8
Fig 2.5	End milling	9
Fig 2.6	Vertical milling Machines	10
Fig 2.7	critical factor of End Milling	11
Fig 2.8	Specific purpose end mills	12
Fig 2.9 :	2 common classification of ferrous alloys by structure and	16
	commercial name or application	
Fig 2.10	Coolant applications	19
Fig 3.1	Input and output variables of process	22
Fig 3.2	Cutting tool side and top view	25
Fig 3.3	Milling system	28
Fig 3.4	Toolmaker microscope	30
Fig 3.5	Taylor-Hobson Surface Roughness Tester	31
Fig 3.6	The principles of refractometers	32
Fig 3.7	Hand Refractometer N-20E	33

Fig 3.8	Zeiss Video Microscope	33
Fig 4.1	Tool wear at 5% coolant concentration	34
Fig 4.2	Tool wear at 10% coolant concentration	35
Fig 4.3	Pictures of failed tools, A – chipping, B – Microchip,	35
	C- normal wear	
Fig 4.4	Tool wear at for CC of 5% and 10% for low CS and low feed	36
Fig 4.5	Tool wear at for CC of 5% and 10% for high CS and high feed	36
Fig 4.6	Tool life for CC of 5% and 10% at various cutting condition	37
Fig 4.7	Tool wear at for CC of 5% and 10% at various cutting condition.	38
Fig 4.8	Tool wear at for CC of 5% and 10% at various cutting condition.	38
Fig 4.9	Tool wear at for feed of 0.05mm/tooth vs. 0.15mm/tooth	39
	(CC 5%, CS 30).	
Fig 4.10	Tool wear at for feed of 0.05mm/tooth vs. 0.15mm/tooth	39
	(CC 10%, CS 30).	
Fig 4.11	Tool life for Feed of 0.05mm/tooth vs. 0.15mm/tooth	40
	(CC 5%, CS 100).	
Fig 4.12	Tool life for Feed of 0.05mm/tooth vs. 0.15mm/tooth	41
	(CC 10%, CS 100).	
Fig 4.13	Tool life for feed of 0.05mm/tooth and 0.15mm/tooth at	41
	various cutting condition.	
Fig 4.14	Tool life for CS 30m/mim and 100m/min	43
	(at CC5%, feed 0.05mm/tooth).	
Fig 4.15	Tool life for CS 30m/mim and 100m/min	43

(at CC 10%, feed 0.05mm/tooth).

Fig 4.16	Tool life for CS 30m/mim and 100m/min	44
	(at CC 5%, Feed 0.15mm/tooth).	
Fig 4.17	Tool life for CS 30m/mim and 100m/min	45
	(at CC10%, feed 0.15mm/tooth).	
Fig 4.18	Tool life for CS 30m/mim and 100m/min at various	45
	cutting condition.	
Fig 4.19	DOE for tool life results	47
Fig 4.20	Pareto chart of the standardized effects	48
Fig 4.21	Normal probability plot of the standardized effects	49
Fig 4.22	Main effects plot	49
Fig 4.23	2 way and 3 way interactions	50
Fig 4.24	2 way and 3 way interactions graph	50
Fig 4.25	Estimated coefficients for tool life mathematical model	51
Fig 4.26	Response optimizer for Tool life	51
Fig 4.27	Surface roughness at conditions coolant concentration	53
	5% and 10%	
Fig 4.28	Surface roughness at conditions feed 0.05mm/tooth and	54
	0.15mm/tooth	
Fig 4.29	Surface roughness at conditions cutting speed 30m/min	55
	and 100m/min	
Fig 4.30	Significant factors affecting the Surface roughness	56
Fig 4.31	Pareto chart of the standardized effects	57

Fig 4.32	Normal Probability Plot of the standardized effects	57
Fig 4.33	Main Effects plot for Surface roughness	58
Fig 4.34	2 way and 3 way interactions between factors for Surface	59
	roughness	
Fig 4.35	Interactions plot between factors for surface roughness	59
Fig 4.36	Estimated coefficients for surface roughness formula	60
Fig 4.37	Response optimizer for surface roughness	60
Fig 4.38 :	Cutting force at conditions coolant concentration 5%	61
	and 10%	
Fig 4.39	Cutting Force at conditions feed 0.05mm/tooth and	62
	0.15mm/tooth	
Fig 4.40	Surface roughness at conditions cutting speed 30m/min	63
	and 100m/min	
Fig 4.41	Significant factors affecting the Cutting force	64
Fig 4.42	Pareto chart of the standardized effects	64
Fig 4.43	Normal Probability Plot of the standardized effects	65
Fig 4.44	Main Effects plot for Cutting Force	66
Fig 4.45	Interactions between factors for cutting force	66
Fig 4.46	Interactions plot between factors for cutting force	67
Fig 4.47	Estimated coefficients for surface roughness formula	67
Fig 4.48	Response optimizer for Cutting Force	68
Fig 4.49	Response optimizer for all responses	70

LIST OF APPENDICES

Appendix	Title	Page
Appendix 1	Experiment results for Tool Wear	74
Appendix 2	Experiment results for Surface roughness	77
Appendix 3	Experiment results for Cutting force	80
Appendix 4	Tool – Before cut	83
Appendix 5	Tool #1 – CS 30, Feed 0.05, CC 5%	84
Appendix 6	Tool #2 – CS 100, Feed 0.05, CC 5%	86
Appendix 7	Tool #3 – CS 30, Feed 0. 15, CC 5%	87
Appendix 8	Tool #4 – CS 100, Feed 0.15, CC 5%	88
Appendix 9	Tool #5 – CS 30, Feed 0.05, CC 10%	89
Appendix 10	Tool #6 – CS 100, Feed 0.05, CC 10%	90
Appendix 11	Tool #7 – CS 30, Feed 0.15, CC 10%	91
Appendix 12	Tool #8 – CS 100, Feed 0.15, CC 10%	92
Appendix 13	Tool #9 – CS 65, Feed 0.10, CC 75	93
Appendix 14	Tool #10 - CS 65, Feed 0.10, CC 75	94
Appendix 15	Tool #11 - CS 65, Feed 0.10, CC 75	95
Appendix 16	Tool #12 - CS 65, Feed 0.10, CC 75	96
Appendix 17	Tool #13 – CS 30, Feed 0.05, CC Dry	97
Appendix 18	Tool #14 – CS 30, Feed 0.05, CC Dry	98

CHAPTER 1

INTRODUCTION

1.1 Importance of study

A recent survey on world output of machine tools by 28 major producing countries shows that these countries produced \$51.8 billion US dollars worth of machine tools in 2005 [1]. A machine tool here is defined as a powerdriven machine, powered by an external source of energy. The machine tool is designed specifically for metalworking either for cutting, forming, physicochemical processing, or a combination of these techniques [1]. This shows how vast is metalworking industries, furthermore this statistics covers only the industries that are directly involved in producing machine tools. There are numerous other industries that are related directly and indirectly which are worth huge magnitude in dollar values and have significant affect towards the global economics.

Today, almost all industries one way or another related and dependant on metalworking. The metalworking varies from extraction of precious metals to make jewelry, building more efficient electronics, and for industrial and technological applications from construction to shipping containers to rail, and air transport. Without metalworking, goods and services would cease to move around the globe.

Machining is a major part of metalworking that plays important role in metal cutting and forming. In machining, the machine tools especially cutting tools play an important role. This is because of their roles in producing shapes and forms. Their importance is not only in technical aspects but financial too due to their cost. Their performance and tool life is very much an important criteria to every cost conscious management.

This study involved the analyzing of the important factors that contribute to the efficiency of cutting tool during end milling of carbon steel using High Speed Steel (HSS) tool. Improving the efficiency of the machining performance and the quality of product produced was explored.

1.2 Background of study

In machining, cutting tools are used to remove material from the surface of a less resistant body of a work-piece. Though the geometry of cutting tools varies from each type of metal removing process, the basic fundamentals are the same. Through relative movement and application of force the removal process takes place. This operation will transform the mechanical energy into thermal energy, generating heat at small location which will affect the tool life, the cutting performance and the quality of the product. Cooling of this area is very critical in machining to have longer tool life and improve product quality.

Here, end milling is chosen as the area of study to determine the impact of process parameters and cutting fluid concentration on the performance of a cutting tool as well as the surface roughness and the cutting force. The tool life performance of the cutting tool is determined through the wear of cutting edge. The wear is a product of the material properties of tool such as wear resistance and the adverse impact of the cutting operation itself. During cutting process, the tool is subjected to load, friction and high temperature. Adhesion, abrasion, diffusion, oxidation and fatigue during the cutting operation will cause tool to wear.

The cutting fluid is used to act as the coolant to reduce the generated heat between the workpiece and tool and also as the lubrication agent to reduce the friction at the tool-chip interface. The correct selection of cutting fluid and the optimum concentration have a great impact on the overall performance of the cutting tool. Cutting fluid concentration has impact on causing too much foaming, rusting of workpiece and poor tool life.

N. R. Dhar et. al. [2], investigated the effect of Minimum Quantity Lubricant (MQL) on temperature, tool wear and product quality in turning AISI 9310 steel. They concluded that MQL was better than dry cutting as it reduced cutting temperature and produced better surface finish and dimension accuracy.

In another study also by N.R. Dhar et. al., [3] on the effects of cryogenic cooling on temperature, tool wear, surface roughness and dimensional deviation in turning AISI 8740 steel by coated carbides, indicated that the cryogenic cooling by liquid nitrogen jets provided lesser tool wear, better surface finish and higher dimensional accuracy as compared to dry and wet or the conventional flood machining.

The above studies [2,3] are the examples of today's trend moving away from conventional flood or wet machining. One of the arguments put forward on conventional wet machining is that it fails to penetrate into the chip-tool interface, thus cannot remove the heat effectively. The reason behind is that the addition of extreme pressure additives in cutting fluids does not ensure penetration on the coolant. It is also claimed that cutting fluid is costly and causing serious threat to the environment due to its complex chemical compositions.

There may some truth in all these claims but in wet machining, an area is seriously overlooked in these studies is the correct type and optimum concentration of cutting fluid. This area has a lot of potential as the cutting fluid industries grow rapidly and producing better environmentally friendly and better performance cutting fluids. This study is not venturing on which is the better method cooling for machining but rather concentrate on better machining performance could be achieved if optimum concentration is used.

1.3 Objectives

This study involves the establishment of design of experiment (DOE) plan with 3 factor 2 level factorial design, whereby the input variables are the feed (f), cutting speed (CS) and the coolant concentration (CC) during end milling process of medium carbon steel using High Speed Steel (HSS) tool. The output variables are tool wear, the surface roughness of the workpiece and the cutting force. The main objectives of this study are:

- i to establish the relationship between coolant concentration with the tool wear, surface roughness and cutting force during end milling carbon steel.
- ii to determine the optimum condition of coolant concentration and machining parameters for tool life and surface finish.
- iii to establish mathematical models for cutting force, surface roughness and tool life when end milling carbon steel

1.4 Expected results

Higher feed and cutting speed should increase the tool wear. This is expected as more mechanical energy is transformed into thermal energy thus causing adverse effect on the cutting tools. Reducing the generated heat during cutting can extend the tool life. Increase in coolant concentration may improve the performance of the tool and should plateau at certain concentration as additional increase in concentration may not improve the tool performance. This is probably due to coolants are designed to perform best at specific concentration. Overly diluted coolant may reduce tool life as its function as lubricant will not be effective, and too much concentrated coolant results in using more coolant than necessary which will be a waste to the process.