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Abstract Copula model has applied in various hydrologic studies, however, most analyses 
conducted does not considering the non-stationary conditions that may exist in the time series. To 
investigate the dependence structure between two rainfall stations at Johor Bahru, two methods have 
been applied. The first method considers the non-stationary condition that exists in the data, while the 
second method assumes stationarity in the time series data.  Through goodness-off-fit (GOF) and 
simulation tests, performance of both methods are compared in this study. The results obtained in this 
study highlight the importance of considering non-stationarity conditions in the hydrological data. 
Keywords: Bivariate copula, time series models, dependence modelling, non-stationary, rainfall.  
 

 
Introduction 
 
Hydrologic phenomena, such as drought, flood and rainfall, are natural phenomena that often provide 
dependent multivariate observations. For example, we can observe drought duration, intensity, and 
magnitude from a drought phenomenon. According to Salvadori and De Michele [1], those random 
variables each play an important role, where such an analysis of a joint distribution between the variables 
can identify the characteristics of drought. Therefore, it is necessary to find the joint distribution and 
estimate the dependence between the variables. 
  
Recently, determining a joint distribution of variables using the copula method and constructing its 
dependence structure has become an interesting research in many fields, including finance, 
management, and hydrology. Consequently, through the copula method, the dependency impact of the 
variables in those fields can be analyzed. Sklar [2] has introduced the copula method or copula function 
as a function of combined distribution of two or more uniform marginal distribution. The copula method 
outlines the limitations of the common traditional joint distribution method as it allows us to determine 
the distribution function for the marginal variables. It also allows us to find the fitted copula from any 
different copula families to build the dependency structure of the marginal variables. The proof that this 
method can obtain a joint distribution of bivariate rainfall variables with different distribution functions of 
marginal is shown in the works of Zhang and Singh [3]. Their works were completed without any 
assumption that the variables were independent or normally distributed. 
  
There are several copula families that can accommodate the scope of the broad dependency structure 
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that have been proposed and developed, for example, the Student's t family, the Gaussian family, and 
the Archimedean family. In the hydrological field, the copula families that have been most used for 
analyses are the Archimedean copula families. According to Zhang and Singh [3] and Nelsen [4], the 
Archimedean copula family, which usually have closed form, is very popular and desirable in constructing 
the dependence structure of the hydrologic variables. It is because of the ease in constructing the joint 
distribution functions, and they can be used when the correlation of the variables is either negative or 
positive. 
 
Other than the copula method, statistical model called as time series model has also been widely applied 
to the analyses of hydrological variables. The time series model is used mainly to forecast future 
hydrological data. To build the time series model, the data must be in a stationary condition. However, 
hydrological data is a continuous time series where the observations are measured at every time. The 
conditional mean or variance of the time series can be varying or volatile over time. To counter the non-
stationary problem, the time series models: Autoregressive Integrated Moving Average (ARIMA) and 
Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models are often used in many 
areas of time series analysis. According to Yusof et al. [5], the ARIMA model is used to see the behavior 
of the mean from time series data, while the GARCH model is used to model the heteroscedasticity 
(variance behavior) of the residuals from the time series model of ARIMA. 
 
In the finance field, volatile data are very common. Thus, the time series model is one of the statistical 
models that has been mostly applied. In addition, a combination model between time series model and 
copula model also has been developed and widely applied. Finance studies, such as Oliveria et. al. [6] 
and Oliveria et. al. [7], stated that the accuracy of the forecasting process can be significantly improved 
by combining the time series forecasting models. The combined time series models have better 
performance than the univariate time series model. Therefore, to combine the time series models, copula 
method has been applied. This combination model has brought benefit to the finance field as forecasting 
are the most important subject in finance. Furthermore, another advantage of this combination is that 
the time series models can be applied to the marginal variables to handle the non-stationary condition 
that may exist. 
 
While, for hydrological field, although the time series and the copula models have been widely applied 
in statistical analysis of hydrological data, the combination model is not widely applied yet. Many 
hydrologic studies, such as Salvadori and De Michele [1], Nelsen [4], Ariff et. al. [8], Yusof et. al. [9], and 
Yee et. al. [10], have applied the copula method. However, the analyses only captured the statistical 
distribution of the marginal variable without considering the non-stationary condition that may exist in the 
hydrological time series. Therefore, to fill this gap, the time series model will be applied to model the 
hydrologic variables in this study. 
 
The aim of this study is to apply copula models by considering the non-stationary conditions such as 
seasonal variation and volatility that may exist in the hydrologic variables. This application of combining 
time series models with copula method are widely used in financial econometrics and risk management, 
but not in hydrologic field. Most of the time, copulas are applied to hydrologic time series data, however, 
they often are treated as stationary over time. 
 

Materials and methods 
 
Data 
Malaysia is located at the Southeast Asia and that is composed of two major regions, Peninsular 
Malaysia and East Malaysia. Located near the equator, Malaysia is hot and humid throughout the year. 
The climate in Malaysia is quite uniform, but it can change during the two different monsoon seasons 
that occur yearly. The first is the Northeast Monsoon (NEM), which takes place between November and 
February. It is characterized by the wind from northeast and heavy rain. The second monsoon is the 
Southwest Monsoon (SWM). Malaysia faces drier period with less rainfall during the SWM. In between 
these two monsoon seasons, there are also two inter-monsoon seasons. The inter-monsoons happen 
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between March and April and from September to October. They bring heavy rainfall and commonly 
happens in the convective form. 
 
Johor is a state in Malaysia that is in the south of Peninsular Malaysia. Johor has a climate with consistent 
temperature. The temperature ranges from 23.8 °C to 30.5 °C on a cool day and from 25.0 °C to 32.2 
°C on a hot day. It also has a high amount of rainfall, mostly from November to February. In 2017, 
according to local news [11], [12], [13], the NEM phenomenon which lasted from the end of November 
2017 until April 2018 carried an enormous rainfall, causing a flood disaster. This is a common 
phenomenon that occurs every year, and consequently increases the average rainfall compared with 
prior months. 
 
For this research, monthly rainfall data for 31 years (1981–2011) were taken from two rain gauge stations 
located in Johor: Station Ldg. Lim Lim Bhd., Masai, and Station Ldg. Sg. Tiram, Johor Bahru. The data 
are provided by the Department of Irrigation and Drainage Johor. The distance between the two rainfall 
stations is 1.4 km and the location of these two stations are shown in Figure 1. Station Ldg. Lim Lim 
Bhd., Masai is renamed as Station M and Station Ldg. Sg. Tiram, Johor Bahru is renamed as Station T. 
 
 

 
 

Figure 1. Location of Station M and T in Johor. 
 
Copula Model 
Based on Nelsen [3], for random variables Y1 and Y2, the equation of joint cumulative distribution function 
(CDF) in the form of the function of copula can be written as below in Equation 1: 
 

𝐶(𝑣$, 𝑣&;	𝛽$, 𝛽&, 	𝜃+) = 	𝐶./	𝐹12(𝑦$	; 𝛽$)	, 𝐹14(𝑦&	; 𝛽&)		; 	𝜃+5 	= 	𝐻(𝑦$, 𝑦&	; 	𝛽$, 𝛽&, 	𝜃+)                     (1) 
 

where 𝐹12(𝑦$	; 𝛽$) = 𝑣$ and 		𝐹14(𝑦&	; 𝛽&) = 𝑣& are the CDF of  Y1 and Y2 respectively and 𝛽$	and 𝛽&	as the 
marginal parameters for Y1 and Y2 respectively. Meanwhile, 	𝜃+ is the copula dependence parameter. 
 
The equation of joint probability density function (PDF) of copula is written as in Equation 2:  
 
   ℎ(𝑣$, 𝑣&;	𝛽$, 𝛽&, 	𝜃+) 

       = 84

892894
	𝐻(𝑦$, 𝑦&	; 	𝛽$, 𝛽&, 	𝜃+) 

= 	𝑐/𝐹12(𝑦$	; 𝛽$)	, 𝐹14(𝑦&	; 𝛽&); 𝜃5 ∙ 	𝑓12(𝑦$	; 𝛽$)		 ∙ 	𝑓14(𝑦&	; 𝛽&)        (2) 
 
Where 
 

𝑐/𝐹12(𝑦$	; 𝛽$)	, 𝐹14(𝑦&	; 𝛽&)		; 𝜃5 = 	𝑐(𝑣$, 𝑣&; 	𝜃+) 	= 	
84

8=28=2
𝐶(𝑣$, 𝑣&; 	𝜃+)                       (3) 

 
Equation 3 is the PDF of the copula function and  𝑓12(𝑦$	; 𝛽$) and 𝑓14(𝑦&	; 𝛽&)	 are the PDF of random 
variables of Y1 and Y2 respectively. 
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Time series modeling 
 
ARIMA Model 
A time series of autoregressive moving average (ARMA) model, ARMA (p, q) is formulated as in Equation 
4:  
 

𝑦> = 𝜃$𝜀>@$ +⋯+ 𝜃C𝜀>@C + 𝜀> + 𝜑$𝑦>@$+. . . . +𝜑F𝑦>@F                             (4) 
 
where 𝜑F ≠ 0 , 𝜃C ≠ 0 and 𝜀> with 𝑁(0, 𝜎K&) and 𝜎K& > 0.  The parameter p indicates the autoregressive 
[AR(p)] order and q indicates the moving average [MA(q)] order.  
 
There are two conditions that exist in a time series data, non-stationary and stationary.  A differencing 
process is applied to make a non-stationary time series to become a stationary time series. If no 
differencing order is needed, the ARMA model is applied to the stationary time series. Meanwhile, if the 
differencing order is needed, a time series called Autoregressive Integrated Moving Average (ARIMA) is 
applied. The ARIMA model is written as ARIMA (p, d, q). The d in ARIMA (p, d, q) indicates the 
differencing order.  
 
To detect the p and q orders, the process of inspecting both partial autocorrelation function (PACF) and 
autocorrelation function (ACF) is very helpful. In addition, to find the best time series model, an 
information criterion called the Akaike Information Criterion (AIC) is used in this research. The best time 
series model is chosen based on the lowest value of AIC. 
 
Ljung-Box Series Test 
After either the ARMA or ARIMA model has been chosen, the residuals from the model need to be 
inspected whether it shows an autocorrelation. The examination can be done by using Ljung-Box test. 
Essentially, the result from test will show whether the chosen model is fitted and adequate for the time 
series data. After the adequate model is found, Autoregressive Conditional Heteroscedastic (ARCH) 
effect is examined before ARCH or GARCH model construction. 
 
Box-Jenkins Steps 
The methodology that have been explained before for ARMA/ARIMA time series modelling can be 
summarized as a Box-Jenkins steps. The steps are summarized as follow. 
 
Step 1:  Check the stationarity of the time series by using Augmented Dickey Fuller (ADF) test.  
Step 2:  Identify the order of p and q by observing the plots of ACF and PACF  
Step 3:  Estimate the parameters for the ARIMA models and calculate the AIC value. Choose the  
  best model based on the smallest value of AIC. 
Step 4:  Check the adequacy of the selected ARIMA model by using the Ljung-Box test. 
 
ARCH Effect Inspection 
Before constructing the time series model ARMA-GARCH, or ARIMA-GARCH, the squared residuals of 
ARMA/ARIMA time series model need to be checked first to determine whether the squared residuals 
show autocorrelation. This checking process is simply called as the ARCH effect inspection. The 
significance of ARCH effect inspection is done by using McLeod-Li and Ljung-Box Series test. If the test 
shows that the squared residuals are autocorrelated, then the ARCH effect is present. 
 
GARCH Modeling 
Bollerslev [14] has generalized ARCH to become Generalized Autoregressive Conditional 
Heteroscedastic (GARCH) model (Kane and Yusof [15]) and (Chen et al. [16]). The variance equation of 
the GARCH (p,q) model can be referred to Equation 5 as follows: 

 
𝜎>& = 𝜔 + ∑ 𝛼P𝜀>@P&F

PQ$ + ∑ 𝛽R𝜎>@R&C
RQ$ 	= 𝜔 + 𝛼(𝐵)𝜀>& + 𝛽(𝐵)𝜎>&																																							(5) 
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where     𝜀> = 𝑧>𝜎>			, 𝑧>~𝜓W(0,1) 
 
is the residuals of ARMA model and 𝜓W(0,1) is the PDF of the residuals with 0 mean and variance 1. 𝜏 
is the parameter that define the distribution shape. While, 	𝜎>& the estimated conditional variance, and 
𝛼(𝐵)	and 𝛽(𝐵)	are polynomials in the backshift operator B.  
 
Information Criteria and Statistical Goodness of Fit Test 
The AIC is used as the information criteria to select the best time series forecasting model and as the 
statistical goodness of fit (GOF) test to select the best fitted marginal and copula distribution models. 
The time series forecasting model, the marginal and copula distribution models for the rainfall variables 
that has the smallest value of AIC will be chosen as the best fitted model.  
 
Equation 6 shows the equation for AIC use in time series modelling: 
 

𝐴𝐼𝐶 = 2𝑚 − 2 ln(𝐿b)                                                            (6) 
 
where 	𝑚 is the number of parameters in the statistical model, n is the observations number and	𝐿b is the 
maximum value of the likelihood function for the model. 
 
As for the copula model, the AIC values can be obtained by calculating the maximum likelihood of the 
copula log-likelihood model. Therefore, the equation for AIC use in copula modelling is as in Equation 7: 
 

𝐴𝐼𝐶c = 2𝑚 − 2∑ ln 𝑐[𝐹b12(𝑦$P), 𝐹b14(𝑦&P)	; 	𝜃b+]
f
PQ$                                           (7) 

 
where 𝜃b+	is the estimated copula dependence parameter,  𝐹b12(𝑦$P) and 𝐹b14(𝑦&P) are the values of the 
estimated cumulative distribution at		𝑦$P and 𝑦&P	respectively, and	𝑚	is the number of parameters in the 
copula model.   
 
Empirical Study 
In this study, two methods were used to find the fitted copula. The first method is the combination of time 
series and copula models. The time series modelling which is applied first to the rainfall data. After that, 
the residuals of the time series models are taken as the marginal variables for the Copula function. Two 
types of marginal distributions which are the Normal and Student’s t distributions are considered in fitting 
the residuals data. The second method is only the copula model was applied and the rainfall data are 
taken as the marginal variables for the Copula function. Three marginal distributions: Normal, Gamma, 
and Weibull distributions are considered in fitting the rainfall data. The frameworks for both methods are 
is illustrated in Figure 2. The bivariate copulas that have been used in this study are listed  
in Table 1. 
 

 
Figure 2. The framework for Method 1 and 2. 
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Table 1. Properties of elliptical and Archimedean copula. 
 

Copula Distribution functions of Copula, 𝑪(𝒗𝟏, 𝒗𝟐; 𝜽𝒄) 
Parameter, 

𝜽𝒄 

Gaussian m m
1

2𝜋(1 − 𝜃+&)o.p

qr2(=4)

@s

qr2(=2)

@s

expw−
𝑦$& − 2𝑦$𝑦&𝜃+ + 𝑦&&

2(1 − 𝜃+)&
x 	𝑑𝑦$	𝑑𝑦& 𝜃+ ∈ [−1,1] 

Student’s t m m
1

2𝜋(1 − 𝜃+&)o.p

>r2(=4)

@s

>r2(=2)

@s

w1 +
𝑦$& − 2𝑦$𝑦&𝜃+ + 𝑦&&

(1 − 𝜃+)&
x
@({|$)/&

𝑑𝑦$	𝑑𝑦& 𝜃+ ∈ [−1,1] 

Clayton (𝑣$@.~ 	+	𝑣&@.~ − 1)@$/.~ 𝜃+ ≥ −1 

Frank −
1
𝜃+
	ln	 �1 +	

(𝑒@.~=2 − 1)(𝑒@.~=4 − 1)
𝑒@.~ − 1 � 𝜃+ ≠ 0 

Gumbel-Hougaard exp−/(− ln 𝑣$).~ +	(− ln 𝑣&).~5
($/.~) 𝜃+ ≥ 1 

 
Simulation 
After the fitted copulas have been identified in both methods, simulation of random data is conducted. 
The simulation is repeated for 500 times. The simulation of randomly generated data will aid in finding 
the accuracy of the fitted distribution. The accuracy is calculated by using a performance measure, such 
as root mean squared error (RMSE). Furthermore, from the simulation process, the justification is also 
done based on the visualization of comparing real data and generated data.   

 

Results and discussion 
 
Patterns and rainfall distribution between neighboring stations are often found to be the same and have 
significant correlations. An individual rainfall station analysis may not show the correlation which may 
exist. Therefore, bivariate or multivariate statistical analysis is needed to identify the dependence 
correlation. The analysis can be done to by modeling together the neighboring stations together with a 
joint distribution. Identification of the joint distribution is very important in some hydrological works. For 
example, from the fitted joint distribution, simulation of a runoff in a river basin, where both the stations 
belong to can be done.  
 
The rainfall data used in this study is from two rain gauge stations in Johor. The rainfall stations are 
Station Ldg. Lim Lim Bhd., Masai and Station Ldg. Sg. Tiram, Johor Bahru. Their descriptive statistics 
are presented in Table 2. 
 

Table 2. Descriptive statistics of the monthly rainfall for Station M and Station T. 
 

Descriptive statistics Station M Station T 
Minimum (mm) 0.00 0.00 
Maximum (mm) 940.00 634.80 
Mean (mm) 9.38 7.91 
Standard Deviation (mm) 116.52 116.52 

 
Table 2 shows the descriptive statistics measures for the monthly rainfall at Station M and Station T. The 
statistics measures include the minimum, maximum, mean, and standard deviation of the rainfall data. 
The minimum monthly rainfall for both stations is 0.00 mm. Zero value shows that there was no rainfall 
has happened in that month. Meanwhile, the highest monthly rainfall collected at Station M is 940.00 
mm. Although the distance between Station M and T is 1.4km, the maximum rainfall amount at Station 
M is higher compared with the rainfall amount at Station T. The maximum rainfall at Station T is only 
about 634.80 mm. As for average rainfall, the average monthly rainfall at Station M is also higher than 
Station T, with 9.38 mm and 7.91 mm respectively. However, the standard deviation of the monthly 
rainfall for each station is same, 116.52 mm. This means that the variability of the monthly rainfall is 
same for both stations although the average monthly rainfall at Station M are slightly higher than Station 
T.  
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Correlation Between the Rainfall Data 
The correlation between the rainfall data from Station M and Station T is shown in the scatter plot in 
Figure 3 below. 

 

 
 

Figure 3. Scatter plot of the monthly rainfall at Station M and T in millimeter unit (mm). 
 
Based on the observation in Figure 3, the rainfall at Station M is positively correlated with the rainfall at 
Station T. Kendall's tau value was used to measure the correlation between the rainfall data of both 
stations. The correlation level or the value of Kendall’s tau of the two rainfall stations is 0.5179 with p-
values equal to 0.000 at the significance level of	𝛼 = 0.05. Thus, the correlation between these two rainfall 
stations is statistically significant because the p-value is less than 0.05.  
 

Method 1: ARIMA-Copula Model 
In the first method, the non-stationary condition that exist in the data has been considered. To consider 
non-stationary condition, time series modelling is applied first to the rainfall data. After that, the residuals 
of the time series models are taken as the marginal variables for the Copula function. Two types of 
marginal distributions: Normal and Student’s t distributions were considered in fitting the residuals data. 
 
 

 
 

Figure 4. The plot of time series, ACF and PACF for rainfall at Station M. 
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Time series models for rainfall at Station M and T 
To identify the tentative model, we need to do visual inspection for both ACF and PACF. For Box-Jenkins 
ARIMA method, the required model is ARIMA (p,d,q). Therefore, we can obtain autoregressive order, 
AR (p) and moving average order, MA (q) by using PACF and ACF plots respectively. Figure 4 shows 
the plot of time series, ACF and PACF for rainfall at Station M and Figure 5 for Station T.  

 
Based on Figure 4, there are spikes at lag 12 and 24 in the ACF plot and a spike at lag 12 in the PACF 
plot. This results shows that the suitable time series model is seasonal ARIMA(p,d,q)(P,D,Q)12  model 
(SARIMA). The ACF and PACF have a cut off after the 1st lag which indicating no differencing is needed. 
Thus, the order(s) of (p,d,q) are: p = 0 and 1, d = 0, and q = 0 and 1 and the order(s) of (P,D,Q) are: P = 
0 and 1, D = 0, and Q = 0, 1 and 2.  
 
There are 18 possible candidates of SARIMA model that can be considered for Station M. After the 
model and parameters have been identified and estimated, diagnostic checking is then applied to check 
the adequacy of both models. Table 3 shows the significance of T-test for model parameters, the 
adequacy and the AIC value of 18 possible candidates of SARIMA model.  
 
Table 3. Results of time series modelling for Station M 

 
Possible candidate SARIMA model T-test for parameters Adequacy AIC 

(0,0,0)(0,0,1)[12] Significant No 4570.35 
(0,0,0)(0,0,2)[12] Not significant No 4569.64 
(0,0,0)(1,0,0)[12] Significant No 4566.87 
(0,0,0)(1,0,1)[12] Not significant No 4568.20 
(0,0,0)(1,0,2)[12] Significant No 4549.15 
(0,0,1)(0,0,1)[12] Significant Yes 4560.25 
(0,0,1)(0,0,2)[12] Not significant Yes 4558.33 
(0,0,1)(1,0,0)[12] Significant Yes 4555.89 
(0,0,1)(1,0,1)[12] Not significant Yes 4556.81 
(0,0,1)(1,0,2)[12] Significant Yes 4542.82 
(1,0,0)(0,0,1)[12] Significant Yes 4560.72 
(1,0,0)(0,0,2)[12] Not significant Yes 4558.91 
(1,0,0)(1,0,0)[12] Significant Yes 4556.39 
(1,0,0)(1,0,1)[12] Not significant Yes 4557.27 
(1,0,0)(1,0,2)[12] Significant Yes 4542.41 
(1,0,1)(0,0,1)[12] Not significant Yes 4562.25 
(1,0,1)(0,0,2)[12] Not significant Yes 4560.33 
(1,0,1)(1,0,0)[12] Not significant Yes 4556.41 

 
As shown in Table 3, ARIMA(1,0,0)(1,0,2)[12] is selected as the best model to forecast Station M as the 
parameters of the model are significant, adequate, and has the smallest AIC value. 
 
For Station T, Figure 5 shows there are spikes at lag 12 for both ACF and PACF plots. This results also 
shows that the suitable time series model is seasonal ARIMA(p,d,q)(P,D,Q)12 model (SARIMA). The ACF 
and PACF have a cut off after the 1st lag, indicating no differencing is needed. Thus, the order(s) of 
(p,d,q) are: p = 0 and 1, d = 0, and q = 0 and 1 and the order(s) of (P,D,Q) are: P = 0 and 1, D = 0, and 
Q = 0, and 1.  
 
There are 12 possible candidates of SARIMA model that can be considered for Station T. After the model 
and parameters have been identified and estimated, diagnostic checking is then applied to check the 
adequacy of both models. Table 4 shows the significance of T-test for model parameters, the adequacy 
and the AIC value of the 12 possible candidates of SARIMA model that can be considered for Station T.  
 
From Table 4, ARIMA(0,0,1)(1,0,0)[12] is selected as the best model to forecast Station T as the 
parameters of the model are significant, adequate and has the smallest AIC value. Both time series 
models are then tested for ARCH effect by using McLeod Li and Ljung-Box tests. Figures 6 and 7 display 
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the results of McLeod Li and Ljung-Box tests, respectively, for Station M, while Figures 8 and 9 display 
the results of McLeod Li and Ljung-Box tests, respectively, for Station T. 
 
 

 
 

Figure 5. The plot of time series, ACF and PACF for rainfall at Station T. 
 
 

Table 4. Results of time series modelling for Station T. 
 

Possible candidate SARIMA model T-test for parameters Adequacy AIC 
(0,0,0)(0,0,1)[12] Significant No 4485.01 
(0,0,0)(1,0,0)[12] Significant No 4482.12 
(0,0,0)(1,0,1)[12] Not significant No 4483.85 
(0,0,1)(0,0,1)[12] Not significant Yes 4483.00 
(0,0,1)(1,0,0)[12] Significant Yes 4479.94 
(0,0,1)(1,0,1)[12] Not significant Yes 4481.53 
(1,0,0)(0,0,1)[12] Not significant Yes 4483.34 
(1,0,0)(1,0,0)[12] Not significant Yes 4480.26 
(1,0,0)(1,0,1)[12] Not significant Yes 4481.82 
(1,0,1)(0,0,1)[12] Not significant Yes 4484.82 
(1,0,1)(1,0,0)[12] Not significant Yes 4481.80 
(1,0,1)(1,0,1)[12] Not significant Yes 4483.43 

 
 

 
 

Figure 6. P-value plot of McLeod Li test for squared residuals of ARIMA(1,0,0)(1,0,2)[12] model. 
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Figure 7. P-value plot of Ljung-Box test for squared residuals of ARIMA(1,0,0)(1,0,2)[12] model. 

 
 

Figure 8. P-value plot of McLeod Li test for squared residuals of ARIMA(0,0,1)(1,0,0)[12] model. 
 

 
 

Figure 9. P-value plot of Ljung-Box test for squared residuals of ARIMA(0,0,1)(1,0,0)[12] model. 
 
Figure 6 - 9 show that SARIMA models ARIMA(1,0,0)(1,0,2)[12] and ARIMA(0,0,1)(1,0,0)[12] have no 
ARCH effect since all the p-value of the lags are bigger that 𝛼 = 0.05. Therefore, GARCH modelling is 
not needed. Table 5 summarizes the best time series model for rainfall data of Station M and T. 
 
Table 5. Time series models for Station M and T 

 
Rainfall Stations Model 

M ARIMA(1,0,0)(1,0,2)[12] 
T ARIMA(0,0,1)(1,0,0)[12] 
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Marginal Distributions for Residuals 
Two types of marginal distributions, Normal and Student’s t distributions were considered in fitting the 
residuals data.  The results of AIC values from the GOF test is displayed in Table 6. The results show 
that the residuals data of time series models of both stations are normally distributed as for both rain 
gauge stations, the AIC values for Normal distribution are the smallest. 
 
 
Table 6. The AIC result of marginal distributions for residuals data 
 

Marginal Distribution Station M Station T 
AIC AIC 

Normal 4520.393 4474.989 
Student’s t 5371.810 5410.148 

 
Copula Distribution 
GOF test based on the AIC measurement has also been applied to choose the fitted copula model. The 
AIC of every copula model that have been applied in this research are listed in Table 7. 
 
Table 7. The AIC result of copula distributions for residuals data. 

 
Copula Theta, θ AIC 
Gumbel 1.8527 -177.864 
Clayton 1.7054 -221.040 
Frank 5.0568 -209.412 
Gaussian 0.6616 -222.332 
Student’s t 0.6616 -232.374 
 

Based on the results shown on Table 7, it is identified that Student’s t copula is the best fitted joint 
distribution for the residuals data. This is because the AIC value of Student’s t copula is smaller relative 
to the AIC value of the other copula models considered. 
 
 

Method 2: Copula Model 
 
In the second method, the time series data is assumed to be stationary, which the mean and the variance 
do not change over time.  The common copula models that has been used in hydrological analysis to fit 
the marginal rainfall data has been applied. Three marginal distributions: Normal, Gamma, and Weibull 
distributions were considered in fitting the rainfall data.  
 
Marginal Distributions for Rainfall Data 
The results of AIC values from the GOF test is displayed in Table 8. Based on the lowest AIC values, it 
shows that the best-fitted model for Station M is Weibull distribution and Normal distribution is the best-
fitted model for Station T.  

 
Table 8. The AIC result of marginal distributions for rainfall data. 

 

Marginal Distribution Station M Station T 
AIC AIC 

Normal 5513.529 4507.607 
Weibull 4588.460 5634.098 
Gamma 5592.913 4906.643 
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Copula Distribution 
The AIC of each copula models for Station M and T are listed in Table 9. 
 
Table 9. The AIC result of copula distributions for rainfall data. 

 
Copula Theta, θ AIC 
Gumbel 1.8970 -218.200 
Clayton 2.1970 -239.000 
Frank 7.7780 -291.400 
Gaussian 0.5421 -173.320 
Student’s t 0.6811 -196.800 
 

Based on the results shown on Table 9, it is identified that Frank copula is the best fitted joint distribution 
for the original rainfall data. This is because the AIC value of Frank copula is the smallest compared to 
the AIC value of the other copulas. 

 
Comparison Between Method 1 and Method 2 
 
Based on Tables 7 and 9, both methods get different results for the fitted copula. In Method 1, the best 
fitted copula is the Student’s t Copula. On the other hand, in Method 2, the best fitted copula is the Frank 
Copula. The AIC value for Student’s t Copula is -232.374 and the AIC value for Frank Copula is -291.400. 
However, to compare the performance of copula model fitted from Method 1 and 2, the AIC value cannot 
be used as the performance measure. This is because the marginal data for copula model for both 
methods are from different data sets. In Method 1, the original rainfall data have been used as the 
marginal variables, while in the Method 2, residuals data from time series model have been used as the 
marginal variables. Therefore, to compare the performance of copula model fitted from Method 1 and 2, 
simulation process has been done.  
 
The rainfall data for Method 1 and 2 are simulated based on the chosen fitted marginal and copula 
distribution as shown in the framework Figure 10. The simulation is repeated for 500 times. 
 

 
 

Figure 10. The framework for the data simulation for Method 1 and 2. 
 
 
The plot of the observed (black colored) and simulated rainfall data are (red colored) shown in Figure 
11. For Method 1, the plot is shown in Figure 11(a) and Figure 11(b) for Method 2. 
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Figure 11. Plot of the observed and generated rainfall data for Method 1 and 2. 
 
From the visualization of Figure 11, the spreading size of the 500 simulations of rainfall data from Method 
1 is smaller than Method 2. This means that the simulated data in Method 1 is much closer to observed 
data compared to Method 2. Consequently, when the simulated data is closer to observed data, the error 
will be small. Thus, Method 1 has better performance in generating data compared to Method 2.  
 
To assist and to find the accuracy from the visualization results of Figure 11, a performance measure is 
needed. In this study, root mean squared error (RMSE) based on equation (8) and (9) has been applied 
to be the performance measure. The equation (8) and (9) is for RMSE Method 1 and Method 2 
respectively. The results of RMSE for Method 1 and 2 are shown in Table 10. 
 

𝑅𝑀𝑆𝐸(𝒚�𝟏) = 	�∑ (𝒚�𝟏𝒊@𝒚𝟏𝒊)4

poo
poo
P	Q$                                                            (8) 

 

𝑅𝑀𝑆𝐸(𝒚�𝟐) = 	�∑ (𝒚�𝟐𝒊@𝒚𝟐𝒊)4

poo
poo
P	Q$                                                            (9) 

 
Table 10. RMSE results for simulated data from Method 1 and 2. 

 
Method Variables RMSE 

1 Station M, 𝑦" 2858.41 
Station T, 𝑦# 2687.98 

2 Station M, 𝑦" 3167.25 
Station T, 𝑦# 2809.66 

 
For Method 1, the RMSE for simulated rainfall data in Station M is 2858.41 and Station T is 2687.98. 
Meanwhile, for Method 2, the RMSE for simulated rainfall data in Station M is 3167.25 and Station T is 
2809.66. Based on these results, RMSE of simulated rainfall data for both Station M and T in Method 1 
are smaller compared to Method 2.  
 
Consequently, the results from Figure 11 and Table 10 shows that Method 1 has better performance 
than Method 2. It is shown that considering the non-stationary condition either because of seasonal 
variability or volatility (mean and variance can change over time) in the time series marginal variables 
has a significant effect in finding the best fitted copula distribution. It because the best fitted copula should 
has better performance in generating random data and produce small error.  
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Conclusions 
 
To examine the dependence structure of hydrological time series data between two rainfall gauge 
stations, a non-stationary condition is considered when fitting the marginal distributions. Copula model 
is presented in this paper to model the variable dependence structure between two rainfall series from 
Station Ldg. Lim Lim Bhd., Masai and Station Ldg. Sg. Tiram which are both located in Johor Bahru. 
There are two methods have been applied to identify the fitted copula model. First method is by 
considering the non-stationary condition that exist in the rainfall data, time series forecasting models: 
Seasonal ARIMA (SARIMA) model was applied and GARCH was not applied as the SARIMA models for 
Station M and T have no ARCH effect. The residuals data of the time series models were taken as the 
marginal variables. Second method is that the rainfall data is assumed as stationary and the observed 
rainfall data are directly taken as the marginal variables. In Method 1, the best fitted copula is Student’s 
t Copula with AIC = -232.374. While, in Method 2, the best fitted copula in Frank Copula with AIC = is -
291.400. To justify the results for Method 1 and 2, a simulation work is performed for both copula models 
and it is shown that Method 1 has better performance compared to Method 2.  
 
The results from this study show that combination of time series model and copula does give different 
results than the static copula. This shows that the non-stationarity conditions should be considered.  The 
developed copula model can be used to measure the conditional probability and return period of rainfall 
occurrences. It is also essentials in predicting the rainfall occurrences and mitigating the rainfall impacts 
such as drought and flood. In general, the findings have emphasized the significance of considering the 
non-stationary condition in the hydrological time series as the hydrological data are also collected under 
a changing environment over time.  
 
Other than the combination of time series model and copula model to cater to the time varying data, 
there is another type of copula approach that has been proposed in recent years, called the time-varying 
copula, where existing copula models allowing for time varying dependencies in the marginal and copula 
parameters. This time-varying copula method is developed because it is possible that dependencies can 
change over time. There are three situations for the time-varying copula model can be constructed. First 
situation is that the copula parameter is constant and at least one marginal parameter is time varying. 
Second, the copula parameter is time varying and all the marginal parameters are constant. Third, at 
least the copula parameter and one marginal parameter are both time varying. Hence, the future study 
should apply time varying copula in developing the dependence modelling for the hydrological time series 
data. 
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