

SOFTWARE PROCESS FOR INTEGRATED PATTERN ORIENTED ANALYSIS
AND DESIGN (POAD) AND COMPONENT ORIENTED PROGRAMMING (COP)

ON EMBEDDED REAL-TIME SYSTEMS

SIMBA ANAK BAU

UNIVERSITI TEKNOLOGI MALAYSIA

iv

ABSTRACT

Embedded Real-Time (ERT) systems are becoming increasingly necessary, especially

in automotive industries. The complexity to manage the system is growing, where

some of ERT applications need high dependability requirements. Component Based

Software Engineering (CBSE) appeared to be an attractive approach in the domain of

ERT system. CBSE could bring advantages to ERT system such as rapid

development time, the ability to reuse existing component and ability to compose

sophisticated software. Based on these perspectives, this project aims to enable and

support the development of ERT systems based on Pattern-Oriented called Pattern-

Oriented analysis and Design (POAD) and Component-based called PErsive

COmponent Systems (PECOS), by identifying and defining the process of integrated

POAD and PECOS Meta model. The advantages of defining the process are to

support development of CASE for ERT and to promote software re-use.

v

ABSTRAK

Kepentingan sistem masa nyata semakin meningkat terutamanya dalam industri

automatif. Selaras dengan peningkatan itu, pengurusan sistem juga bertambah

komplek, di mana terdapat sesetengah sistem memerlukan kebolehanharapan

keperluan yang tinggi. Kejuruteraan perisian berasaskan komponen merupakan satu

pendekatan yang lebih menyerlah dalam domain masa nyata. Kewujudannya telah

banyak membawa kebaikan kepada sistem masa nyata seperti pengulangan masa

pembangunan, kebolehan penggunaan semula komponen dan kebolehan

pengabungan perisian yang komplek. Berdasarksn perspektif tersebut, projek ini

bermatlamat untuk membolehkan pembangunan sistem masa nyata berasaskan corak

yang dipanggil Pattern-Oriented Análisis and Design (POAD) dan berasaskan

komponen yang dipanggil PErvasive COmponent Systems (PECOS), dengan

mengenalpasti dan mendefinasikan proses gabungan meta model POAD dan PECOS.

Terdapat beberapa kebaikan yang dapat diperolehi dengan mendefinasikan process

iaitu dapat menyokong pembangunan peralatan CASE untuk sistem masa nyata dan

memperkenalkan penggunaan semula perisian.

 v

TABLE OF CONTENTS

CHAPTER PAGE

 DECLARATION OF STATUS THESIS

 SUPERVISOR DECLARATION

 TITLE PAGE i

 STUDENT DECLARATION ii

 ACKNOWLEDGEMENT iii

 ABSTRACT iv

 TABLE OF CONTENT vi

 LIST OF TABLE x

 LIST OF FIGURE xi

 LIST OF ABBREVATION xiii

 LIST OF APPENDIX xiv

1 PROJECT OVERVIEW

 1.1 Introduction 1

 1.2 Problem Background 4

 1.3 Problem Statement 6

 1.4 Project Aim 6

 1.5 Objectives 7

 1.6 Scopes 7

 1.7 Significance of the project 8

vii

2 LITERATURE REVIEW

 2.1 Introduction 9

 2.2 Pattern-oriented methodology 10

 2.2.1 Pattern-Oriented Analysis & Design (POAD) 10

 2.2.2 Pattern-Driven Modeling & Analysis (PDMA) 14

 2.2.3 Metamodel POAD and PECOS 15

 2.2.4 Component-oriented pattern 16

 2.2.5 Design pattern and CBSD 17

 2.2.6 Summary of pattern-oriented methodology 19

 2.3 Component-Oriented Technology 21

 2.3.1 PECOS 21

 2.3.2 COM 24

 2.3.3 CORBA 25

 2.3.4 .NET 27

 2.3.5 Summary of component-oriented technology 29

 2.4 Graphical Programming 30

 2.4.1 LabVIEW 31

 2.4.2 UML-RT 32

 2.4.3 Simulink 34

 2.4.4 Summary of graphical programming 35

 2.5 Software Process 36

 2.5.2 Software Process Engineering Metamodel 37

 2.6 Summary 39

3 RESEARCH METHODOLOGY

 3.1 Introduction 40

 3.2 Operational Framework 40

 3.2.1 Analysis problems and conduct literature review 42

 3.2.2 Propose project 42

 3.2.3 Project planning 43

 3.2.4 Identify and study POAD and PECOS 43

viii

 3.2 Hardware and software requirement 44

 3.5 Project schedule 45

 3.6 Autonomous Mobile Robot Case Study 45

 3.7 Summary 47

4 POAD AND PECOS PROCESS MODEL

 4.1 Introduction 48

 4.2 The Software Process Engineering Meta Model 48

 4.3 The Process model 50

 4.3.1 Use Case Diagram 51

 4.3.2 Analysis Phase 51

 4.3.3 Early Design Phase 54

 4.3.4 Detailed Design Phase 59

 4.4 Discussion on Process Model 62

5 PROCESS MODEL USING UML-RT

 5.1 Introduction 63

 5.2 Mapping Process 63

 5.2.1 Mapping POAD into UML-RT 64

 5.2.2 Mapping UML-RT into PECOS Model 67

 5.3 Process Model 69

 5.3.1 Analysis Phase for AMR 69

 5.3.2 Early Design Phase for AMR 73

 5.3.3 Detailed Design Phase for AMR 81

 5.4 Discussion on Process Model using UML-RT 82

6 CONCLUSION

 6.1 Summary 84

 6.2 Project Architecture and Contribute 85

 6.3 Future Work 86

CHAPTER 1

PROJECT OVERVIEW

1.1 Introduction

 Component-Based Software Engineering (CBSE) is an approach that has been

arises in the software engineering community in the last few years. The idea of CBSE

is to allow software engineer to reuse existing component in software development

process, in order to improve the quality and reduce the cost of software development.

Based on this technical concept, CBSE is concerned with the rapid assembly of

systems from components where components and frameworks have certified

properties and these certified properties provide the basis for predicting the properties

of systems built from components (Bachmann et al., 2000).

 Component-Oriented Programming (COP) is part of the CBSE. Murthy

(2005), define COP as a collection of interacting components that steps through a

program and manipulates data. Each component maintains its own share of data and

has its own program piece to manipulate it. COP is used to develop software by

assembling components. Szyperski (2002), define software component as a unit of

2

composition with contractually specified interfaces and explicit context dependencies

only. A software component can be deployed independently and subject to third party

composition. Moreover, component is a program or collection of programs that can

be compiled and make executable, which can be assembled with other component,

which can be reused as a unit in various contexts (Wang and Qian, 2005). PErsive

COmponent Systems (PECOS), Microsoft’s Component Object Model (COM), .Net

component from Microsoft and Common Object request Broker Architecture

(CORBA) is an example of component technologies.

 Besides that, in order to identify the component in the software development,

many computer scientist and engineers referred to any building block of software,

such as specification, code or design as a software asset (Yacoub and Ammar, 2004).

A pattern is one way to express the component in software development, because it

consists of building blocks, which are referred as component.

 A pattern is introduced into software engineering as a means of exploiting

hard-earned experience in the face of common problems and providing engineer with

the language to describe and discuss their problems and solution spaces (Hutchinson

and Kotonya, 2005). Yacoub and Ammar (2004), define pattern as a problem that

frequently occurs in software design and implementation and then describes the

solution to the problem in such way that it can be reused. Pattern can be classified

into analysis pattern, architecture pattern and design pattern. Analysis pattern

(Yacoub and Ammar, 2004) is analysis that involves looking behind the surface of

requirement to understand the problem, architecture pattern (Hutchinson and

Kotonya, 2005) is a generative reuse mechanism, featuring in the move from abstract

requirement to abstract architectural solution and a design pattern is a design solution

to a frequently recurring design problem in a given application domain (Yacoub et al.,

2000).

3

 Software pattern is becoming more popular in software development as many

of approaches based on pattern were introduced. One of the approaches is called

Pattern-Oriented Analysis & Design (POAD). POAD is an approach based on design

pattern. POAD is a methodology to design software application using software

patterns and to produce pattern-oriented analysis and design. POAD methodology has

the capability to glue pattern at high level, also providing logical views to represent

application analysis and design as a composition of the pattern. POAD provides a

structural approach to use design patterns as building blocks in designing application

(Yacoub and Ammar, 2004).

 A pattern-oriented is an attractive goal applies into CBSE, because of the

appearing similarities in what they try to achieve, such as time complexity, cost

effective, and high-quality software. Moreover, the combination of these two

approaches (pattern-oriented and component-based) is to solve a similar problem

from completely different angles and in such ways that they are likely to be

completely incompatible. The benefits of applying patterns to CBSE are (Hutchinson

and Kotonya, 2005), 1) the reuse of experience, 2) the development of standard types

of solution, 3) a normalized mechanism for abstracting from multiple example in

order to extract “best practice” and 4) a means of communication and a method for

categorizing problems.

 A software pattern has been used in different domains, for example web

applications, windows environment and embedded systems. An embedded system is a

computer system which is part of larger systems and performs some of the

requirements of these systems. Most of these embedded systems are characterized as

real-time systems, which consist of real-time properties such as response time and

worse case execution time, called Embedded Real-Time systems (ERT) (Crnkovic,

2005). The automobile control systems, industrial processes control systems, mobile

phones, or small sensor controllers, are some example of ERT systems.

4

 ERT system is a system whose correctness depends on timeliness and logical

correctness, this means that system should satisfy explicit response time constraints

or it is assumed as a fail (Crnkovic, 2005). The ERT systems usually have both

hardware and software interacting with each other to accomplish a specific task.

Hardware tries to satisfy timing constraints, while software reduces the overall cost

and provides design flexibility (Jawawi, 2003). One of the characteristic of ERT

systems is time constraint, that means a components of the system must be run

concurrently and communicate with each other under predefined timing constraints.

1.2 Problem Background

 Since the development of ERT systems are becoming increasingly necessary,

especially in automotive industries, the complexity to manage the system is growing,

where some of ERT applications need high dependability requirement. Therefore, in

development of ERT, the system design should fulfill the demanding requirement

with respect to limited resources, real-time requirement, reliability cost and also

reusability (Crnkovic, 2005). For example, since software was first included in cars

about 15 years ago, the amount of embedded code has grown exponentially from

around 100 kilobytes to a projected 1 gigabyte in the latest generation of high-end

automobiles. As a result, the methods and technologies that have traditionally been

used to develop embedded systems are starting to reach the limits of their scalability

(Colin et al., 2005)

 Moreover, the development of ERT system has to consider non-functional

properties because the correct operation of a system is not only depending on the

correct functional working of its components but also dependent on its non-functional

5

properties. ERT systems have both non-functional and strict functional requirements.

The end to end quality of service (QoS) properties should be ensured in ERT systems

such as timeless and fault tolerance (Jawawi, 2003).

 CBSE has been used in many application in software engineering such as

desktop environment, e-business application, internet and wed-based application

(Crnkovic, 2005). ERT is one domain that uses CBSE, in ERT systems CBSE

appears to be an attractive approach. CBSE could bring advantages to ERT system

(Crnkovic, 2005) such as rapid development time, the ability to reuse existing

component and ability to compose sophisticated software. When CBSE applied to

ERT systems, it could improve software maintainability, increase software reliability,

rapid software development and rational task separation and faster adoption.

 The recent trend in software engineering is to combine CBSE with other

methods to make CBSE as imperative for ERT development (Colin et al., 2005).

Based on this perspective, Universiti Teknologi Malaysia, Skudai has come out with

a paper which concerns on pattern oriented and component oriented in order to

improve ERT system. In this paper Jawawi (2005) introduced the combination of

Meta model Pattern-Oriented Analysis & Design (POAD) together with component

model called Pervasive Component Systems (PECOS). In order to improve the

quality of software, Yau and Dong (2000) appeared with a paper that concerns on

integration a component based in software development with design pattern.

Hutchinson and Kotonya (2005) appeared with other paper, which discussed about

applying pattern into CBSE.

 Based on the review in these three papers, the similarity that can be found is

what they try to achieve, which are to promote reused in component-based, in order

to improve the quality of software such as complexity, timing constraint and cost.

6

1.3 Problem Statement

 Generally, the integration defined is the combination of methods or

approaches, with the expectation of achieving a better performance (Colin et al.,

2005). This project is focuses on identifying and defining the process of integrated

POAD and PECOS Meta model into formal form. The defined process into formal

form is important to enable and support the development of ERT systems based on

the two approaches (POAD and PECOS). The advantages of defined process from

existing Meta model is to enable to support the development of CASE tools for ERT

software and also promote software reused in ERT systems without sacrificing the

non-functional requirement such as timeless, predictability and constrained resources.

1.4 Project Aim

 The aim of this project is to identify and define software process for integrated

of POAD and PECOS Meta model into formal form, with expectation to enable ERT

development based on the two approaches, (POAD and PECOS).

7

1.5 Objectives

The objectives of the project are:

i. To study and identify the software process for integrated POAD and

PECOS Meta model

ii. To define the software process for integrated POAD and PECOS Meta

model using SPEM.

iii. To demonstrate the applicability of the proposed process using the UML-

RT.

1.6 Scopes

The scope of this study will be limited to the following:

i. The analysis and early design of Pattern-Oriented Analysis and Design

(POAD).

ii. PErsive COmponent Systems (PECOS) as a component technology.

iii. The implementation only for medium size of Embedded Real-Time

systems.

87

REFERENCES

1. Atkinson, C., Paech, B., Reinhold, J. and Sander, T. (2001). Developing and

Applying Component-Based Model-Driven Architectures in KobrA.

Proceeding IEEE.

2. Bran Selic, B. and Rumbaugh, J. (1998). Using UML for Modeling Complex

Real-Time systems.

3. Crnkovic, I., Larsson, S. and Chaudron, M. (2005). Component-based

Development Process and Component Lifecycle. 27th Int. Conf. Information

Technology Interfaces ITI 2005, June 20-23, 2005, Cavtat, Croatia.

4. Fowler, M. (1996). Analysis Patterns: Reusable Object Models, Addison-

Wesley.

5. Frohlich, P. H. (2003). Component-Oriented Programming Language: Why,

What and How. Ph.D. Thesis. University of California.

6. Genssler, T., Christoph, A., Schulz, B., Chris, M., Winter, M., Muller, P.,

Zeidler, C Stelter, A., Nierstrasz, O. and Schonhage, B. (2002). PECOS in a

Nutshell: PECOS handbook.

7. Heineinan G. and Council1 W. (2001). Component based Software

Engineering, Addison Wesley.

8. Hutchinson, J. and Kotonya, G. (2005). “Pattern and Component-Oriented

System Development”. Proceeding Of the 2005 31st EUROMICRO

Conference on Software Engineering and Advanced Applications.

9. Jawawi, D. N. A. (2003). Embedded Real-Time Software. Technical Report

2003. Universiti Teknologi Malaysia, Skudai.

88

10. Jawawi, D. N. A., Mohamad, R., Deris, S. and Mamat, R. (2005)

“Transforming Pattern-Oriented Models into Component-Based Models for

Embedded Real-Time Software Development”. Malaysia Software

Engineering Conference (MySEC’05).

11. Jawawi, D. N. A. (2006). A framework for Component-Based Reuse for

Autonomous Mobile Robot Software. Ph.D. Thesis. Universiti Teknologi

Malaysia, Skudai.

12. Kacsuk, P., Dbzsa, G. and Fadgyas, T. (1997). A Graphical Programming

Environment for Message Passing Programs. Proceeding IEEE.

13. Kehtarnavaz, N. and Gope, C. (2006). Dsp System Design Using Labview and

Simulink: A Comparative Evaluation. ICASSP 2006.

14. Kotonya, G., Sommerville, I. and Hall, S. (2003). Towards A Classification

Model for Component-Based Software Engineering Research. Proceedings of

the 29th EUROMICRO Conference “New Waves in System Architecture”

(EUROMICRO’03).

15. Lepasaar, M. and Makinen T. (2002). Integrating Software Process

Assessment Model using a Process Meta Model. Proceeding IEEE.

16. Lu, S. and Halang, W. A. (2005). A Component-based UML Profile to Model

Embedded Real-Time Systems: Designed by the MDA Approach.

Proceedings of the 11th IEEE International Conference on Embedded and

Real-Time Computing Systems and Applications (RTCSA’05).

17. Luders, F., Ahmad, S., Khizer, F. and Dhillon, G. S. (2007). Using Software

Component Models and Services in Embedded Real-Time Systems.

Proceedings of the 40th Annual Hawaii International Conference on System

Sciences (HICSS'07).

18. Mohamad, R. (2007). Pattern-Oriented Approach for Developing Multi-Agent

Based Systems. Ph.D. Thesis. Universiti Teknologi Malaysia, Skudai.

19. Moller, A., Akerholm, M., Fredriksson, J. and Nolin, M. (2004). Evaluation

of Component Technologies with Respect to Industrial Requirements.

Proceedings of the 30th EUROMICRO Conference (EUROMICRO’04).

89

20. Murthy, V. K. (2005). High Performance Cluster Computing using

Component-oriented Distributed Systems. Proceedings of the First

International Conference on e-Science and Grid Computing (e-Science’05)

21. Mark A. Yoder, Bruce A. (2006). Teaching DSP First with LabVIEW.

Proceeding by IEEE.

22. Nierstrasz, O., Arevalo, G., Ducasse, S., Wuyts, R., Black, A., Muller, P.,

Zeidler, C. and Genssler, T. (2002). A Component Model for Field Devices.

Software Composition Group, Institute Informatik and Angewandte

Mathematik, University of Bern, Switzerland

23. Nierstrasz, O., Genssler, T. and Schonhage, B. (2002). Components for

Embedded Software: The PECOS Approach. CASES 2002, October 8–11,

2002, Grenoble, France.

24. Peter Muller, P., Zeidler, C., Stich, C. and Stelter, A. (2001). PECOS -

Pervasive Component Systems.

25. Jamal, R and Wenzel, L. (1995). The Applicability of the Visual

Programming Language LabVIEW to Large Real-World Applications.

Proceeding by IEEE.

26. Riehle, D. and Zullghoven, H.(1996). Understanding and using pattern in

software development theory and practice of object systems.

27. Rumpler, B and Elmenreich, B. Considerations on the Complexity of

Embedded Real-Time System Design Tasks. Supported by the FIT-IT

program of the Austrian Federal Ministry of Transport, Innovation, and

Technology, and by the European IST project DECOS.

28. Rumpler, B. (2006). Complexity Management for Composable Real-Time

Systems. Proceedings of the Ninth IEEE International Symposium on Object

and Component-Oriented Real-Time Distributed Computing.

29. Sha, L. (2004). Open Challenges in Real Time Embedded Systems.

30. Software Process Engineering Metamodel Specification (2005). Object

Management Group.

31. Wang, A. J. A. And Qian, K. (2005). Component-Oriented Programming.

Southern Polytechnic State University Marietta, Georgia. Wiley Interscience.

90

32. Wang, L. (2005). Component-Based Performance-Sensitive Real-Time

Embedded Software. Texas A&M University, College Station, TX.

33. Wan, J. A. (2000). Towards Component-Based Software Engineering.

34. Yau, S. S. and Dong, N., (2000). “Integration in Component-based Software

development using design pattern”. Proceeding IEEE.

35. Yacoub, S. M. and Ammar, H. H. (2004). Pattern-Oriented Analysis and

Design: Composing Pattern to Design Software Systems, Addison Wesley.

	COVER PAGE
	DECLARATION
	SUPERVISOR DECLARE
	TITLE PAGE
	DECLARATION MINE
	1ACKNOWLEDGEMENT
	2ABSTRACT
	3TABLE OF CONTENTS
	4LIST OF TABLES
	5LIST OF FIGURES
	6LIST OF ABBREVIATIONS
	APPENDIX
	CHAPTER 1
	CHAPTER 2
	CHAPTER 3
	CHAPTER 4-new
	CHAPTER 5-new
	CHAPTER 6new
	REFERENCES1
	Project1
	Projectii

