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Abstract: Offshore vessels (OVs) often require precise station-keeping and some vessels, for example,
vessels involved in geotechnical drilling, generally use Spread Mooring (SM) or Dynamic Positioning
(DP) systems. Most of these vessels are equipped with both systems to cover all ranges of water
depths. However, determining which system to use for a particular operational scenario depends
on many factors and requires significant balancing in terms of cost-benefit. Therefore, this research
aims to develop a platform that will determine the cost factors for both the SM and DP station-
keeping systems. Operational information and cost data are collected for several field operations,
and Artificial Neural Networks (ANN) are trained using those data samples. After that, the trained
ANN is used to predict the components of cost for any given environmental situation, fieldwork
duration and water depth. Later, the total cost is investigated against water depth for both DP and SM
systems to determine the most cost-effective option. The results are validated using two operational
scenarios for a specific geotechnical vessel. This decision-making algorithm can be further developed
by adding up more operational data for various vessels and can be applied in the development of
sustainable decision-making business models for OVs operators.

Keywords: ANN offshore; dynamic positioning; spread mooring; decision making; offshore vessel

1. Introduction

The ever-increasing demand for energy and food with the rise of the population has
intensified numerous offshore activities more than ever. Various OVs play an integral part
in these offshore operations by supporting installation, maintenance, supplies, accommo-
dations and other similar activities. One such vessel is geotechnical survey vessels, which
play a critical role in the discovery and development of offshore fields. The geotechnical
vessel’s primary function is to collect a soil sample below the seabed, usually up to 300 m
deep. The samples are collected from pre-specified locations, and the vessel is connected to
the seabed during this operation through drill pipes and seabed frame. Any movement of
the vessel from the desired position may jeopardize the operation and cause severe safety,
health, environmental, and of course, financial damages. Therefore, station-keeping is
crucial for a geotechnical drilling vessel, and usually, it is achieved either by DP or SM.

DP means a vessel’s ability to maintain its position and heading using a computer-
based controlled programme by means of sensing environmental conditions, signal pro-
cessing, and electronic commands to propellers, thrusters and rudders [1]. Generally, the
DP system becomes less effective in shallow water because of the wider DP footprint; also,
position reference systems are a limiting factor in shallow water DP operations [2]. Shallow
water DP operation may also cause seabed mud and sand interference to propellers and
thrusters, thus impacting underwater machinery integrity. Therefore, a geotechnical vessel
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with only a DP system is not ideal for operating in shallow water, whereas it is a preferred
choice for Deepwater operation.

On the other hand, SM is positioning a vessel in a specific location by securing it to
the seabed using multiple numbers of mooring lines and anchors. The bow is typically
heading towards a dominant environment where the largest waves or wind is expected.
The propulsion system can be utilized to control the vessel’s heading to reduce position
offset and forces in the mooring lines [3]. The spread mooring system is suitable for shallow
water but not a suitable option for deep waters. The system requires significant wire length
in the seabed and at least 40% of wires in the drum after reaching a final position to
minimize reaction forces on the winch and vessel structure. Besides, increased wire length
may require an increased diameter of the wire to withstand the large forces. This will result
in massive winches and ample deck space [4].

A geotechnical vessel operates across various water depth regions ranging from
shallow to deep waters. While the choice of station-keeping for very shallow and very
deep water is relatively straightforward, the decision on station-keeping choice in an
intermediate water depth region varies significantly between geotechnical vessels. This
is because a geotechnical vessel’s operational period in a particular location is temporary,
usually several hours to days. Therefore, depending on several variables, including fuel
cost, activity duration, environments, both the DP and SM, can be a cost-effective solution
for particular water depth. As a result, most geotechnical vessel operators prefer to install
both the DP and SM systems on their vessels.

Extensive research on DP modelling and operations from technical and scientific
points of view have been performed by many researchers over the past two decades [5,6].
Similarly, simulation and prediction of motion control and station-keeping of both surface
and underwater vessels has received significant attention during the same period. For ex-
ample, motion analysis of coupled unmanned surface vehicles and underwater vehicles [7],
modelling the motion behaviour of underwater vehicles while connected with umbilical [8],
performance and stability simulation of hovering over-actuated autonomous underwater
vehicle (HAUV) robust station-keeping (SK) control algorithm under model uncertainties
and ocean current disturbance in the horizontal plane [9].

However, considering commercial perspective, no published guidelines exist on when
to use DP or SM to ensure a sustainable and cost-effective operation taking into account all
the operational variables during a project. At present, the operators usually go through a
complex project assessment and calculation phase to decide on station-keeping. Taking
advantage of past projects information, this study, however, aims to propose an efficient,
ANN-based decision-making model for station-keeping of geotechnical vessels. ANN is
widely used by researchers to solve numerous problems where conventional modelling
methods fail [10], as it can accommodate multiple input variables to predict multiple output
variables. In this study, the ANN model is developed by focusing on the total, overall
operational cost only, which can be further developed by including other factors in the
future. Various data, including Fuel Oil (FO) consumption, duration, and environmental
conditions, are collected for an existing geotechnical vessel from past projects. ANN is
then implemented to learn the relationship among the variables and later to predict the
operational cost for a given weather condition and water depth at a particular project
location. The trained ANN model is also validated against two recent project data to ensure
the accuracy of the decision-making process.

2. Methodology

This research aims to establish a decision-making platform to determine whether
the SM or DP system is more economical for a geotechnical vessel’s station-keeping at
a particular location, keeping the associated operating variable and their limits in mind.
Therefore, the first step of the workflow is to identify the key variables that will impact SM
and DP’s operating cost, followed by vessel selection and data collection. The systematic
approaches followed in this work are summarized in the following steps:
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2.1. Identifying the Common Variables for Both the DP and SM System

The first and most significant and critical task for this project is identifying the vari-
ables based on which the cost analyses will be performed to develop the decision-making
process. For geotechnical vessels, both the DP and the SM system have sets of variables that
affect overall cost and efficiency. However, to develop that comparative decision-making
platform between the two options, it is crucial to recognize the set of common variables
that would impact the comparison process. Hence, one-on-one interview and focus group
discussions with academics, colleagues in the industry, vessel crews (Captain, Chief Engi-
neer) were performed. The findings were analyzed by the authors to identify all the major
variables influencing the decision-making process. Table 1 shows the identified variables
for both systems under three main categories.

Table 1. Identified variables for DP and SM systems.

DP System SM System

i. Environmental Factors
Significant wave X X
Current X X
Wind X X
Wave period X X
Drilling depth X X
Water depth X X
Mooring length N/A X
ii. Cost Factors
FO consumption X X
Compliance cost X X
Additional crew X N/A
Spares X X
iii. Time Factors
Time for positioning X X
Time for de-positioning N/A X
Weather standby X X
Emergency response X X

It is important to note that all these variables listed in Table 1 will impact the operating
cost of the geotechnical drilling vessel. However, there are some variables for which both
the DP and SM systems will incur similar costs. Hence, those variables will not significantly
impact the decision-making process and will be disregarded during the data collection
phase of this study.

For example, under the environmental factor, water depth has a variable impact on
station-keeping in terms of cost and time for both the DP and SM systems. However, the
influence of drilling depth on cost and efficiency will not significantly differ between both
systems. So, drilling depth was not considered for data collections. Factors, for example,
wave period, current, wind, were combined and expressed as an Environmental Regularity
Number (ERN). ERN is a theoretical way of defining a vessel’s ability to maintain its
position in different weather and sea conditions. It was developed in the 1970s by Det
Norske Veritas (DNV), and more details can be found here: [11]. ERN calculations assume
that the forces resulting from wind, waves and current are coincident, with the magnitudes
of wind and waves being of equal probability and are intended to reflect a ‘worst-case
situation’. A guidance note by DNV says this is normally when the weather is on the
vessel’s beam, and the ERN is based on this situation “regardless of the vessel’s ability to
select other headings in operation”. An ERN number of ‘zero’ means calm water condition.

Similarly, the costs for compliance and spares are similar for both the DP and SM
systems, hence considering not impacting the decision-making process. Therefore, only
the cost for Fuel Oil (FO) consumption and additional crew for DP operation is calculated
and modelled. Under the time factors, weather standby and emergency response are not
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considered in this research as weather standby is somewhat unpredictable, and emergency
response for SM is quite complicated. Therefore, only the time required for positioning
and de-positioning are collected, analyzed, and converted to monetary contributions on
the vessel’s total operating cost.

2.2. Vessel Selection for Data Collection

A geotechnical vessel with principal particulars shown in Table 2 is selected for this
study. This vessel is part of the fleet managed and operated by Fugro. It was built in 2007
as an Offshore Supply Vessel (OSV) and later converted to a geotechnical drilling vessel by
performing all necessary modifications and installing machinery required for drilling. The
vessel is currently operating in the Asia Pacific Region and fitted with both DP and SM
systems. It has a DP2 system with station-keeping as the primary function. This DP system
can also be used for manoeuvring by employing the C-Joy system and target tracking. The
four-point SM system has a total anchor wire length of 2000 m, and the system can perform
self-anchoring if there is no physical obstruction on the anchoring spread.

Table 2. Principal particulars of the geotechnical vessel under consideration.

Particulars Values

Length overall 76.0 m
Beam (mid) 20.0 m

Depth Moulded 6.1 m
Draft 4.7 m

Displacement 4746 tons
Speed Max. 12 knots

Endurance Max. 42 days
Operational Water Depth 10 m to 1000 m (seabed operations)

2.3. Data Collection and Understanding Associated Limitations

The vessels’ location-specific and operational data were collected with help from
the Master and Chief Engineer of the vessel, colleagues from the computerized Planned
Maintenance System (PMS) and Computerised Management System (CMS) working in
Fugro headquarters in the Netherlands. A systematic approach is applied to collect the
data, for example, water depth, environmental conditions, FO consumption and other cost
factors, time consumed for various operations, for various site-specific projects which are
already completed. All the data were collected from projects which are done within a two
year span after a special survey. The time frame is crucial as data collected (especially
the FO consumption) from projects spread over a much longer time might not be suitable
for decision-making modelling. This is due to the fouling formed on the hull and the
deterioration of anti-fouling paint over time.

During DP operation, two azimuth thrusters, two bow thrusters, two main engines,
two shaft generators and two auxiliary engines were in operation. The second auxiliary
engine was on standby. While, in SM operation, after the vessel secured in position, only
one of the two auxiliary engines were in operation. The other auxiliary engine and shaft
generators were on standby. The calculation of FO consumption is based on four-hourly
reading as per the data log from the flow meter.

It should also be noted that the efficiency of both the DP and SM operation largely
depends on operator ability, which is rather difficult to evaluate quantitively. Therefore, the
efficiency of operations is not considered in any data collection, calculation and modelling
during this study. In addition, data are collected from projects with open sea station-
keeping situations only (no other offshore structure within 1 km radius of operation). This
is to avoid any special costs associated with setting up of SM while there is an offshore
structure nearby. Likewise, data for SM operations were collected for projects with clear
seabed conditions only. That means there will be no pipelines or cables crossing in the
way of mooring lines on the seabed. When there are any pipelines or cables in the way of
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mooring lines on the seabed, additional midline buoys and pennant wires are required,
which will have a direct impact on operational cost and time. Apart from these facts, the
following assumptions were made in this research:

There were no equipment or machinery failures during the data logging period.
There was no operator error, wrong decision, repetition of work during the data

collection period.
There was no surge in FO consumption and/or weather conditions.
FO consumption is calculated based on flow meter reading onboard; no manual

sounding is performed.
The data were collected for projects having up to 150 m of water depth only.

2.4. Categorizing the Data Based on Weather Conditions and Water Depths

For each DP and SM projects considered for this study, at first, the sea state data
were collected from the vessel’s logbook and then converted to ERN form. As mentioned
in Section 2.1, the ERN was developed by DNV in the 1970s to define a vessel’s ability
to maintain its position in different weather and sea conditions. The ERN was further
developed with revised guidelines in 2013 and now more commonly known as the DP
capability number. The DP capability number, or ERN, uses the Beaufort wind scale as well
as significant wave height, wave period and current speed data as input. After defining
the ERN number for a project, the required data, for example, FO consumption, extra crew
costs, time for positioning and dispositioning, and duration of projects, are collected and
arranged based on site depths and ERN numbers.

2.5. Identifying and Normalizing the Data Patterns Using Artificial Neural Networks (ANN)

Once the data for various projects are categorized, ANN is implemented to determine
the patterns of data, or establishing the relationship among the variables. The trained
networks are then used to predict the operating costs at normalized conditions, i.e., calm
weather (ERN = 0), to have a common baseline for any projects irrespective of weather
conditions. The decision-making process comes to an end after the vessel’s operating costs
for both the DP and SM systems are found for a specific project.

ANN is a branch of Artificial Intelligence (AI) made up of a varying number of
neurons or nodes that can understand and establish any complex or non-liner relationship
amongst inputs and outputs by using its interconnect neurons’ weights and bias matrices
and transfer functions. These weights and bias are updated through learning so that the
minimum error between the targets and desired outputs is achieved. This learning process
is of two types, namely, supervised learning and unsupervised learning [12]. In supervised
learning, a labelled data set is given for the network, and an answer key is used to compare
with the network output, thus determining the accuracy of the network after training. In
contrast, unsupervised learning uses unlabelled data set from where the algorithm extracts
the features and patterns on its own. This study considers the supervised learning to
train the network as the data are already categorised based on weather condition and
water depth.

A visual illustration of this process is given in Figure 1. Five inputs in this figure are
all relayed to four neurons in the first layer, known as the hidden layer, and then those four
neurons will relay the final decisions to an output neuron. Depending on the complexity
and the nature of data, the number of neurons and hidden layers is determined to minimize
error after each learning stage.
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Figure 1. A basic example of a neural network structure (source: www.astroml.org, accessed on
27 May 2021).

In this research, a feed-forward neural network is chosen with the backpropagation
technique while training ANN. Beale et al. [13] and Hagan et al. [14] described the design
steps of neural networks in the Neural Network Tool Box User Guide. The study reported
here also follows the same steps which are shown in Figure 2.
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Figure 2. Design steps of Neural Networks.

Training of an ANN plays a significant role in justifying its effectiveness. The accuracy
of the prediction depends on how well it is trained. In this research, the training of the
network is carried out using a feed-forward backpropagation algorithm. The network
performs a two-phase data flow here. In the first phase, the input information is propagated
from the input to the output layer. Then the errors calculated from the network predicted
values and actual values are backpropagated from the output layer to the previous layers
and then to update the weights and biases accordingly. These weights and biases are up-
dated based on a gradient descent algorithm, where the network weights are moved along
the negative of the gradient of the performance function. Each neuron in the constructed
net acts as a processing element which performs a weighted sum of all the inputs fed to
it. Then it is transferred to the other neurons in the adjacent layer through a non-linear
transfer function.

In this study, the Matlab neural network toolbox is utilized for training. A training
function based on the Lavenberg-Marquardt algorithm has been found to work best, and

www.astroml.org
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it uses the following approximation of the Hessian matrix in order to follow the Newton-
like update.

xk+1 = xk − [JT J + µI]
−1

JTe (1)

where Jm is the Jacobian matrix that contains first derivatives of the network errors with
respect to the weights and biases, e is a vector of network errors, and µ is a scalar value.
This algorithm facilitates faster training, and also offers higher accuracy in function ap-
proximation. In the case of the transfer function, log-sigmoid is found suitable, which is
given as

f (x) =
1

1 + e−x (2)

and the performance of the trained network is judged depending on the calculated
mean squared error value (MSE). If the normalized teaching data are considered in the
following form:

{p1, q1}, {p2, q2}, . . . . . . . . . {pn, qn} (3)

where p is the input of the network, and q is the target output. Therefore, MSE can be
calculated as follows:

MSE =
1
n

n

∑
i=1

e(i)2 =
1
n

n

∑
i=1

(q(i)−O(i))2 (4)

where, O is the output of the network.
Using the aforementioned strategies, networks are trained for different sets of input

data, as described in Section 3.

2.6. Validating the Established ‘Decision Making’ Platform Using Field Data

After the decision-making platform is trained, it is validated against two recent projects
undertaken by the vessel. The variable data for two projects, one DP and another SM are
provided as input into the decision-making platform and the outcome is compared with
the operator’s actual decision. More details on ANN training and validation are presented
in the results and discussion section.

3. Results and Discussion

The results of training the ANN with all the relevant cost and time factors for both the
DP and SM systems (as shown in Table 1) are described in this section. All these variables’
contributions are then converted into monetary values for ERN 0 for any water depths
up to 150 m. After that, the ANN is trained to predict the overall operational cost for
both the DP and SM systems for any particular operational scenario (wave, wind, current,
water depth, project durations, etc.), becoming the decision-making platform. Finally,
the developed model is validated against the real operational scenario by predicting the
best station-keeping options for two recent projects undertaken by the vessel used in
this research.

3.1. Overall Operational Cost for the DP System

Besides initial investment on the DP system, the operator incurs operational and
maintenance costs while running the system. For example:

Compliance—such as annual trials, five-yearly FMEA and classification survey;
Equipment calibration—such as MRU and gyro compass require calibration at specified intervals;
Subscription—Such as GPS, DGPS, GNSS and electronic charts;
Crew competency—DPO for officers and DP maintenance course for Engineers;
Equipment health check—by maker annually or intermediate;
Spare parts;
FO consumption;
Additional crew.
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All these cost components, except the FO consumption and additional crew costs,
are included in the vessel’s day rate (the overhead cost to maintain the system), as these
costs will be there regardless of the vessel working on the DP or SM system. The total
amount for these costs will depend on the time spend in station-keeping. Hence, one needs
to calculate the FO consumption and time spent in station-keeping while operating the
DP system. After that, these two variables should be converted into costs by multiplying
with appropriate values and summed up with additional crew costs to determine the total
operational cost.

3.1.1. FO Consumption Cost

The FO consumption data were collected as an average of every four-hour interval
from a computerized FO monitoring system onboard, as mentioned in Section 2.3. The
tracking of FO consumption starts as soon as the vessel arrived at the project location and
tracking continued until it left the location after completing the job. For a DP-assisted,
stationkeeping vessel, the vessel’s positioning upon arrival is time-consuming and depends
on weather conditions. However, demobilizing from the location is almost immediate.

The consumption data collected for various projects with vessels operating at different
water depths are categorized according to the ERN (similar to sea state), as shown in
Table 3. About 80% of the data presented in this table is collected from the real operational
scenario. The remaining 20% (highlighted in bold) is predicted by the ANN to complete the
table. The main reason for missing data is that the vessel either did not work in that specific
water depth or encounter the weather conditions for the specified ERN. Therefore, the
ANN is trained with the available data, and then, the reaming missing data were predicted
by the trained system. Table 4 shows the details of the ANN used to learn the data of FO
consumptions for the projects run with DP-assisted station-keeping.

Table 3. FO consumption at various depth and ERN [for DP mode].

Water Depth (m)
FO Consumption (Kg) at 4 h Block

ERN 2 ERN 3 ERN 4 ERN 5 ERN 6

20 2100 2139 2168 2177 2191
30 1928 1977 2020 2026 2050
40 1771 1824 1857 1868 1878
50 1674 1726 1758 1768 1791
55 1607 1652 1683 1694 1703
60 1598 1594 1625 1642 1649
75 1493 1540 1575 1584 1595
80 1460 1502 1537 1546 1552
85 1411 1449 1493 1504 1513
90 1372 1423 1464 1478 1490
95 1350 1397 1440 1449 1462
100 1356 1400 1429 1439 1455
110 1355 1393 1421 1427 1433
120 1355 1395 1421 1426 1437
130 1350 1399 1421 1427 1436
140 1349 1393 1421 1427 1435
150 1351 1391 1421 1428 1437
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Table 4. Characteristics of the trained ANN for FO consumption in DP system.

Parameters Values

Input 2 (ERN and water depth)
Output 1 (FO consumption)

Hidden layers 2
Neurons 8.5
Iteration 59

MSE 9.67 × 10−6

Gradient 2.44 × 10−5

The trained network is validated for both trained and non-trained fuel consumption
data. Figure 3 shows the comparison plots of ERN 2 and ERN 5 for the observed and
ANN-predicted fuel consumption values. Generally, the FO consumption is reduced as the
water depth increases and becomes steady after a certain depth. This is because the vessel
requires more effort to generate the desired thrust in reduced water quantity. The water
might also mix with mud and sand in shallow water, making the water density heavier. As
can be seen in Figure 3, both the plots exhibit similar trends. The figure also includes the
percentage of error for the data after learning, which is within 1.5%. All these comparisons
demonstrate good predictability of the trained ANN tool, which is then utilized to predict
the unknown data (highlighted in bold in Table 3) at various water depths.
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The trained ANN is then further utilized to predict the fuel consumption values at
various depths when there is no environmental force, which is ERN zero. Figure 4 shows a
graphical plot for the ANN-predicted fuel consumption values for ERN 0 condition. The
predicted values are for 4 h block, and as can be seen, the consumption is reduced with the
increase in water depth and finally reaches a steady-state, as expected. Therefore, for daily
consumption, the values are multiplied by six for cost calculation.
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Now, to obtain the total cost for FO consumption (Y1), these four-hourly fuel consump-
tion values are multiplied by six to get the daily consumption, which later is multiplied by
the per-unit FO price and the number of days of operation. This can be expressed by the
following equation:

Y1 = ANN predicted FO consumption f or DP× 6× FO price× Number o f days o f f ieldwork (5)

3.1.2. Additional Crew Cost for DP Operation

Generally, most geotechnical survey vessels are manned by three deck officers and the
Captain on deck department, and three engineers and the Chief Engineer on the engine
department. The deck officers and engineers will perform four hours of keeping watch,
followed by eight hours of rest during daytime and night-time. During their rest hours or
watch hours, the officers and engineers must also perform other duties and responsibilities
assigned to them besides keeping watch, while meeting MLC rest hour requirements.

The geotechnical vessel can comply with the above manning force requirements when
operating in the SM system. However, for the DP operation, the above manning level is
not enough as the engine room and navigation bridge are required to be manned by at
least two engineers and two officers, respectively [15]. According to IMCA guidelines, the
navigation bridge is required to be manned by one DPO and one SDPO. The DPO and
SDPO are responsible for monitoring the vessel position, the performance of the DP system,
and intervening in the DP system, when necessary [16].

Therefore, additional DPO and engineer are required to assign to the vessel whenever
the vessel is planned to operate in the DP system. Since the vessel under consideration is
operating in APAC, additional crews are assumed to be from the Philippines or Indonesia,
and their contract is at least for a month with 2-week options.

The following costs are usually anticipated for these additional manning requirements:

Crew remuneration (day rate);
Mobilisation and demobilisation cost.

The latter includes flight cost, accommodation, local transport, sign-on/off cost and
agency cost. Therefore, the total cost for additional crew for DP operation (Y2) can be
represented by the following equation:

Y2 = 2
[

c +
d

30

]
×Number of days of fieldwork (6)

3.1.3. Time Factor Cost in DP Operation

This cost is calculated by finding the total days of DP operation (including positioning
and duration of fieldwork) and multiplying it by daily OPEX. The time data are collected
in minutes based on the records available in the vessel’s logbook. The time taken for
DP positioning is mainly contributed by the vessel machinery type, crew competency
and environmental condition. As explained in Section 2.3, the machinery type and crew
competency are not considered in this study, while the weather condition is assumed
to directly affect the time required for the vessel’s final positioning. Therefore, the time
taken to position the vessel for various projects and different water depths is collected
and arranged according to ERN, mostly ERN 2 to 4. It is standard operating practice
that commencing any DP operation in ERN 5 and above shall be avoided. Hence, no
positioning data for ERN 5 and above are found. The values are shown in Table 5. Similar
to FO consumption data, unavailable DP positioning data are calculated using ANN and
bolded in Table 5. It should be noted here that demobilizing the vessel from the position
after completing the project in DP mode is almost immediate; hence, the time duration in
this regard is neglected in the calculations.
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Table 5. Time taken for DP system positioning at various depth and ERN.

Water Depth (m)
Time Taken for DP Setup (Minutes)

ERN 2 ERN 3 ERN 4

20 55 65 85
30 51 63 83
40 50 65 80
50 50 60 80
55 45 60 75
60 45 55 75
75 45 55 75
80 42 50 73
85 40 50 70
90 40 50 65
95 40 50 65

100 40 45 60
110 40 45 60
120 40 45 55
130 40 46 58
140 40 45 55
150 40 45 55

A similar configuration of ANN as to FO consumption prediction has been used for
training the network with the collected time data for the DP set up as well. Table 6 shows
the details of the ANN used to learn the data in this regard.

Table 6. Parameters of the trained ANN for the time taken to set up the DP.

Parameters Values

Input 2 (ERN number and water depth)
Output 1 (Time)

Hidden layers 2
Neurons 12.8
Iteration 96

MSE 5.03 × 10−5

Gradient 0.00259

This trained network is also validated for both the trained and non-trained data for
the DP set-up time. Figure 5 shows the comparison plots of ERN 2 and ERN 3 for the
observed and ANN predicted data. The percentage of errors for the data after learning is
within 5.5% limit. From the plot, we can conclude that the vessel requires a longer time
to position in shallow water. For each ERN number, after reaching a certain depth, the
time required to position the vessel is no longer influenced by water depth. For ERN 2,
the time required to position the vessel at the water depth of 85 m and beyond remains
at 40 min. While, for ERN 3, the time required to position the vessel at the water depth
of 100 m and beyond remains at 45 min. These conclusions are agreeable with the data
presented in Table 5. The trained ANN is then utilized to predict the unknown data in
Table 5 at different water depths.

The trained ANN is further applied to predict the time taken for DP set up at various
water depths when there is no environmental force (ERN zero). Figure 6 shows a graphical
plot for those ANN-predicted time at ERN zero conditions for various water depths. As
can be seen, time saturation occurs at water depth 85 m, and beyond that, the time remains
constant at 40 min.
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Once the above formulation is done, the total cost for time factors (Ys) can be calculated
using the following equation:

Y3 =


ANN predicted time f or

DP Setup (minute)
24× 60

× Field work duration(days)× daily OPEX (7)

3.2. Overall Operational Cost for the SM System

Similar to Section 3.1, the overall operational cost for the SM system is calculated in
this section. Unlike the DP system, there is no cost element for extra crews in SM operation.
Hence, only the FO consumption and time spend in station-keeping while operating in the
SM system is needed to be calculated. After that, these two variables should be converted
into cost by multiplying with appropriate values and summed up to determine the total
operational cost.

3.2.1. FO Consumption Cost

When the vessel is operating on SM, the FO consumption is purely driven by demand
in hotel services and drilling equipment. However, positioning and de-positioning the ves-
sel in the desired location in SM is complicated compared to DP. These are time-consuming
processes that will cause additional FO consumptions. Usually, the positioning takes more
time and consume more FO compared to de-positioning. Two azimuth thrusters and two
bow thrusters are required during deployment and retrieval of the spread mooring anchors.
So, two main engines and two shaft generators will be in operation. The operation can
either be performed by manual steering, which completely depends on the operator’s
competency or the DP system.
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Once the positioning is completed, unlike DP, the station-keeping FO consumption
for SM will not depend on ERN nor much on water depth. Therefore, considering all these
facts, the data for FO consumption for various SM operated projects at various water depth
is collected in three separate regimes:

During positioning (at various ERN): manoeuvring, dropping anchors, pulling and positioning.
Stations keeping by SM (ERN ignored as not much influence): only two auxiliary

engines are running.
During de-positioning (at various ERN): pulling and picking up anchors by the winch;

minimum propulsion.
Table 7 shows the collected FO consumption data for the above three situations. It is a

standard operating practice that commencing positioning and de-positioning of the vessel
in weather conditions ERN 5 and above shall be avoided. Therefore, data are available
only for ERN 2 to 4. In addition, as mentioned earlier, the daily average FO consumption
for station-keeping is not influenced by the weather condition once the vessel is fully in
position. A small fluctuation in daily FO consumption is observed, which is mainly caused
by high starting current and variation of power demand in hotel services and drilling
equipment. Therefore, the FO consumption during station-keeping in spread mooring is
considered as a daily average value. Under the station-keeping FO consumption column,
Table 7 shows those average daily FO consumption values.

Table 7. FO consumption in SM for various ERN and water depths.

Water Depth (m)
Positioning (Total FO
Consumption in KG) Station Keeping (Daily Average

FO Consumption in KG
(Total FO Consumption in KG)

ERN 2 ERN 3 ERN 4 ERN 2 ERN 3 ERN 4

20 630 665 700 3800 350 350 420
30 805 805 840 3810 385 420 490
40 926 890 948 3805 428 472 542
50 1071 1120 1165 3800 470 490 580
55 1225 1260 1295 3785 490 525 595
60 1323 1328 1413 3800 504 540 610
75 1622 1505 1575 3815 539 595 665
80 1610 1645 1701 3825 560 630 700
85 1715 1750 1820 3800 595 665 735
90 1880 1884 1899 3800 630 703 783
95 1955 1960 2012 3800 658 735 832

100 2030 2100 2170 3810 679 770 875
110 2137 2251 2343 3813 707 816 935
120 2240 2310 2401 3815 735 805 966
130 2337 2514 2543 3803 779 879 995
140 2450 2541 2625 3790 840 924 1050
150 2590 2660 2765 3800 910 980 1120

It should be noted here that about 70% of the data in this table are actual values
collected from the vessel’s log, while the remaining 30% (highlighted in bold) are predicted
based on the trained ANN. Similar feed-forward ANNs applied in earlier sections are
trained and used to predict FO consumption while positioning and de-positioning the
vessel in SM system. Table 8 shows the details of the ANNs used in this regard.

Figure 7 depicts the comparison plots at ERN 4 (positioning), and ERN 2 (de-positioning)
for both the observed and ANN predicted FO consumption values for the SM system. The
percentage of error for the data after learning is within 5%.
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Table 8. Parameters of the trained ANNs for FO consumption prediction in SM system.

Parameters Positioning De-Positioning

Input 2 (ERN number and water depth) 2 (ERN number and water depth)
Output 1 (FO consumption) 1 (FO consumption)
Hidden
layers 2 2

Neurons 10.5 10.5
Iteration 80 26

MSE 1.32 × 10−12 1.67 × 10−14

Gradient 1.7 × 10−6 1.73 × 10−9
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The ANNs are then used to predict the FO consumption for the SM system in
various depths for ERN 0. Figure 8 shows the predicted values for both positioning
and de-positioning.
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Figure 8. ANN-predicted FO consumption for the SM system.

The total cost for FO consumption for spread mooring operation (Y4) can now be
obtained by using the following equation:

Y4 = (ANN predicted FO consumption f or positioning+
ANN predicted FO consumption f or depositoning

+3804× number o f days o f f ield work)
(8)

3.2.2. FO Consumption Cost

Similar to the DP operation, the cost here is calculated by finding the total days
of SM operation (including positioning, de-positioning and duration of fieldwork) and
multiplying it by daily OPEX. The time data are collected in minutes based on the records
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available in the vessel’s logbook. The factors that influence the setup and removal time for
SM operations are:

Water depth: as water depth increases, the required wire length will increase.
Weather: As the ERN number increase, more wire is required on the seabed to

withstand the force. Deployment and retrieval will take more time with an increase
in FO consumption.

Mooring footprint: sometimes, a larger footprint is required to perform drilling in
more than one location, which falls within the mooring footprint. This factor, however, is
not considered in this study.

As can be seen, both the water depth and weather conditions directly affect the time
required for the vessel’s final positioning and de-positioning. Therefore, the time taken for
these two activities for various projects at different water depths is collected and arranged
for ERN 2 to 4, as depicted in Table 9. Similar to FO consumption data, unavailable SM
positioning, de-positioning data are calculated using ANN, and those predicted data are
bolded in Table 9.

Table 9. Time taken for SM system positioning and de-positioning at various depth and ERN.

Water
Depth (m)

Positioning (Time Taken, min) De-Positioning (Time Taken, min)

ERN 2 ERN 3 ERN 4 ERN 2 ERN 3 ERN 4

20 90 95 100 50 50 60
30 115 115 120 55 60 70
40 145 138 147 58 65 76
50 168 160 173 60 70 82
55 175 180 185 70 75 85
60 182 187 194 73 78 88
75 213 215 225 74 85 95
80 230 235 243 80 90 100
85 245 250 260 85 95 105
90 261 266 289 90 102 111
95 275 280 296 94 105 118
100 290 300 310 97 110 125
110 303 317 328 102 113 133
120 320 330 343 105 115 138
130 335 344 355 108 121 142
140 350 363 375 120 132 150
150 370 380 395 130 140 160

A similar configuration of ANN as to FO consumption prediction has been used for
training the network with the collected time data for the SM set up as well. Table 10 shows
the details of the ANN used to learn the data in this regard.

Table 10. Parameters of the trained ANN for the time taken to set up and remove the SM system.

Parameters Positioning De-Positioning

Input 2 (ERN number and water depth) 2 (ERN number and water depth)
Output 1 (Time taken) 1 (Time taken)

Hidden layers 2 2
Neurons 10.5 10.5
Iteration 80 26

MSE 1.32 × 10−12 1.67 × 10−14

Gradient 1.7 × 10−6 1.73 × 10−9

This trained network is validated for both the trained and non-trained data for SM set
up and removing time, and Figure 9 shows the comparison plots of ERN 2 (positioning)
and ERN 3 (de-positioning) in this regard where the amount of error is less than 2%.
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Figure 9. Comparison plot for observed and ANN predicted values (FO consumption for SM setup).

The trained ANN is further applied to predict the time taken for SM positioning and
de-positioning at various water depths when there is no environmental force (ERN zero).
Figure 10 shows a graphical plot for those ANN-predicted times at ERN zero conditions
for various water depths. As noticed, the time increases with the increase in water depth,
which is expected as longer mooring length is required.
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The predicted values are then used to calculate the associated time costs (total cost for
vessel keeping) for the SM system, using the formula in Equation (9).

Y5 =

(
ANN predicted time f or positioning + ANN predicted time f or depositioning

24× 60 + Number o f days o f f ield work

)
(9)

3.3. Demonstration of the Decision-Making Capability of the Trained ANNs

The accuracy of the decision making of the trained ANNs is validated against two
recent actual projects undertaken by the vessel, one for SM and another for DP. Before
presenting the validation results, the rationale of decision making is explained in the
following subsection.

3.3.1. The Rationale behind Decision Making

As described in the earlier section, the study of decision making reported here is solely
based on cost estimation. The trained ANN will estimate the total operational cost based
on the information made available and decide which option (DP or SM) provides the lower
cost for that particular scenario. Using the equations developed in Sections 3.1 and 3.2
the total costs for DP and SM operation for any operational scenarios can be estimated by
Equations (10) and (11), respectively.

CostDP = Y1 + Y2 + Y3 (10)
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CostSM = Y4 + Y5 (11)

Both these equations contain several variables those changes depending on market
condition, thus, will affect the total cost significantly. For the analysis presented in this
subsection, the following values are considered for some of those variables:

• Vessel’s daily OPEX—USD 30,000
• Estimated days of fieldwork based on scope—variable
• Water depth—variable
• FO price (Marine clean MGO, sulphur <0.05%)—USD 500/tonne or USD 0.5/KG
• Daily rate for additional crew for DP operation—USD 300
• Monthly virtualization cost for DP crew—USD 2500

Now, considering three different durations of fieldwork, the cost of DP and SM
operations at various water depths is estimated and plotted in Figure 11 for ERN 0. The
three plots depict the dynamics of decision making involved in this process. For example,
as can be seen, when the fieldwork is limited to 0.5 days, the DP system is always cheaper
if the water depth is above 22.5 m. On the other hand, for 2 days of fieldwork, SM remains
cheaper as long as the water depth is within 75 m. The threshold value of water depth
shifts further right with the increase in fieldwork duration.
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Figure 11. Cost comparison for different days of fieldwork in ERN 0 condition.

Although the results plotted in Figure 11 are for ERN 0 only, similar trends are
observed for other ERNs as well. Therefore, to understand the dynamics in decision
making for different ERN numbers and see how the threshold water depth varies with
the change of fieldwork duration, Figure 12 is plotted. The figure represents five decision-
making boundaries that separate the preferred operational zones for DP and SM based
on ERNs, water depths and fieldwork durations for the particular set of cost variables
considered here. As can be seen, the threshold water depth is almost constant for various
ERNs for this particular operational scenario. The ANN will generate different sets of
decision-making boundaries once the variables keep changing. Therefore, this plot could
deliberately be used as a guideline for instant decision making for any geotechnical vessel
on whether DP or SM will be the best choice for a given operational scenario.
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3.3.2. ANNs Validation against SM Scenario

Table 11 shows the information on a recent project undertaken by the drilling vessel
considered in this study. The project was completed using the SM arrangement. Now,
the trained ANN is fed with variable values specific to this project (FO cost, crew costs
etc.), and is allowed to generate plots for overall project costs for the operation of 55 h,
using both DP and SM arrangement, and for various water depths. Figure 13 shows the
results, where the vertical dotted line indicates the operational water depth at the project
site. As can be seen, the ANNs concluded that SM is cheaper than DP at 45m water depth
for a project duration of 2.29 days (55 h), which matches with the actual mode of operation
choose by the operator.

Table 11. Specification for a project undertaken with SM arrangement.

Project Location Offshore Brunei

Client Confidential information
Overall Scope Marine site characterisations for 3 Jack up rig emplacement.
Location Confidential information

Scope on location
1 × 30 m CPT sampling;
1 × 45 m continuous PCPT hole;
1 × 60 m continuous sampling borehole.

Water Depth 45 m (Chart Datum)
Duration at location 55 h (2.29 days) on 10 March 2020 to 13 March 2020
Station Keeping mode Spread Mooring (Four Point Mooring—self-anchoring)

J. Mar. Sci. Eng. 2021, 9, 596 19 of 21 
 

 

Table 11. Specification for a project undertaken with SM arrangement. 

Project Location Offshore Brunei 

Client Confidential information 

Overall Scope Marine site characterisations for 3 Jack up rig emplacement. 

Location Confidential information 

Scope on location 

1 × 30 m CPT sampling; 

1 × 45 m continuous PCPT hole; 

1 × 60 m continuous sampling borehole. 

Water Depth 45 m (Chart Datum) 

Duration at location 55 h (2.29 days) on 10th March 2020 to 13th March 2020 

Station Keeping mode Spread Mooring (Four Point Mooring—self-anchoring) 

 

Figure 13. Decision making by ANNs based on total operational cost for the project specified in 

Table 11. 

3.3.3. ANNs Validation against DP Scenario 

The steps similar to Section 3.3.2 is repeated here except that this time it is for a dif-

ferent project with a duration of 1.25 days. Table 12 shows project specifications, and Fig-

ure 14 shows ANNs prediction on suitable station-keeping options based on total opera-

tional cost. As indicated by the vertical dotted line, it is evident that DP is cheaper than 

spread mooring for this particular project while the vessel operated at 67.2m water depth 

for a duration of 1.25 days. This decision from ANNs also matches with the actual decision 

taken by the operator for this project. 

Table 12. Specification for a project undertaken with SM arrangement. 

Project Location Offshore Thailand 

Client Confidential information 

Overall Scope Marine site investigation on site suitability for platforms and 

jack-ups development at Chevron fields, Offshore Thailand. 

Location Confidential information 

Scope on location 

1 × 140 m sample boreholes (0 m to 15 m @ 1 m sampling in-

terval; 15 m to 30 m @ 1.5 m sampling interval; more than 30 

m @ 2 m sampling interval) 

Water Depth 67.2 m (62.7 m echosounder + 4.5 m draft) 

Duration at location 30 h (1.25 days) on 20th May 2020 to 21st May 2020 

Station Keeping mode DP 2 
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Table 11.

3.3.3. ANNs Validation against DP Scenario

The steps similar to Section 3.3.2 is repeated here except that this time it is for a
different project with a duration of 1.25 days. Table 12 shows project specifications, and
Figure 14 shows ANNs prediction on suitable station-keeping options based on total
operational cost. As indicated by the vertical dotted line, it is evident that DP is cheaper
than spread mooring for this particular project while the vessel operated at 67.2 m water
depth for a duration of 1.25 days. This decision from ANNs also matches with the actual
decision taken by the operator for this project.
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Table 12. Specification for a project undertaken with SM arrangement.

Project Location Offshore Thailand

Client Confidential information
Overall Scope Marine site investigation on site suitability for platforms and

jack-ups development at Chevron fields, Offshore Thailand.
Location Confidential information
Scope on location 1 × 140 m sample boreholes (0 m to 15 m @ 1 m sampling

interval; 15 m to 30 m @ 1.5 m sampling interval; more than 30
m @ 2 m sampling interval)

Water Depth 67.2 m (62.7 m echosounder + 4.5 m draft)
Duration at location 30 h (1.25 days) on 20 May 2020 to 21 May 2020
Station Keeping mode DP 2
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4. Conclusions

A systematic study on developing an ANN-based decision-making model to make op-
timum station-keeping choice for a geotechnical drilling vessel is presented. To summarize:

• This research utilizes Artificial Neural Networks as a powerful learning tool con-
structed from data gathered from a geotechnical drilling ship to predict the operational
cost and thereby, deciding on the best station-keeping option.

• Factors such as confidence level on the weather forecast, crew competency, and system
readiness are ignored in the present modelling; however, these should be considered
in the selection process to improve the ANN prediction.

• While the study reported here is specific to station-keeping of geotechnical drilling ves-
sel, it can be easily extended for other Offshore Support Vessel operational scenarios.

• The optimization approach in station-keeping can further be developed by collecting
data from more vessels with the same objective to increase the knowledge of ANNs.
During station-keeping, the relationship between FO consumption in various weather
conditions and the engine’s Specific Fuel Consumption (SFC) can be developed by
applying a similar method.

• Proper decision-making in any marine application ensures better usage of resources
and cost minimization and assists in achieving sustainable development while keeping
the impact on the environment to a minimum. The concept presented in this study
can be further applied in the development of a sustainable business model for the
marketing of geotechnical drilling vessels and other similar ships.
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