PHYSICAL BEHAVIOUR OF POWDER CERAMIC PART USING COLD ISOSTATIC PRESSING (CIP) PROCESSES

SARIZAL BIN MD. ANI

A project report submitted in partial fulfilment of the requirement for the award of the degree of Master of Engineering (Mechanical-Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > NOVEMBER, 2006

Kepada isteri saya yang disayangi: Wan Noor Azna Binti Abdul Rahim Anak saya: Siti Syazwani Kedua ibubapa saya: Md. Ani Bin Ahmad dan Zaiton Binti Ahmad Kawan-kawan saya

TERIMA KASIH atas segala jasa dan sokongan yang telah diberikan

ACKNOWLEDGENT

I would like to express my sincere appreciation to my supervisor Assoc. Prof. Dr. Safian Sharif for his guidance, encouragement and patience throughout this master project. I also would like to thank to UTM lecturer, Japan-Malaysia Technical Institute staff and who have contributed to the success of this project.

ABSTRAK

Proses Penekanan Sestatik Sejuk (CIP) digunakan secara meluas bagi tujuan prapembentukan serbuk sebelum penumpatan selanjutnya melalui proses pensinteran. Penekanan sestatik boleh menghasilkan tekanan yang tinggi secara seragam melalui semua arah komponen produk di mana kepadatan adalah konsisten bagi seluruh keratan dan ketepatan yang tinggi berbanding dengan penekanan searah. Hal yang demikian akan menghasilkan penumpatan yang lebih seragam dan pemadatan yang sangat baik. Melalui kajian ini kesan parameter CIP terhadap kelakuan pengecutan, kekerasan dan ketumpatan bagi serbuk alumina akan dapat diketahui. Kesan suhu pensinteran terhadap kebulatan, kesilinderan dan kekasaran permukaan bagi bahagian seramik juga akan dapat diperolehi. Melalui kajian ini juga hubungan di antara parameter proses dan tindakbalas proses bagi bahan alumina akan dapat ditentukan di mana keputusan yang diperolehi boleh digunakan bagi menghasilkan produk yang hampir kepada bentuk pembuatannya.

ABSTRACT

Cold Isostatic Press (CIP) is mainly used for pre-forming of powder parts prior to a further densification by sintering. Isostatic pressing can apply very high pressure uniformly in all directions producing parts, which are consistent in density throughout their cross sections and highly accurate as compared to those produced uniaxially. This results in more uniform density and greater compaction. In this study the effect of CIP parameters on the shrinkage, hardness and densification behaviour of the alumina oxide powder are examined. The effect of sintering temperature on the roundness, cylindricity and surface roughness of the ceramic parts are also investigated. As a result of this study the relationship between the process parameters and the responses of alumina powder were established and can be used to produce product with the near net shape manufacturing.

CONTENTS

CHAPTER	TOPIC	PAGE
TITLE		i
DECLARATION		ii
DEDICATION		iii
ACKNOWLEDGENT		iv
ABSTRAK		V
ABSTRACT		vi
CONTENTS		vii
LIST OF TABLES		xi
LIST OF FIGURES		xii
LIST OF APPENDICES		XV

1 INTRODUCTION

Gener	al Background	1
Proble	em Statement	2
1.2.1	Mechanical Properties	
1.2.2	Geometrical Dimensioning Tolerance (GDT)	3
Object	tive	4
Scope	of the Project	4
Expec	ted Results	5
	Proble 1.2.1 1.2.2 Objec Scope	General Background Problem Statement 1.2.1 Mechanical Properties 1.2.2 Geometrical Dimensioning Tolerance (GDT) Objective Scope of the Project Expected Results

2 LITERATURE REVIEW

2.1	Introduction		6
2.2	Cold	Isostatic Press (CIP)	6
	2.2.1	Type of Cold Isostatic Press (CIP)	8
	2.2.2	Cold Isostatic Press (CIP) Processes	8
	2.3.3	Cold Isostatic Press (CIP) Chamber Pressure	10
	2.3.4	Cold Isostatic Press (CIP) Technology	
		Application	12
2.3	Ceran	nic Processing	13
	2.3.1	Raw Materials: Crushing and Additives	14
	2.3.2	Shaping Ceramics	14
	2.3.3	Drying	16
	2.4.4	Sintering	16
	2.4.5	Finishing	17
2.4	Ceran	nics	18
	2.4.1	Properties of Ceramics	19
	2.4.2	Applications of Ceramics	21
2.5	Alum	ina Powder	22
	2.5.1	Properties of Alumina Powder	24
2.6	Rubbe	er Mold	26
	2.6.1	Hardness of Rubber Mold	28
2.7	CIP P	rocess on Alumina Powder	28
	2.7.1	Alumina Powder	32

METHODOLOGY

Introduction		36
Projec	et Methodology	37
Exper	imental Matrix	38
Exper	imental Procedures	40
3.4.1	Alumina Powder	43
3.4.2	Cold Isostatic Press (CIP) Machine	43
3.4.3	Rubber Mold	45
3.4.4	Sintering Furnace	46
Measu	arement of The Responses	46
3.5.1	Hardness Measurement	47
3.5.2	Density Measurement	47
3.5.3	Shrinkage and Geometrical Dimensioning	
	Tolerance (GDT) Measurement	48
	Project Exper 3.4.1 3.4.2 3.4.3 3.4.4 Measu 3.5.1 3.5.2	 Project Methodology Experimental Matrix Experimental Procedures 3.4.1 Alumina Powder 3.4.2 Cold Isostatic Press (CIP) Machine 3.4.3 Rubber Mold 3.4.4 Sintering Furnace Measurement of The Responses 3.5.1 Hardness Measurement 3.5.2 Density Measurement 3.5.3 Shrinkage and Geometrical Dimensioning

RESULTS AND DISCUSSION

4.1	Introduction	49
4.2	Hardness	50
4.3	Green Density (Before Sintering)	53
4.4	Density After Sintering Process	55
4.5	Shrinkage of the Green Compact	61
4.6	Shrinkage After Sintering	65
4.7	Geometrical Dimensioning and Tolerancing (GDT):	
	Roundness and Cylindricity	71
4.8	Surface Roughness	78

REFERENCES

APPENDICES A-D

89

85

LIST OF TABLES

TABLE NO.TITLE

Characteristics of ceramics processing	15
Properties of various ceramics at room temperature	20
Types and general characteristics of ceramics	21
Detailed specification of alumina powder	25
Properties of polyurethane	27
Operating pressure guidelines for various powders	29
Selected process parameters and numbers of levels	38
Pressing pressure 100 MPa with pressing time and sintering	
temperature	38
Pressing pressure 150 MPa with pressing time and sintering	
temperature	39
Pressing pressure 200 MPa with pressing time and sintering	
temperature	39
Chemical composition of alumina A-96	43
Detailed specification of cold isostatic press (CIP) machine	44
Frequency of sample base on roundness range	74
Frequency of sample base on cylindricity range	77
	Properties of various ceramics at room temperature Types and general characteristics of ceramics Detailed specification of alumina powder Properties of polyurethane Operating pressure guidelines for various powders Selected process parameters and numbers of levels Pressing pressure 100 MPa with pressing time and sintering temperature Pressing pressure 150 MPa with pressing time and sintering temperature Pressing pressure 200 MPa with pressing time and sintering temperature Chemical composition of alumina A-96 Detailed specification of cold isostatic press (CIP) machine Frequency of sample base on roundness range

LIST OF FIGURES

FIGURE NO. TITLE P		PAGE
2.1	Isostatic vs uniaxial	7
2.2	Isostatic shape change	7
2.3	Wet bag isostatic pressing	9
2.4	Dry bag isostatic pressing	9
2.5	Full threaded ASME cover	10
2.6	Breech lock ASME cover	11
2.7	Pin closure ASME cover	11
2.8	Processing steps involved in making ceramic parts	13
2.9	Micrograph of alumina powder	22
2.10	Rubber mold sample	26
2.11	Durometer scale	28
3.1	Wet bag cold isostatic presss machine	44
3.2	Dimensions of the rubber mold	45
4.1	Hardness of sintered alumina powder at various pressing pressur	re 51
4.2	Hardness of sintered alumina powder at various pressing time	51
4.3	Hardness of sintered alumina powder at various sintering	
	temperature	52
4.4	Density (green) of alumina powder at various pressing pressure	54
4.5	Density (green) of alumina powder at various pressing time	54
4.6	Density of sintered alumina powder at various pressing	
	pressure	56
4.7	Density of sintered alumina powder at various pressing time	57
4.8	Density of sintered alumina powder at various sintering	
	temperature	58

4.9	Densification of alumina powder between green and	
	sintered at 100 MPa	59
4.10	Densification of alumina powder between green and	
	sintered at 150 MPa	60
4.11	Densification of alumina powder between green and	
	sintered at 200 MPa	60
4.12	Green shrinkage (diameter & height) of alumina powder	
	at various pressing pressure	62
4.13	Green shrinkage (diameter & height) of alumina powder	
	at various pressing time	63
4.14	Green shrinkage of alumina powder between	
	diameter and height at 100 MPa	64
4.15	Green shrinkage of alumina powder between	
	diameter and height at 150 MPa	64
4.16	Green shrinkage of alumina powder between	
	diameter and height at 200 MPa	65
4.17	Shrinkage after sintered (diameter & height) of alumina powder	
	at various pressing pressure	66
4.18	Shrinkage after sintered (diameter & height) of alumina powder	
	at various pressing time	67
4.19	Shrinkage after sintered (diameter & height) of alumina powder	
	at various sintering temperature	68
4.20	Sintered shrinkage of alumina powder between	
	diameter and height at 100 MPa	69
4.21	Sintered shrinkage of alumina powder between	
	diameter and height at 150 MPa	70
4.22	Sintered shrinkage of alumina powder between	
	diameter and height at 200 MPa	70
4.23	Specifying roundness	71
4.24	Roundness of alumina powder at various pressing pressure	72
4.25	Roundness of alumina powder at various pressing time	72
4.26	Roundness of alumina powder at various sintering temperature	73

4.27	Specifying cylindricity	74
4.28	Cylindricity of alumina powder at various pressing pressure	75
4.29	Cylindricity of alumina powder at various pressing time	76
4.30	Cylindricity of alumina powder at various sintering temperature	76
4.31	Specifying surface roughness	78
4.32	Surface roughness of alumina powder at various	
	pressing pressure	79
4.33	Surface roughness of alumina powder at various pressing time	80
4.34	Surface roughness of alumina powder at various sintering	
	temperature	80

LIST OF APPENDICES

TITLE

APPENDIX NO.

A Result of Experiment

- B Result of Experiment (Raw Data)
- C Sources of Data for Analysis
- D Equipment Specification

CHAPTER 1

INTRODUCTION

1.1 General Background

Isostatic presses are used for many applications ranging from casting repair to ceramic ball bearings. The process can be cold, warm or hot to accomplish the desired task. Cold Isostatic Press (CIP) are used mainly for pre-forming of powder prior to further densification by sintering. CIP come in two types; wet bag and dry bag.

In a wet bag CIP the pressure container is full of water and the rubber bag (mold) is removed after each cycle and refilled. This type of press is common when large, complex or many different parts are required. The main benefit of isostatic pressing is uniform density, which results in predictable and repeatable shrinkage upon sintering [1].

For small parts a uniaxial die press can produce acceptable parts, but for long tubes or large complex parts, the die friction causes non-uniformity [1]. This is where isostatic presses comes is selected. Most cold pressing is done with some form of binder to hold the part shape. This binder is eventually burnt out of the part in a furnace or during the sintering process.

This project is undertaken with the aims in understanding the effect of CIP and sintering process on the physical behaviour of powder ceramic part with respect to shrinkage, hardness, density, roundness, cylindricity and surface roughness.

1.2 Problem Statement

Cold Isostatic Press (CIP) process involved various parameters such as pressing pressure, pressing time and grain size of the ceramic powders. These parameters significantly affect the mechanical and physical properties of the 'green' or 'as-pressed' compact before and after sintering process such as density, hardness, strengthness and dimensional accuracy. In this study, the effect of the CIP parameters on shrinkage, hardness, roundness, cylindricity, surface roughness and densification behaviour of the ceramic powder will be examined. Eventually the results obtained will be used to design and produce a more accurate mold in complying with the near net shape manufacturing.

1.2.1 Mechanical Properties

Compared to metals, ceramics have the following relative characteristics: brittleness; high strength and hardness at elevated temperatures; high elastic modulus; and low toughness, density, thermal expansion, and thermal and electrical conductivity [2]. However, because of the wide variety of ceramics material composition and grain sizes, the mechanical and physical properties of ceramics vary significantly. Because of their sensitivity to flaws, defects, and surface or internal cracks, the presence of different types and level of impurities, and different methods of manufacturing, ceramics can have a wide range of properties [3]. For Cold Isostatic Press (CIP) processes, mechanical properties of ceramic depend on the pressing pressure and pressing time process parameters. The relationship between these process parameters will be studied to determine the hardness and density of alumina powder after compaction and sintering processes.

1.2.2 Geometrical Dimensioning Tolerance (GDT)

The sintering process causes merging of the particles by diffusion. This mechanism causes the powder particles to move a little closer and therefore some amount of shrinking occurs in the size of the green compact. If the shrinkage is non-uniform or if some dimensions are critical, then the sintered part must be subjected to finishing operations to maintain its specification [4].

The main benefit of CIP process is uniform density, which results in predictable and repeatable shrinkage upon sintering. The fluid pressure acts uniformly in all direction, therefore no die to control shape but must understand shrinkage relationships [4]. By CIP processes geometrical dimensioning tolerance, surface roughness and shrinkage of ceramic maybe depend on pressing pressure and pressing time or sintering temperature process parameters. The relationship between these process parameters will be studied to determine roundness, cylindricity and shrinkage of alumina powder after sintering. Two specific objectives have been defined to simplify the main objective of the project. There are:

- 1. To study the effect of CIP parameters on the shrinkage, hardness and densification behaviour of the green compact of alumina.
- 2. To investigate the effect of sintering temperature on the roundness, cylindricity and surface roughness of the ceramic part.

1.4 Scope of the Project

The scopes of the project are as follows:

- 1. Cold Isostatic Press (CIP) process and sintering process will be employed in producing the ceramic part.
- The material used for the compaction and sintering process is Aluminium Oxide (Al₂O₃).
- Input parameters to be used included are pressing pressure, pressing time and sintering temperature.
- 4. Output responses to be investigated include shrinkage, hardness, density, roundness, cylindricity and surface roughness.

1.5 Expected Results

This project attempts to evaluate the effect of the pressing pressure and pressing time of Cold Isostatic Press (CIP) process and sintering temperature in order to obtain good physical behaviours (hardness and density) and dimensional accuracy of the ceramic part. Based on the literature review and suppliers recommendations, the following results are expected:

- 1. The relationship between the process parameters and the responses of alumina powder will be established.
- 2. The acceptable process parameters for producing the appropriate responses of alumina powder will be determined.
- 3. The predicted results and repeatable shrinkage upon sintering will be used for designing the rubber mold, to achieve a near net shape product.
- 4. The result of physical behaviours (hardness and density) will be used for determine the suitable function and application.
- 5. An accuracy within ± 0.7 mm is expected through the GDT analysis.