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Abstract: Southeast Asia (SEA) is a hotspot region for atmospheric pollution and haze conditions, due
to extensive forest, agricultural and peat fires. This study aims to estimate the PM2.5 concentrations
across Malaysia using machine-learning (ML) models like Random Forest (RF) and Support Vector
Regression (SVR), based on satellite AOD (aerosol optical depth) observations, ground measured air
pollutants (NO2, SO2, CO, O3) and meteorological parameters (air temperature, relative humidity,
wind speed and direction). The estimated PM2.5 concentrations for a two-year period (2018–2019)
are evaluated against measurements performed at 65 air-quality monitoring stations located at
urban, industrial, suburban and rural sites. PM2.5 concentrations varied widely between the stations,
with higher values (mean of 24.2 ± 21.6 µg m−3) at urban/industrial stations and lower (mean
of 21.3 ± 18.4 µg m−3) at suburban/rural sites. Furthermore, pronounced seasonal variability
in PM2.5 is recorded across Malaysia, with highest concentrations during the dry season (June–
September). Seven models were developed for PM2.5 predictions, i.e., separately for urban/industrial
and suburban/rural sites, for the four dominant seasons (dry, wet and two inter-monsoon), and an
overall model, which displayed accuracies in the order of R2 = 0.46–0.76. The validation analysis
reveals that the RF model (R2 = 0.53–0.76) exhibits slightly better performance than SVR, except for
the overall model. This is the first study conducted in Malaysia for PM2.5 estimations at a national
scale combining satellite aerosol retrievals with ground-based pollutants, meteorological factors
and ML techniques. The satisfactory prediction of PM2.5 concentrations across Malaysia allows a
continuous monitoring of the pollution levels at remote areas with absence of measurement networks.

Keywords: PM2.5; Himawari-8; random forest; support vector regression; air pollution; Malaysia

1. Introduction

Air pollution has become an acute environmental and health issue in developing coun-
tries during the last decades due to intense industrialization and urbanization processes [1–3].
It is estimated that about 7 million people die every year worldwide because of exposure to
fine particulate pollution < 2.5 µm (PM2.5), while about 91% of the world’s population live
in areas with PM2.5 concentrations above the allowable limits of 10–20 µg m−3 [4]. South-
east Asia (SEA) is not an exception to high pollution levels and experiences persistent haze
conditions, especially during the dry season (June to September) due to extensive forest,
agricultural and peat fires [5–9]. Malaysia is located in the main pathway of the SEA pollution
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outflow [10] that escalates the pollution levels due to trans-boundary aerosol transport. Air
quality in Malaysia is considered rather degraded, as the annual mean PM2.5 concentration is
about 20 µg m−3 in 2019 [11], thus exceeding the limit set by WHO. Local sources such as
traffic and industrial emissions, as well as biomass burning significantly contribute to the local
pollution and aerosol loading [12–14]. According to the Department of Statistics Malaysia [15],
chronic lower respiratory diseases (CLRD) is the fifth leading cause of death in Malaysia that
was increased from 2.0% to 2.6% between the years 2017 and 2018. In fact, chronic exposure
to PM2.5 has significant impacts on human health by causing asthma, chronic obstructive
pulmonary disease, lung cancer, cardiovascular and neurotoxic effects [16,17]. Therefore,
continuous monitoring of the levels and mapping of spatial distribution of PM2.5 is especially
important for taking appropriate actions to maintain a good air quality over Malaysia [18,19].

Nowadays, many satellites provide reliable AOD (aerosol optical depth) products
that can be used through various techniques for PM estimations from space, such as the
Advanced Very High Resolution Radiometer (AVHRR) [20,21], Multiangle Imaging Spectro-
radiometer (MISR) [22], Medium Resolution Imaging Spectrometer (MERIS) [23], Spinning
Enhanced Visible and Infrared Imager (SEVIRI) [24] and Moderate Resolution Imaging
Spectroradiometer (MODIS) [25–28]. Among the satellite data products, AOD provided
by MODIS sensor on board Terra and Aqua satellites has been widely used for many
applications due to its high retrieval accuracy over land and near daily global coverage at
10 km and 3 km spatial resolution [26,27,29]. However, its usability in SEA is still limited
due to large missing data series as a result of heavy and extended cloudiness [18,30–32].
On the other hand, geostationary satellites provide high temporal resolution (~15 min)
data, thus limiting the problem of cloudiness. In the past few years, geostationary satellites
such as Geostationary Operational Environmental Satellite (GOES) [33], Geostationary
Ocean Color Imager (GOCI) [34], Fengyun-4 [35] and Himawari-8 [36–38] are available
and provide continuous data over the SEA region.

Significant progress has been made in developing and establishing various techniques
for estimating PM concentrations from space at local, regional and global scales. The
progress in usage of linear and multi-linear statistics, regression-based, machine learn-
ing and hybrid models for estimations of PM2.5 and PM10 concentrations during the last
decades is reviewed in recent works [1,39,40]. In the early 2000s, most researchers pre-
dicted PM using only AOD, by means of simple linear regression techniques [41,42]. Later
on, more advanced techniques were developed to incorporate AOD and other important
parameters that may influence PM distribution spatially and temporarily, starting from mul-
tiple linear regressions [18,43–46], chemical transport models (CTM) [47–50], mixed effect
models (MEM) [51–54], artificial neural networks (ANN) [18,55–58], geographic weighted
regression (GWR) [59–62] and generalized additive models (GAM) [63–66]. These tech-
niques were used to capture the non-linear relationships that exist between the variables.
Consequently, complex techniques have been developed by combining two or more sta-
tistical techniques; for instance, merging MEM and GWR [67] or incorporating MEM into
GAM [68]. Nowadays, Machine Learning (ML) techniques such as deep neural network
(DNN), support vector regression (SVR) and random forest (RF) enable to capture the
complex relationships between parameters, exhibiting greater performance in estimating
PM2.5 [69,70] and are increasingly used in air quality studies [71–74]. Furthermore, some
studies have incorporated meteorological factors with land use variables to predict the
spatial and temporal variation of aeolian erosion and PM [75–79]. However, only few
studies have incorporated air pollutant concentrations for PM2.5 estimations [65,80,81].
Song et al. [65] explored the use of generalized additive model to estimate PM2.5 concentra-
tions in the Xi’an City, China (3581 square kilometres) using a combination of air pollutants
(SO2, CO, NO2, and O3), AOD and meteorological variables. The model was found to
explain ~70% of the variance in PM2.5 concentrations, with CO concentration and AOD
represented most of the variation. The influence of air pollutants on the seasonal variability
of PM2.5 in an urban-industrial environment in Malaysia was investigated by [81] for one
year. This study concluded that only gases (CO, NO2, NO and SO2) significantly affected
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the PM2.5 mass, but not the meteorological factors (rainfall, wind speed and wind direction).
Based on the prediction model of [80], temperature, Normalized Difference Vegetation
Index (NDVI), humidity and residential area were found to be important parameters affect-
ing the spatial variation of PM2.5 in Jakarta, Indonesia. The same study [80], also showed
that several parameters (PM10, NO2, SO2, UV, rainfall, land use and NDVI) influenced the
distribution of PM2.5 in Taipei, Taiwan. More studies are therefore needed to find out the
role of gases and meteorology in affecting the spatial and seasonal patterns of PM2.5, even
using meteorological normalization techniques in order to exclude the effect of changing
meteorology on PM concentrations trends [82]. Recently, ML approaches (random forest
regression models) were implemented to predict the large reductions in air pollutants, i.e.,
PM10, NO2, O3, during the COVID-19 lockdown period [83]. Furthermore, PM10, NO2 and
carbonaceous aerosols (organic carbon, elemental carbon) were also used in ML techniques
(Lasso, Random Forest, AdaBoost, Support Vector Machine and Partials Least squares)
for analysing air pollutants at street canyons [84]. Studies dealing with PM estimations in
Malaysia are rather limited [18,30]. Shaziayani et al. [85] has reviewed PM10 modelling
studies in Malaysia, and only four studies used ML techniques in predicting PM10. On
the other hand, PM2.5 studies are even fewer and most of them in Malaysia have been
performed at small spatial scales [86,87].

The current study is the first in Malaysia and one of the very few works conducted
worldwide aiming to estimate the PM2.5 concentrations at a large (national) scale using
pollution gases, AOD and meteorological factors based on machine-learning techniques.
In order to extend the spatial coverage to the whole country (both Peninsular and Island
Malaysia) and aiming to improve the accuracy of PM2.5 estimates, this study integrates
hourly AOD products from Himawari-8 satellite sensor, along with meteorological pa-
rameters and gaseous pollutants using machine learning techniques, i.e., random forest
(RF) and Support Vector Regression (SVR). The models were developed separately for
urban/industrial, suburban/rural sites and for the four dominant seasons in order to
better represent the spatial (between sites) and temporal (between seasons) variation of the
PM2.5 concentrations. Variable importance analysis was conducted to identify the primary
parameters that affect the PM2.5 concentrations in Malaysia in a way to develop regression
models for estimations of PM2.5. The performance of RF and SVR was evaluated at different
seasons and locations against measured PM2.5 concentrations. The results will assist in
representing the spatial and temporal evolution of PM2.5 in Malaysia and for establishing
measures in a way to improve air quality across the country.

Section 2 briefly describes the study area; Section 3 refers to the dataset that was used
as variables in the prediction models; Section 4 refers to the PM2.5 measurements across
Malaysia. The results and model evaluation are included in Section 5, while Section 6
summarises the conclusions.

2. Study Area

Malaysia is one of the developed countries in SEA region with a rapid urbanization
rate since 1970 [88]. Consequently, air pollution has become one of the serious envi-
ronmental and human health concerns across the country [5,89], particularly in urban,
industrialised and congested traffic areas such as Klang Valley (in the west coast of Penin-
sular Malaysia), Johor Bahru (southern tip of the Peninsula) and Georgetown, Penang
(north of Peninsula) [90,91]. Air quality deteriorates at several parts of Peninsular Malaysia
and in Borneo Island during the dry season mainly due to trans-boundary haze from
neighbouring countries and regional/local forest fires. The concentrations of aerosols and
air pollutants display a distinct seasonality, influenced by local meteorological conditions,
i.e., rainfall, wind speed, relative humidity (RH) and temperature [86], being lower during
the monsoon rainy season (November–March). In this study, 65 air quality monitoring
stations (Figure 1) distributed across the Peninsular and Island Malaysia (Labuan, Sabah
and Sarawak) were used to analyse the air pollution levels (PM2.5, SO2, NO2, CO and O3
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concentrations). The stations are representative of industrial (7 stations), urban (10 stations),
suburban (36 stations) and rural (12 stations) areas.

Figure 1. Locations of the 65 air quality monitoring stations across Malaysia.

3. Dataset

The dataset used in this study consist of PM2.5 and air pollutant concentrations,
along with meteorological parameters from ground stations, as well as AOD data from
Himawari-8 satellite.

3.1. Ground Measurements

PM2.5 concentrations in Malaysia have been measured since April 2017. The Depart-
ment of Environment, Malaysia (DOE) increased the number of air quality monitoring
stations across the country from 52 to 65 stations in 2017 (Figure 1). Furthermore, these
stations also measure meteorological parameters (e.g., ambient temperature, TEMP; RH,
wind speed, WS; wind direction, WD) and gaseous pollutants (e.g., nitrogen dioxide,
NO2; carbon monoxide, CO; sulphur dioxide, SO2; ozone, O3). The stations are strate-
gically distributed to represent urban, industrial, suburban and rural areas [92]. PM2.5
measurements were performed via the TEOM 1405DF, which is a continuous dichotomous
ambient air monitoring system with two Filter Dynamics Measurements Systems [93], able
to measure PM2.5 and PM10. SO2, NO2, CO and O3 are measured using Thermo Scientific
model 43i, model 42i, model 48i and model 49i, respectively [93,94]. RH and TEMP were
recorded using a Climatronic AIO 2 Weather Sensor (Climatronic Corporation) [95]. All
the ground data were obtained on an hourly basis covering the period from January 2018
to December 2019.

All air quality and meteorological measurements went through quality assurance
and quality control (QA/QC) procedures. Instruments for the detection of gases were
manually calibrated once a fortnight. Flow verification for PM10 and PM2.5 measurements
using TEOM was conducted once a month. The data removal during the QC check was
predominantly due to insufficient measurements and instrument failure, while some
perturbed data were also excluded as outliers in a second-level QC check [95].

3.2. Satellite Data

Himawari-8 is a geostationary satellite operated by the Japan Meteorological Agency.
It was launched on 7 October 2014 and carries the Advanced Himawari Imager (AHI)
sensor, which is equipped with 16 bands from visible to infrared [36]. Himawari-8 releases
AOD products at two levels, namely Level 2 (10 min temporal) and Level 3 (hourly and
daily), which have been used for various applications including estimation of PM [96–99],
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dust detection [100] and aerosol data assimilation [101]. The L3 product is an improved
version of the L2 AOD product that minimized cloud contamination [102] and has a 5 km
spatial resolution. Himawari-8 AOD at 500 nm is associated with quality assurance levels
namely “very good”, “good”, “marginal” and “no confident (or no retrieval)” [99]. In this
study, only the “very good” L3 AOD500 retrievals were considered for PM2.5 estimations,
downloaded from the Japan Aerospace Exploration Agency (JAXA) website: available
online: http://www.eorc.jaxa.jp/ptree/index.html (accessed on 10 May 2021) for the
period January 2018–December 2019. Recently, Himawari-8 AODs were used to estimate
the PM2.5 concentrations over Hubei province, China [103]. Application of the Himawari-8
L2 AOD data over Malaysia revealed an overestimation by 24.2% [104], while the L3 AOD
products displayed a better agreement with the Aerosol Robotic Network (AERONET)
AODs with a coefficient of determination R2 = 0.81, root mean square error (RMSE) of 0.13
and an overall overestimation of only 1% [92]. Moreover, Himawari-8 AODs presented a
good agreement with AERONET AODs in China (R2 = 0.41–0.83; RMSE = 0.18–0.31) [105],
Southeast Asia (R2 = 0.64; RMSE = 0.28), East Asia (R2 = 0.83; RMSE = 0.14) [106], Korea
(R2 = 0.69; RMSE = 0.19) and Beijing-Tianjin-Hebei (R2 = 0.76; RMSE = 0.36) [107].

4. PM2.5 Estimation

The overall methodology used for the PM2.5 estimations over Malaysia is illustrated in
Figure 2. The model inputs consist of hourly AOD, SO2, NO2, CO, O3, WS, WD, TEMP and
RH values. Hourly AOD data from Himawari-8 were extracted at 5 × 5 km over the air
quality monitoring stations and temporally collocated with ground measurements. Wind
direction was used in the model because wind blowing from a highly polluted area can
influence air quality in other downwind places. Wind speed enables to accelerate pollutants
travelling from other places but also contributes to the dilution processes at local level [108].
On the other hand, temperature can trigger biogenic emissions, photochemical reactions
and secondary aerosol formation over the region [109] and also control the temperature
inversions, which can trap the pollutants near the surface [45,108,110]. Finally, RH may
affect the hygroscopic growth of particles and enhance the aerosol scattering [111–113].

Figure 2. Flowchart of the overall dataset and methodology used for the estimations of PM2.5

concentrations.

In this study, we utilized and evaluated two ML models, namely, Support Vector
Regression (SVR) and Random Forest (RF) to estimate PM2.5 concentrations at the 65 air
quality monitoring stations across Malaysia. The input variables to the SVR and RF models
are selected based on our previous study [18,31] and other literature [114,115]. In total,
we developed 7 different models to represent the spatial and seasonal effects on PM2.5
distributions. Model 1 considers all data from the 65 stations, but other models, i.e., models

http://www.eorc.jaxa.jp/ptree/index.html
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2 and 3, only represent urban/industrial and suburban sites, respectively, while models 4 to
7 represent different seasons (wet, dry and two inter monsoon). The models are described
in the subsequent sections.

4.1. Machine Learning (ML) for PM2.5 Estimation

Nowadays, several studies have used machine learning (ML) techniques, including
RF model, aiming to increase the accuracy in prediction of PM concentrations, since these
models are flexible in nonlinear approaches [72,116–119]. The SVR and RF techniques were
particularly selected in this study to achieve more accurate PM2.5 estimations using satellite-
derived AOD, meteorological parameters and gaseous pollutants as predictor variables.
The Classification And REgression Training (CARET) package was used to perform the
RF and SVR modelling. The data splitting, pre-processing, model tuning and variable
importance analysis were executed in a R environment. SVR depends on the kernel function
and due to its excellent generalization capability, it is able to minimize the overfitting [120],
and therefore, it has been used for PM estimations [69,108,121]. SVR can fit the errors
within a certain threshold by finding an appropriate boundary line (between hyperplane)
to suit the data. The flexibility of SVR depends on the selection of the parameter such as
kernel function, cost function and epsilon value. There are four types of kernel functions
namely linear, polynomial, sigmoid and radial basis function (RBF) that were used in this
study for capturing the non-linear dynamics [69], whilst cost function was used to avoid
any overfitting of the data, as small cost value leads to large margin (or wide boundary
line) and causes overfitting in the model. The epsilon value controls the number of support
vectors used to develop the regression function, while the smaller epsilon value indicates
an optimum accuracy. Initially, the SVR parameters are selected based on trial-and-error
values, but we found that the default values (Supplementary Materials Table S1) included
in the R package “e1071” provided the most promising results.

Random Forest (RF) is a tree-based ML technique proposed by [122]. Theoretically,
RF model is an ensemble of multiple decision trees and uses the majority vote/decision of
the trees as the final RF model [123,124]. The algorithm becomes more robust when more
decision trees are constructed. RF randomly selects parameters in order to develop each tree,
and therefore, it reflects potentially complex effects of predictors on the prediction [125].
The purpose of selecting random predictors instead of all predictors is to reduce the
correlation between trees in order to make them disparate [126]. Thus, the variance of the
RF prediction can reduce any overfittings. The number of decision trees can be modified to
reduce the training time according to a required accuracy and computing capability [127].
In this study, RF model was run using the “Random Forest” in the R package. Since, RF is a
non-parametric algorithm, here we only set the two most important parameters—although
RF can have more parameters—which are mtry and ntree. Parameter mtry is a number of
predictors sampled for splitting at each node while ntree is a number of trees in the forest.
If mtry value is too small, it might be none of significant parameters included in the subset,
and the insignificant parameters would be selected for a split. Therefore, the trees have
poor predictive ability [126]. In this study, we set the mtry = 3 (as default: mtry = p/3,
where p is the number of parameters used in the model), while ntree is set as 500 in the
model. For tuning, we only tune mtry because the CARET package has automatic tuning
for mtry only. Therefore, in this study, for ntree, we used the default value [128,129]. The
results were obtained based on best mtry tuning accuracy. It should be mentioned that a
limitation of this study is that models were not broadly optimized.

4.2. Model Validation

The total number of the matching dataset, covering all parameters at the 65 stations in
Malaysia from 2018 to 2019, is 13,376. The matching data were randomly partitioned at a
fraction of 70% for model calibration (model development) and 30% for model validation.
In the model development, a sample based 10-fold cross validation technique was used,
where the calibration data were randomly divided into 10 subsets; at any single moment,
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one subset was used for validation and the remaining subsets were used for calibrating
the model. The average value of the results of the 10 subsets was adopted as the model
accuracy. The sample based 10 cross validation (CV) performed validation with matchup
sample from both spatial and temporal dimension. This is a commonly used CV-based
technique to reveal the overall predictive ability of PM2.5 estimation models [130]. Then,
the final models were validated using the 30% of the remaining data. Statistical indicators
such as the coefficient of determination (R2), Root Mean Square Error (RMSE), mean bias
error (MBE) and Nash-Sutcliffe Efficiency (NSE) were used to evaluate the accuracy of
the models. The NSE is a normalized statistic, which can determine the magnitude of the
residual variance to the measured data variance and indicates how well the measured
PM2.5 versus estimated PM2.5 data fits the 1:1 line (best fit line).

RMSE =

√√√√√ N
∑

i=1
(Im − Ic)

2

Nt
(1)

MBE =

N
∑

i=1
(Im − Ic)

Nt
(2)

NSE = 1 −

N
∑

i=1
(Im − Ic)

2

N
∑

i=1

(
Im − Im

)2
(3)

where Im and Ic are the measured and estimated PM2.5 concentrations, respectively, Im is
the average of the measured PM2.5 and N the total number of measurements. NSE = 1
indicates an ideal model performance, while NSE = 0 shows model predictions as accurate
as the mean of the observed data. Lower RMSE and MBE values correspond to better
performance and to lower biases from the ML models.

4.3. Variable Importance

Variable importance statistic was used to analyse the contribution of each variable in
PM2.5 estimations. Since SVR is a kernel-based model, and we do not know the concrete
form of its nonlinear mapping function, and the weight vector (ω) cannot be computed
directly [128], it is complicated to analyse the variables importance statistic. On the other
hand, there are two famous measures for RF, which are mean decrease accuracy (MDA)
and mean decrease Gini (MDG). The MDG is based on Gini importance which measures
the average gain by splits of a given variable, whilst MDA is based on out of bag (OOB)
samples. In RF model, each tree is grown based on a bootstrap sample of the training data,
and those data that were not used in the bootstrap sample are known as out of bag (OOB)
samples [126]. The MDA measures the accuracy of the model losses by permuting each
variable. This technique is considered as most efficient variable importance for random
forest [129,131], and it was preferred in this study as less bias compared to Gini importance.
The higher percentage value of the variable importance indicates higher influence of the
corresponding variable to PM2.5 estimations. In R script, we used the “varImp” function,
which can automatically scale the importance scores in values between 0 and 100.

5. Results and Discussion
5.1. Descriptive Statistics

The descriptive statistics of the measured variables that are used in SVR and RF
models for all stations in Malaysia are summarized in Table 1. The columnar AOD500 over
the Malaysian sites during 2018–2019 exhibits a mean of 0.69, which is above the median
value 0.46 due to many episodic aerosol events with AODs above 2, representing thick
smoke plumes from extensive fires in Indonesia and Indochina [10,132,133]. The measured
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PM2.5 concentrations at the 65 examined sites follow a similar distribution with a higher
mean (21.9 µg m−3) than median (17.1 µg m−3) and a maximum value of 230 µg m−3

(Table 1, Figure 3). These PM2.5 levels are similar to those reported at several sites in
Southeast Asia [86,134]. NO2 and CO exhibit means of 5.2 ppb and 0.6 ppm, respectively,
while tropospheric O3 levels (25.2 ppb) are considered rather high with deleterious effects
on human health [135,136].

Table 1. Statistical values for the measured parameters in all air-pollution monitoring sites.

PM2.5
(µg m−3) AOD SO2

(ppb)
NO2
(ppb)

O3
(ppb)

CO
(ppm)

WS
(ms−1)

RH
(%)

TEMP
(◦C)

Mean 21.86 0.69 1.2 5.23 25.2 0.60 1.73 66.58 30.70

Median 17.07 0.46 1.0 3.81 27.3 0.56 1.60 66.85 30.88

Stdev 19.15 0.68 0.9 6.1 15.1 0.28 1.02 10.35 2.31

Figure 3. Box plots of measured PM2.5 concentrations (a) Himawari-8 AOD500 (b), CO (c), NO2 (d) and O3 (e) at ur-
ban/industrial and suburban/rural sites in Malaysia in the dry, wet and inter-monsoon seasons.

The box-whisker plots for AOD500 and air pollutants, separated for urban/industrial
and suburban/rural sites and for the four seasons, are shown in Figure 3. The analy-
sis showed that the seasonal-mean PM2.5 at the urban/industrial sites displayed higher
values in all seasons. During the dry season, the maximum PM2.5 levels were found to
be 230.3 µg m−3 for the urban/industrial and 226.3 µg m−3 for the suburban sites, with
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means of 31.26 µg m−3 and 26.38 µg m−3, respectively. This is attributed to the prevailing
southwest wind carrying biomass-burning aerosols from Indonesia due to extensive forest
fires in this season [90]. However, the seasonal mean PM2.5 concentrations do not notably
differ in the other seasons (lying between 17.80 µg m−3 and 22.33 µg m−3 for both ur-
ban/industrial and suburban/rural sites), indicating a year-long PM2.5 laden atmosphere
across Malaysia. Regarding the Himawari-8 AOD, it is higher during the dry season,
while slightly lower mean values (~0.6 to 0.8) were observed in the other seasons, with
marginal differences between urban/industrial and suburban/rural sites (Figure 3b). The
seasonal and site variations of the columnar AODs are in agreement with ground PM2.5
concentrations, indicating that the industrial and traffic emissions are the main pollution
sources for urban centres and surrounding areas. In general, heavy precipitation during
the wet season only marginally reduced the aerosol levels since severe pollution episodes
with PM2.5 > 100 µg m−3 and AODs > 3 were also present. However, the columnar AOD
displayed a very low correlation (R2 = 0.09) with the surface PM2.5, indicating (i) a sig-
nificant aerosol loading aloft and (ii) different sources and temporal variability between
surface PM2.5 and AODs [137]. In addition, the mean concentrations of CO, NO2 and
O3 (Figure 3c–e) are higher over the urban/industrial areas compared to suburban/rural
sites in each season. Motor vehicle and power plants emissions are the major contributors
to CO and NO2 concentrations in Malaysia with about 95.7% and 66%, respectively [11],
thus explaining the higher NO2 and CO levels in urban/industrial areas. The stronger
correlation was found between CO and PM2.5 (R2 = 0.33), revealing that the particulate
pollution in Malaysia is mostly related to local sources of fossil fuel and biofuel combustion,
which enhance CO emissions [86,138]. NO2, which is mostly related to vehicular emissions,
was negligibly associated with PM2.5 concentrations (R2 = 0.1), The overall mean SO2 con-
centration was found to be 1.2 ppb, with slightly larger levels in the dry season, exhibiting
means of 1.5 ppb and 1.3 ppb for the urban/industrial and suburban sites, respectively.

5.2. Models for PM2.5 Estimation

In this study, seven models were developed for PM2.5 estimations in Malaysia using
ML techniques, namely, SVR and RF. These models were developed in order to better
capture the remarkable spatial (between stations of different characteristics) and temporal
(between seasons) variations of PM2.5 and to examine the model’s capability in representing
the levels and evolution of PM2.5. The developed models are:

Model 1: Overall model;
Model 2: Spatial model (urban/industrial);
Model 3: Spatial model (suburban/rural);
Model 4: Temporal model (dry season);
Model 5: Temporal model (wet season);
Model 6: Temporal model (inter-monsoon, April–May);
Model 7: Temporal model (inter-monsoon, October).

The models’ inputs consist of AOD, SO2, NO2, CO, O3, WS, WD, TEMP and RH, with
the total number of the matching samples for all variables (overall model) to be 13,376 at
the 65 monitoring stations from January 2018 to December 2019. The scatter plots between
measured and predicted PM2.5 concentrations via the SVR and RF models are shown
in Figures 4 and 5 for the validation of the 7 developed models, while Supplementary
Materials Table S2 summarizes the statistical indicators of R2, RMSE, MBE and NSE, as
well as the importance ranking, for each input variable at the 7 developed models. The
statistical indicators correspond to the averaged values of each model for the given number
of data (N).
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Figure 4. Validation of the predicted PM2.5 concentrations against measured PM2.5 using SVR (left) and RF (right) for
overall Model 1 (a,b), urban/industrial Model 2 (c,d), suburban/rural Model 3 (e,f). Frequency indicates the density of
data/count. The statistical indicators are presented as averaged values in each case.
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Figure 5. Validation of the predicted PM2.5 concentrations against measured PM2.5 using SVR (left)
and RF (right) models in dry season (June–September) (a,b), wet season (November–March) (c,d),
inter-monsoon (April–May) (e,f) and inter-monsoon (October) (g,h). Frequency indicates the density
of data/count. The statistical indicators are presented as averaged values in each case.

The evaluation of the calibration datasets for the overall model 1 showed that the SVR
model yielded comparable accuracy (R2 = 0.69; RMSE = 10.62 µg m−3, NSE = 0.679 and
MBE = −1.392) to RF (R2 = 0.66; RMSE = 11.28 µg m−3, NSE = 0.939 and low MBE = 0.066)
(Supplementary Materials Table S2). The validation dataset displayed also small differ-
ences between the two models and comparable statistics with the calibration datasets i.e.,
R2 = 0.66 and RMSE = 12.11 µg m−3 for SVR and R2 = 0.62, RMSE = 11.40 µg m−3 for RF
(Figure 4).
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Furthermore, other models for estimating PM2.5 were also developed by splitting the
entire datasets initially into two categories namely urban/industrial (3357 data points)
and suburban/rural (N = 9798). The RF model performed slightly better compared
to SVR for urban/industrial (model 2) and suburban (model 3) sites, with R2 = 0.76,
RMSE = 11.47 µg m−3, NSE = 0.735 and R2 = 0.67, RMSE = 12.47 µg m−3, NSE = 0.661,
respectively. Regarding the calibration datasets, the NSE values of all the RF models
were usually above 0.9, indicating an accurate model’s performance, compared to the
SVR models, which exhibited NSE values in the range of 0.55 to 0.79 for the calibration
datasets (Supplementary Materials Table S2). The model validation revealed that RF
models performed slightly better than the SVR models for both locations. The validation
of SVR and RF models for suburban sites was considered satisfactory with R2 = 0.61,
RMSE = 11.53 µg m−3 and R2 = 0.64, RMSE= 10.76 µg m−3, respectively (Figure 4b,c). Both
models performed better at urban/industrial sites compared to the suburban sites, while
all models underestimated the large PM2.5 concentrations (PM2.5 > 60 µg m−3). For PM2.5
below 50 µg m−3, where the vast majority of the data points lie, the underestimated and
overestimated data points are almost equal for all the models and the regression line tends
to coincide with the 1-1 line (Figure 4).

In addition, four temporal models were also developed for each season in Malaysia,
namely, dry season (June–September; Figure 5a,b), wet season (November–March; Figure 5c,d)
and two inter-monsoon seasons (April–May; Figure 5e,f and October; Figure 5g,h). The total
number of data for the temporal models is 4223, 5797, 2441 and 915 for the dry season,
wet season, April-May and October, respectively. These datasets were randomly divided
into calibration and validation groups, and the results of the statistical evaluations of the
seasonal PM2.5 predictions are included in Supplementary Materials Table S2 (models 4–7).
The estimation accuracy of PM2.5 concentrations via the SVR and RF models varied between
the seasons, while it was relatively lower in the wet and inter-monsoon (April-May) seasons
for both models. For instance, the R2 values for the calibration dataset of the SVR model were
0.81, 0.62, 0.58 and 0.74 for the dry, wet seasons, April-May and October, respectively. The RF
models exhibited slightly lower RMSE values compared to the SVR models, as 13.61 µg m−3,
9.99 µg m−3, 8.36 µg m−3 and 12.41 µg m−3 against 14.0, 10.9, 9.38 and 12.46 µg m−3 for dry,
wet, April-May and October, respectively. Furthermore, RF models displayed higher NSE
values compared to SVR, while the PM2.5 underestimations from the SVR models (negative
MBE values) are eliminated by using the RF models (Supplementary Materials Table S2;
Figure 5).

The statistical evaluators of the developed models in Malaysia are mostly comparable
to those found from multi-variate models including AOD and several meteorological
parameters (Temp, RH, WS, Dew point, mixing height) for PM2.5 estimations in Indian
cities [139]. More recently, [39] developed a deep neural network consisted of recurrent
layers for extracting the relationship between high-resolution (1 km) MODIS observations
and PM10, PM2.5 concentrations in Tehran, Iran. The PM2.5 and PM10 estimations resulted
in RMSE values of 11.66 µg m−3 and 23.79 µg m−3, respectively, comparable to the current
results and previous RMSE values for PM10 estimations in Malaysia (11.61 µg m−3; [18])
and Delhi (18.99 µg m−3; [140]). MODIS-MAIAC AODs and columnar water vapor (CWV),
along with meteorological parameters and land-use data, were included in a linear mixed
effect model (LME) and a RF model for daily PM2.5 estimations at high spatial resolution
(1 km × 1 km) over the Indo-Gangetic Plains (IGP), India [118]. The RF model exhibited
higher accuracy with R2 = 0.87 and relative RMSE of 24.5%, compared to LME [118]. The
spatial distributions of the R2 (~0.6 to 0.9) and RMSE (~20 to 40 µg m−3) values from PM2.5
estimations across the IGP [118] were mostly comparable to those observed over Malaysia.

The hourly time series of the measured and predicted PM2.5 concentrations via the SVR
model, separately for the station characteristics and seasons and for the overall model, are
shown in Figure 6. The results verify the good performance of the SVR model in predicting
the PM2.5 concentrations across Malaysia—RF performed slightly better with very similar
results—also revealing an underestimation at the highest PM2.5 values. However, the
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model’s underestimation in representing PM2.5 peaks is not systematic, and in many cases,
models reproduce satisfactorily the high PM2.5 concentrations, even overestimating them
(Figure 6).

Figure 6. Time series (hourly) of measured (black) and predicted (red) PM2.5 concentrations from
the SVR model across Malaysia for urban/industrial (a), suburban/rural (b), dry season (c), wet
season (d), April–May (e), October (f) and overall (g) models. The available data set for each group is
mentioned in the panels. The X axis shows number of datasets.

The residual analysis for the model validation datasets revealed that the frequency
of residuals approached the normal distribution peaking around zero for all the models
(Supplementary Materials Figure S1). However, the frequency distributions were slightly
shifted towards negative values, as the highest model underestimations may reach to
−60%, but for very rare cases. In the vast majority of the cases, the predictions were
quite accurate, indicating that the used ML models are satisfactory for PM2.5 estimations
in Malaysia.

Atmosphere is a complex system and composed by various substances like air molecules
and solid and liquid particles of various sizes, shapes and chemical composition [141,142].
Therefore, combining many auxiliary data such as meteorological factors, aerosols, gases
and land use allows for a better estimation of PM2.5. To date, most PM prediction studies
found that inclusion of meteorological factors has improved the PM estimations, because each
meteorology parameter may modulate the PM concentrations in a different way [43,45,71].
Nowadays, ML techniques and RF models are frequently used in estimating PM concentra-
tions at many regions around the world [39,116,119]. The statistical indicators from the models’
calibration and validation in this study (Supplementary Materials Table S2; Figures 4 and 5)
are mostly comparable to those presented in other studies using various methods and ML
approaches for estimates of PM concentrations around the world (Table 2). It should be noted
that this study obtained reasonable results at national scale without including land use infor-
mation compared to previous works [128,143–145]. Besides that, the validation techniques
may be also different, as for instance [143] used sample and site based 10 CV in order to assess
the spatial performance, whilst our study only used sample based 10 CV since it can be used
to reflect the overall predictive ability [130].
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Table 2. Results from previous studies using machine learning techniques for PM estimations from space.

Author Study Area
Input Data

Method R/R2 Accuracy
Source of AOD Other Parameters Output

[143] China MODIS AOD 10 km
(Terra and Aqua)

RH, AT, WS, SP, PBLH, NDVI,
population and road data PM2.5 Geoi-DBN

Sample based CV
R2 = 0.88

Site based CV
R2 = 0.82

Sample based CV
RMSE = 13.03 µg m−3

Site based CV
RMSE = 16.42 µg m−3

[146] China MODIS AOD 3 km
(Terra and Aqua)

Lat, long, month, RH, AT, WS,
SP, PBLH PM2.5 GRNN R2 = 0.89 RMSE = 16.51 µg m−3

[147] China MAIAC AOD 1 km
AT, AP, evaporation,

precipitation, RH, sunshine
duration and WS

PM2.5 GW-GBM

Exclude missing
AOD

R2 = 0.74
Include missing AOD

R2 = 0.76

Exclude missing AOD
RMSE = 24.3 µg m−3

Include missing AOD
RMSE = 23.0 µg m−3

[128] Cincinnati, OH, USA MODIS AOD 3 km
(Terra and Aqua)

Visibility, PBLH, TEMP, RH,
total and rate precipitation, P,

WS, WD, land cover,
roadways, green space,

spatiotemporal
convolution layer

PM2.5 RF

Overall
R2 = 0.90
Spatial

R2 = 0.87
Temporal
R2 = 0.84

Overall
RMSE = 2.45 µg m−3

Spatial
RMSE = 2.83 µg m−3

Temporal
RMSE = 3.13 µg m−3

[148] British Columbia,
Canada

MODIS AOD 3 km
(Terra)

LST, humidity, vapour, NDVI,
albedo from MODIS product.

PBLH, WS. Elevation
from SRTM

PM2.5

MLR
BRNN
SVM

LASSO
MARS

RF
XGBoost

Cubist

R2 = 0.22
R2 = 0.31
R2 = 0.30
R2 = 0.24
R2 = 0.31
R2 = 0.49
R2 = 0.46
R2 = 0.48

RMSE = 3.24 µg m−3

RMSE = 3.04 µg m−3

RMSE = 3.13 µg m−3

RMSE = 3.20 µg m−3

RMSE = 3.05 µg m−3

RMSE = 2.67 µg m−3

RMSE = 2.71 µg m−3

RMSE = 2.64 µg m−3

[69] BTH, China MODIS AOD 10 km
(Terra and Aqua)

PBLH, TEMP, SLP, humidity,
WD and WS PM2.5

OR
Rpart

RF
SVM

R = 0.73–0.76
R = 0.68–0.83
R = 0.69–0.84
R = 0.77–0.88

RMSE = 36.92–42.48 µg m−3

RMSE = 35.42–46.20 µg m−3

RMSE = 36.34–44.59 µg m−3

RMSE = 29.50–38.32 µg m−3

[115] East coast
peninsular Malaysia - AT, RH, WS, GR, MSLP,

rainfall, CO, NO2, and SO2
PM10

MLR
MLP
RBF

R2 = 0.594–0.706
R2 = 0.691–0.794
R2 = 0.827–0.929

VIF = 1.077–1.926
RMSE = 8.49–9.57 µg m−3

RMSE = 9.19–4.08 µg m−3
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Table 2. Cont.

Author Study Area
Input Data

Method R/R2 Accuracy
Source of AOD Other Parameters Output

[141] BTH, China MODIS AOD 10 km
(Aqua) AT, RH, WS, WD and P PM2.5

MLR
MARS

SVR
RSRF

R2 = 0.733
R2 = 0.776
R2 = 0.850
R2 = 0.843

RMSE = 33.016 µg m−3

RMSE = 30.180 µg m−3

RMSE = 24.745 µg m−3

RMSE = 25.320 µg m−3

[149] Wuhan, China Himawari-8 AOD L3 MODIS NDVI, RH, AT, WS, SP,
PBLH, DEM PM2.5 DL R2 = 0.850 RMSE = 9.303 µg m−3

[144] China MAIAC AOD 1 km

TEMP, total precipitation,
evaporation, PBLH, RH, SP,
WS, WD, MODIS Land use

Cover, NDVI, DEM

PM2.5
RF

STRF
R2 = 0.98
R2 = 0.98

RMSE = 6.40 µg m−3

RMSE = 5.57 µg m−3

[150] Shenzhen, China MAIAC AOD 1 km EWS and RH PM2.5
RF
IRF

R2 = 0.88
R2 = 0.91

RMSE = 4.3 µg m−3

RMSE = 3.66 µg m−3

[145]
East Asia (Eastern China,

Korean Peninsular
and Japan)

GOCI, GEOS-Chem

NDVI, urban ratio, DEM,
precipitation, AT, ST, dew

point temperature, RH, max
WS, visibility, PBLH, SP, solar

radiation, road density,
population density

PM10
PM2.5

RF R2 = 0.88
R2 = 0.90

RMSE = 26.9 µg m−3

RMSE = 15.77 µg m−3

[70] Greater London MAIAC AOD 1 km

Population density, cloudiness,
barometric pressure, WD, WS,
dew point temperature, land
use variable (type, distance to
water, airport, PBLH, NDVI,
traffic count, elevation etc)

PM2.5

GBM
RF

Deep NN
KNN

ensemble model

Overall model
R2 = 0.826
R2 = 0.830
R2 = 0.793
R2 = 0.791
R2 = 0.828

Overall model
RMSE = 4.331 µg m−3

RMSE = 4.278 µg m−3

RMSE = 4.728 µg m−3

RMSE = 4.721 µg m−3

RMSE = 4.231 µg m−3

[151] Guwahati, India − CO, NO2, SO2, AT, RH,
WS, rainfall PM10

MLR
MLP

CART

R2 = 0.61–0.68
R2 = 0.64–0.69
R2 = 0.52–0.63

RMSE =29.31–31.99 µg m−3

RMSE =31.02–31.74 µg m−3

RMSE = 39.98–41.24 µg m−3

List of abbreviations: 1. Study area: BTH (Beijing-Tianjin-Hebei). 2. Sensor: GOCI (Geostationary Ocean Color Imager), MAIAC (Multiangle Implementation of Atmospheric Correction), MODIS (Moderate
Resolution Imaging Spectroradiometer), SRTM (Shuttle Radar Topography Mission), 3. Parameter: AT (air temperature), CO (carbon monoxide), EWS (extreme wind speed), GR (global radiation), Lat (Latitude),
Long (longitude), LST (land surface temperature), MSLP (mean sea level pressure), NDVI (Normalized difference vegetation index), NO2 (nitrogen dioxide), P (pressure), PBLH (planetary boundary layer
height), RH (relative humidity), SF (surface temperature), SLP (sea level pressure), SO2 (sulphur dioxide), SP (surface pressure), ST (surface temperature), TEMP (temperature), WD (wind direction), WS
(wind speed). 4. Method: BRNN (Bayesian Regularized Neural Networks), CART (Classification and Regression Trees), Cubist (rule based tree model), DL (Deep Learning), DNN (deep neural network),
GBM (Gradient Boosting Machine), Geoi-DBN (Geo-intelligent Deep Belief Network), GRNN (generalized regression neural network), GW-GBM (Geographically- Weighted Gradient Boosting Machine), IRF
(improved random forest), KNN (k-nearest neighbour), LASSO (Least Absolute Shrinkage and Selection Operator), MARS (Multivariate Adaptive Regression Splines), MLP (multilayer perceptron), MLR
(Multiple Linear Regression), OR (orthogonal regression), RBF (radial basis function), RF (random forest), Rpart (regression tree), RSRF (hybrid remote sensing and random forest), STRF (space-time random
forest), SVM (Support Vector Machines), SVR (support vector regression), XGBoost (eXtreme Gradient Boosting). 5. Accuracy: RMSE (root means square error), VIF (variance inflation factor).
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Determining the strength of the correlation between PM2.5 and all the parameters
used for its prediction is very important because it can indirectly portray the pollution
process and the source of the pollution. The results of the variable importance analysis for
the RF model have been included in Supplementary Materials Table S2 and are shown in
Figure 7. For the overall model 1, CO is the highest contributor to the PM2.5 estimations,
similar to the other models, as discussed above, and is followed by AOD, O3, NO2, SO2
and the meteorological parameters. This is because both PM2.5 and CO are originated
from common sources in Malaysia like biomass burning and traffic which enhance the CO
emissions [86,138]. Besides that, CO may stay in the atmosphere for a long period (weeks
or months), being able to get transported in high concentrations from biomass-burning
areas in Indonesia [152]. Parameters with the least importance in PM2.5 estimations are
RH, WD, TEMP and finally the WS with a zero score (Figure 7a). Similar to the overall
model (model 1), the contributions of the meteorological parameters were relatively weak
in the spatial models as well, which also revealed CO, AOD and O3 as the most important
variables (Figure 7b,c). CO remains the most important predictor in the seasonal models as
well, with minimal contributions from the meteorological variables (Figure 7d–g). The WS
and WD have minimal contributions, in agreement with [81], who found that both parame-
ters were not significantly correlated with PM2.5 in the Klang Valley region in Peninsular
Malaysia. Although AOD usually exhibited a high correlation with PM2.5 [153], in our
case, there was not a direct association with PM2.5 concentrations, implying complicated
pollution conditions in the vertical layer over Malaysia [141]. Generally, PM2.5 is affected
more by gaseous pollutants and not so much by the columnar AOD (missing values due
to cloud cover and elevated aerosol layers) and meteorological conditions since Malaysia
has rather uniform weather conditions throughout the year. Therefore, influence of the
meteorological parameters is minimal towards seasonally changing PM2.5 concentrations.
However, previous studies in Malaysia showed that the meteorological parameters affected
the coarse particles, e.g., PM10 concentrations [81], indicating a meteorological-dependent
character of the coarse-mode aerosols. In our previous study [18], we found that the
estimations of PM10 concentrations based on satellite AODs were significantly improved
after inclusion of the meteorological parameters in the model.

Similar to the current results, [154] also found that the parameters with the high-
est importance in predicting PM2.5 concentrations are CO, NO2, SO2 and AOD. Inclu-
sion of the pollutant gases improved the performance of their RF model from R2 = 0.69,
RMSE = 41.63 µg m−3 to R2 = 0.81, RMSE = 32.74 µg m−3, in a similar way as in the present
study. These results were also in agreement with [65] who found that CO was the most
important variable that explained 20.65% of the variation in estimated PM2.5 concentrations
in Xi’an, China, exhibiting a strong correlation with AOD. Furthermore, [81] studied the
PM2.5 composition in Klang Valley, Malaysia, and concluded that CO, NO2, NO and SO2
mostly affected the PM2.5 concentrations.

This is the first study conducted in Malaysia aiming to estimate the PM2.5 concentra-
tions based on machine-learning techniques. The satisfactory accuracy of the estimates,
despite the biases and challenges in representing PM2.5 pollution episodes, is especially
important for the development of models aiming to systematically monitor PM2.5 over the
country, especially at remote areas with unavailability of measurements. However, the only
65 operational stations are still insufficient to cover the whole Malaysian territory with an
area of 330,290 km2. Establishing more air quality monitoring stations is very costly, and a
certain station is only capable to satisfactorily represent the pollutant concentrations within
a radius of about 15 km [155]. Alternatively, remote sensing data encourages more studies
to be conducted on atmospheric particulates and air quality, since satellite technology
considers AOD as a key predictor of PM over a large area [156]. This would also help
in evaluating the influence of the local/regional emissions from anthropogenic activities
against those attributed to natural causes or long-range transported aerosols, mostly smoke,
from Indonesia and other parts in northern Indochina.
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Figure 7. Variable importance analysis for the RF Models 1–7 (a–g). Y-axis indicates the predictor for PM2.5 estimations, and
x-axis indicates the importance scores between 0 and 100.

6. Conclusions

The current study developed new machine-learning models, namely, Random Forest
(RF) and Support Vector Regression (SVR), to estimate PM2.5 concentrations across Malaysia
for the first time covering the years 2018 and 2019. Satellite (Himawari-8) AOD, ground-
measured air pollutants (NO2, CO, SO2, O3) and meteorological parameters (temperature,
relative humidity, wind speed and direction) were used as input variables. Due to the high
spatial (between stations with different characteristics like urban/industrial and subur-
ban/rural) and temporal (between seasons) evolution of the PM2.5 levels across Malaysia,
seven sub-models were developed separately for the different sites (urban/industrial,
suburban/rural) and seasons (dry, wet and two inter-monsoons (April-May and October)),
and one overall model. Of the available dataset, 70% was randomly selected for the model
calibration, and the remaining 30% for the model validation. The PM2.5 predictions of
each model are compared to those measured at 65 air pollution monitoring stations, using
standard statistical estimators.
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For the overall model, SVR calibration performed slightly better than RF with R2 = 0.69
and RMSE = 10.62 µg m−3 against measured PM2.5 concentrations. Whilst for the spatial
models, the RF validation performed slightly better than SVR, with statistical indicators of
R2 = 0.76, RMSE = 11.47 µg m−3 for urban/industrial, and R2 = 0.64, RMSE = 10.76 µg m−3

for the suburban/rural sites. Therefore, both RF and SVR models displayed slightly higher
performance for PM2.5 estimations at urban/industrial sites with higher levels of AOD and
air pollutants. Furthermore, the estimation accuracy of SVR and RF models was lower in
the wet (November–March) and inter-monsoon (April–May) seasons compared to the dry
(June–September) season. Based on the model accuracy and variable importance analysis,
CO was always the most influential predictor variable for PM2.5 estimations in Malaysia,
followed by AOD, O3, NO2, SO2 and meteorological parameters but with different order
depending on the dataset and model. An important finding was the very weak correlation
and contribution of the meteorological variables to PM2.5 estimations. Furthermore, very
low correlation was found between PM2.5 and columnar AOD, indicating that surface
pollution followed a different temporal pattern than AOD and the presence of a significant
aerosol layer aloft due to transported smoke plumes from wildfires in southeast Asia. The
current results showed that the use of machine-learning techniques for PM2.5 estimations
over Malaysia was promising as these models can satisfactorily represent the values and
temporal evolution of PM2.5 concentrations over both urban/industrial and suburban/rural
sites although the underestimation of the highest PM2.5 levels. In a next step, gaseous
pollutants from satellite remote sensing observations will be included in ML approaches
in order to estimate PM2.5 concentrations over large areas, aiming to cover the whole
Malaysian territory.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11167326/s1, Figure S1: Residual analysis (residuals = predicted PM2.5—measured PM2.5)
from SVR and RF for the developed Models 1–7. The fitted curve represents the normal distribution,
Table S1: T Parameters/functions used for the SVR model, Table S2: Coefficient of determination
(R2), RMSE, MBE and NSE values using SVR and RF models for PM2.5 estimations in Malaysia. The
statistical indicators are presented as averaged values for each model and Number of samples.
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