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Abstract: Gelam tree or Melaleuca cajuputi (M. cajuputi) is an important species for the local economy
as well as coastal ecosystem protection in Terengganu, Malaysia. This study aimed at producing a
current habitat suitability map and predicting future potential habitat distribution for M. cajuputi in
Terengganu based on Species distribution modeling (SDM) using the Maximum Entropy principle.
Our modeling results show that for the current potential distribution of M. cajuputi species, only
10.82% (1346.5 km2) of Terengganu area is suitable habitat, which 0.96% of the areas are under
high, 2.44% moderate and 7.42% poor habitat suitability. The model prediction for future projection
shows that the habitat suitability for M. cajuputi would decrease significantly in the year 2050 under
RCP 4.5 where the largest contraction from suitable to unsuitable habitat area is about 442.1 km2

and under RCP 2.6 is the highest expansion from unsuitable to suitable habitat area (267.5 km2).
From the future habitat suitability projection, we found that the habitat suitability in Marang would
degrade significantly under all climate scenarios, while in Setiu the habitat suitability for M. cajuputi
remains stable throughout the climate change scenarios. The modeling prediction shows a significant
influence on the soil properties, temperature, and precipitation during monsoon months. These
results could benefit conservationist and policymakers for decision making. The present model could
also give a perception into potential habitat suitability of M. cajuputi in the future and to improve our
understanding of the species’ response under the changing climate.

Keywords: Melaleuca cajuputi; Maxent; species distribution; habitat suitability; climate change;
soil properties

1. Introduction

Global warming has caused significant changes in spatial and temporal environmental
patterns, and these changes also affect effort to conserve biodiversity [1]. In tropical
climates, changes in temperature and precipitation can affect species habitat and plant
phenology, both directly and indirectly [2]. Climate change effect also threatened Melaleuca
swamp forest where the sea level rise causes saltwater intrusion and indirectly affects
the Melaleuca swamp forest because of an increase in salinity [3]. Melaleuca genus is from
the family of Myrtaceae that comprises 260 species, naturally distributed in Australia,
Indonesia, Malaysia, Singapore, Thailand and Vietnam [4]. Melaleuca forests grow in
coastal regions such as wetlands, lowlands, and peat lands, often behind the mangrove
zone where pure or mixed stands may form. In Peninsular Malaysia, Melaleuca cajuputi
(M. cajuputi) or known as white-paperbark tree (kayu putih) or Gelam, is the native species
in Terengganu and Selangor states, but the most prominent coverage of M. cajuputi in
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Peninsular Malaysia is at Setiu Wetlands, Terengganu [5]. The M. cajuputi forest is one of
the crucial habitats of the wetlands’ ecosystem due to its function and characteristics that
can withstand flooding and dry conditions. Moreover, M. cajuputi species is a multifunction
tree where the stem, leaves, and flowers are useful for the local economy [6]. However, due
to anthropogenic activities, the M. cajuputi forest is degrading or converted to other land
use [7]. The wide variation in botanical characteristics shows the ability of the Melaleuca
genus to respond to diverse environments in a different location [4]. It was shown that
the Melaleuca genus can tolerate various types of extreme conditions, whether in a wet,
deep flooding area and dry land, but only some species of Melaleuca genus may adapt
to increased inundation while others might not survive [8,9]. Therefore, finding out the
responses between species and their environmental variables is crucial to predicting their
habitat distribution.

In Malaysia, little is known about the phenology and spatio-temporal distribution of
the M. cajuputi species [5]. The M. cajuputi is described as a highly resilient plant [10,11] due
to its ability to adapt to various environmental conditions. However, the environmental
and climate change impact on M. cajuputi species is yet to be examined, especially on its
habitat sustainability and its potential to mitigate climate change through carbon stock
accumulation [12]. Moreover, it was reported that the M. cajuputi forests in Terengganu
(Malaysia) are degrading due to anthropogenic activities and land cover changes [13].

Predicting biodiversity distribution has become a crucial part of environmental conser-
vation and restoration planning in recent years, and a wide range of modelling techniques
were developed for this purpose. In order to understand the abiotic relationship of the
M. cajuputi with its geographical distribution and climate impact, this study aims to sim-
ulate the current and future suitable distribution of M. cajuputi under different climate
change scenarios using the Maxent model.

2. Materials and Methods
2.1. Study Area

The state of Terengganu (3.8779–5.8528◦ N, 102.3720–103.4987◦ E) is in the eastern part
of Peninsular Malaysia (Figure 1). Terengganu has a tropical climate, and according to the
Köppen–Geiger classification system, this climate is classified as Af [14]. The M. cajuputi
forest in Terengganu can be found on the ridge and depression (swales) types of soil [5].
In Peninsular Malaysia, Terengganu supports the widest spread of the M. cajuputi species,
covering 64.5% (147,489 hectares) of the total M. cajuputi forests [15]. The M. cajuputi forest
in Terengganu is found native on soil type known as Beach Ridges Interspersed with
Swales (BRIS) or locally called “tanah beris” [16].

2.2. Data Compilation
2.2.1. Melaleuca cajuputi Data

We have conducted a multi-site survey where the distribution of M. cajuputi species
was recorded from 11 existing locations during the flowering season (October 2018) and
dry season (April 2019). We identified the native location of M. cajuputi species based
on previous studies information on the location. The unsupervised classification map
complements the existing information on the location of M. cajuputi species to identify
the survey locations. The species occurrences were recorded randomly in each cluster
produced by the classification map. We have identified a total of 183 occurrence records
from the site survey. Only three historical occurrence records of M. cajuputi are known
from Marang [17], and the locations of these three records are too close to our occurrence
records to be treated as independent locations. Therefore, we decided not to include the
historical records and use only the current presence data.
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Figure 1. Location of Terengganu (gray color) in the Northeast of Peninsular Malaysia. The green dots
represent the occurrence of M. cajuputi clusters recorded during the field surveys in 2018 and 2019.

2.2.2. Sampling Bias

Before training the model, the sampling bias was reduced by removing duplicate
presence points in the same cell or grid, leaving only one occurrence points per cell.
Even though the systematic sampling approach is generally more efficient in reducing
the sampling bias in our case, the occurrence records are not abundant, and the bias grid
method could outperform the systematic sampling approach [18]. Therefore, a bias file
was created using Gaussian kernel density of sampling localities method [19] in the SDM
toolbox add-on ArcMap Software [20] and the sampling bias distance was set to 3 km [21].
Then the bias file is input to the model setting to select the background points to reduce the
sampling bias [22]. After the thinning process, only 44 occurrence points were retained out
of 183 occurrences.

Subsequently, the bias correction was performed using the target background sites
method [19]. The randomly located background sites was commonly used in training
SDM, which in an unbiased manner, the species presence had an equal probability of being
sampled. Nevertheless, in the case of correcting the presence bias, the same kind of bias in
background sites can be included to cancel one another out. So, the maximum 10,000 points
of pseudo-absence background were set, and we ensure that the points sampled have no
missing data from the environmental layers. The pseudo-absence background samples
were selected using the surface range envelope (SRE) approach [23].
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2.2.3. Environmental Data

There are 27 environmental variables which could relate to M. cajuputi species, consist
of climate, topography and soil properties that are available as spatial data within the study
duration (see Table A1 for variables description). Even though the M. cajuputi is believed to
be resilient to climate change [4], the response to climate change is different geographically,
and the species’ adaptability in Malaysia’s climate is unknown. Bioclimatic variables are
significant in defining species’ environmental niches. The 19 bioclimatic variables were
downloaded from the WorldClim-Global Climate Data, including the present and future cli-
mate conditions [24]. Global climate model data is based on CMIP5 (IPCC Fifth Assessment
Report, AR5) and the bioclimatic data was downloaded from WorldClim version 2.1 [25] to
represent the current climate. For the future climate data, we downloaded the bioclimatic
variables from three different general circulation models (GCM): CNRM-CN5, CCSM4
and MIROC5 for future prediction in year 2050. These three GCMs were selected because
their total error is less than 25, suggesting a good performance for simulating temperature
and rainfall in Southeast Asia [26]. The description of the GCMs total error computation
was summarized in Supplementary Materials S3 and the list of performance metrics used
is listed in Table S1. All the environmental data used in this study have 30 arc seconds
resolution (also referred to as ~1 km spatial resolution).

The digital elevation model (DEM) data were extracted from pre-processed SRTM with
90-m resolution [27] and re-sampled into 1 km resolution by using the nearest neighbor
re-sampling technique. It is expected that, during the re-sampling process, some important
topographic details may be lost because of aggregation. However, the influence of DEM res-
olution on the topographic details depends on the surface topographic characteristics [28].
In our study area, topographic characteristics are less variable in elevation even in 90-m
resolution. In areas where the species occurrences were recorded, the topography is mostly
flat. The soil variables, which consist of eight types of soil properties, were downloaded,
and extracted from the Harmonized World Soil Database (HWSD), where all information
of the soil properties is available on a global scale [29]. Alternative soil properties data
were obtained from the Department of Agriculture Malaysia for the detailed category of
soil and lithology of the study area. The data obtained was from 2000 to 2009 and more
recent data were not available. Moreover, due to the limitation of soil salinity map over a
large area, we extracted several indices, namely salinity index-1 (SI), brightness index (BI)
and normalized difference salinity index (NDSI) that can be associated with soil salinity
obtained from the Landsat 8 OLI. These indices values were compared and validated with
the soil salinity obtained from the field measurement. The soil salinity indices from satellite
imagery are commonly used to map the soil salinity in a large area and are applied in many
studies [30–32]. The soil salinity from the field was measured according to the standard
procedure by measuring the electrical conductivity (EC) from the soil sample with the
soil-to-water ratio of 1:5 [33]. Of the three salinity indices being examined, BI gives the
highest correlation with the measured salinity (EC1:5) with R2 of 0.808. This index was
subsequently used to generate the soil salinity index raster layer for the study area.

2.3. Ecological Niche Modelling

The maximum entropy (MaxEnt) approach was employed to model the species distri-
bution using the ENMTools version 1.0.4 [34] package in the R platform with Maxent.jar
version 3.4.4. The MaxEnt approach was chosen because of its advantages, which include:
(i) it has a sound mathematical sense; (ii) use presence-only data; (iii) the model can handle
both continuous and categorical environmental data; (iv) the model can function well even
with low sample sizes; (v) simplicity in model interpretation, and (vi) the model provides
good accuracy and prediction power [35–39]. All the raster layers input variables were re-
sampled and clipped to the same extent and spatial resolution following the Terengganu’s
state boundary with approximately 1 km spatial resolution. The preparation of raster layer
data for the MaxEnt input and mapping outputs were processed using ArcGIS 10.5 with
add-in SDM toolbox [20]. We trained the Maxent model using the sub-sample method,
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where 30% of the presence points were set aside for model testing evaluation. The model
was trained by replicating each model ten times and the final output used was the average
of all runs.

2.3.1. Variable Selection

To select variables for the model, first, we analyzed the variable permutation impor-
tance from the MaxEnt model run with 27 variables using the default setting. The variable
importance was computed using the permutation method by the “enmtools.vip” function,
which uses the vip package in R. From the “vip-vignette”, the permutation approach idea
is that the training performance would be degraded if the values of an essential predictor
in the training data being randomly permuted [40]. So, in the case of variable importance
computed by the enmtools.vip function, the results were based on the AUC metric, and the
process was repeated ten times.

Then we compared the result of the MaxEnt variables’ permutation importance and
contribution ranking with the variance inflation factor (VIF) [41]. The step-wise VIF pro-
cedure was performed using the uncertainty analysis for the species distribution models
package (USDM) in R [42]. Following the step-wise VIF with a threshold of less than seven,
we screened the most important variables by minimizing the multicollinearity between
variables. In this regard, the variables with the highest collinearity are excluded. However,
to avoid eliminating the essential variables that could be informative to M. cajuputi, vari-
ables that show multicollinearity were removed. Therefore, we intercepted the variables
with a permutation importance and contribution greater than 1% with the VIF variables
selection. The final selected variables went through another step-wise VIF procedure with
a threshold of ten. Figure 2 below represents the overview of our modelling process.

Figure 2. M. cajuputi habitat suitability modeling flowchart.
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2.3.2. MaxEnt Model Complexity and Model Performance Assessment

ENMTools functions allow a user to control the model complexity by adding argu-
ments, and for Maxent, the model complexity depends on two parameters: the model
features and regularization of the parameters setting. The model regularization is necessary
to control the model overfitting. It is important to use suitable regularization number and
feature setting to get the optimal model using Maxent algorithm for different species and
research goals [36]. Maxent model produces a model based on a set of “features” such as
linear (L), hinge (H), quadratic (Q), threshold (T), and product (P), that help the model
determine the ratio of the predicted probability of presence or the environmental suitability
of the study area given the site’s particular environmental values [35,43] (details of each
feature types function are described in Supplementary Materials, S1). In this study, we
trained the model with features combination (FC) setting: “L, H, LQ, LQH and LQHPT”,
and regularization multiplier (rm) value setting from 0.5 to 5 with 0.5 increments.

The optimal model selection was based on the model calibration accuracy assessment
and discrimination accuracy, that is, threshold-independent metrics. The discrimination
accuracy was determined by the area under the receiver operating curve (AUC). An
AUC value less than 0.5 indicates that the model prediction is poor and that closer to
1.0 indicates a robust model prediction [35]. The AUC_diff is the difference between
the AUC value based on the training data (i.e., AUC_train) and AUC_test (AUC_train–
AUC_test). If AUC_train is smaller than AUC_test, the returned value is zero. The
overfit models are expected to have high AUC_diff in the notion that the overfitting
model performed well on training data but poorly on test data [44]. For many model
purposes, it was strongly suggested that the calibration accuracy was more beneficial for
model selection than discrimination accuracy [45]. In this study, the calibration accuracy
was determined based on the expected calibration error (ECE) and maximum calibration
error (MCE). We also used the continuous boyce index (CBI) as an additional assessment
tool because it could provide insight into the model’s robustness and deviation from
randomness [46] or simply means the model transferability to a different geographical
area. More details about the CBI and other performance assessment can be found in
Supplementary Materials S1. We compared the modeling results using the default setting
against the optimized model. Then, the selected optimal model was projected to the future
year 2050 in different climate scenarios. These climate change scenarios are based on the
IPCC Fifth Assessment Report (AR5) and the representative concentration pathway (RCP)
data defined by the possible range of radiative forcing values (2.6, 4.5, and 8.5 W/m2) in
the year 2050. The future bioclimatic variables used were the ensemble of the selected
GCMs, and for future projection, the soil properties and topography variables are assumed
unchanged. The final output produced the species suitability distribution maps with
habitat suitability index ranges from 0 to 1. These index values were then categorized into
four levels of suitability using equal interval classification from unsuitable to high.

3. Results
3.1. Variables Selection and Model Performance

Ten variables were selected out of 27 variables after they went through the variable
selection process. Bio 2, Bio 8, Bio 9, Bio 13, Bio 14, Bio 16, elevation, silt percent, lithology
and BI are the variables that satisfy the selection criteria. The highest collinearity is between
variables Bio16 and Bio13 with 87% positive correlation (Figure 3). Other variables have
collinearity less than 65%. Figure 4 shows the variables’ importance in the final model after
they went through the variable selection process. Based on the preliminary model variables’
importance and VIF step-wise procedure, variables Bio16 and Bio14 were not selected
because of high multicollinearity. However, as the variable importance and permutation
importance (List 1) are higher than the selected VIF variables (List 2), we included variables
Bio16 and Bio14, and excluded the one with no permutation importance in the model.
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Figure 3. Correlation plot of the selected variables. The red-to-blue bar represents the correlation
coefficient between variables, and the values in circles are correlation coefficient in percentage.

Figure 4. Variable importance plot based on the permutation method using AUC metric. The
permutation importance is presented as a percentage.

The model performance with a different variation of FC and regularization multiplier
can be found in Supplementary Materials, Figure S1. The results suggest that the model’s
discrimination accuracy of different features type is equally good under the same number
of regularization multipliers (rm). Linear features have the most significant variation
from all the different features combined under different regularization multiplier values.
Furthermore, the modelling results for different features type under rm = 0.5 have the
lowest ECE, MCE and CBI values. However, for a good model performance, the CBI value
should be at the higher side.

Overall, the model performance with different features and regularization settings
in terms of discrimination accuracy were all excellent. The AUC_test scored above 0.8
and the CBI is greater than 0.85 except for the models under regularization value of 0.5.
Table 1 compares the default model setting, the selected optimized model with the smallest
ECE (ML0.5), the optimal model based on the overall ECE, MCE, CBI and AUC_diff score
(ML1_b) and model ML1_b without employing bias file (ML1_a). The best model to be
projected under future climate is selected based on the high CBI with low ECE, MCE and
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AUC_diff scores, which is model ML1_b with linear feature setting and regularization
multiplier of one.

Table 1. Performance assessment comparison of Maxent models with default setting and the op-
timized model parameter values, namely ML0.5 and ML1. ML1_a is the ML1 model before bias
correction and ML1_b is the chosen optimized model with sampling bias correction.

Model Default ML0.5 ML1_b ML1_a

Feature Default L L L
Rm 1 0.5 1 1

AUC_test 0.858 0.853 0.858 0.845
AUC_diff −0.003 0.030 −0.003 0.048

CBI 0.931 0.838 0.931 0.911
ECE 0.347 0.279 0.313 0.262
MCE 0.066 0.056 0.059 0.058

Analysis of the model’s variable importance suggests that ML1_b highly depends on
variable Bio 2 (mean diurnal range) with 34.28% variable importance values (Figure 4). The
following two essential variables are elevation and the mean temperature of the wettest
quarter (Bio 8), with variable importance values of 19.22% and 13.12%, respectively. As
mentioned at the beginning of this section, Bio14 and Bio16 should be excluded if the
analysis is confined to the VIF selection, but the variables contribution is significant. The
feature importance relies on the model error estimates, and also the collinearity between
the predictor variables could affect the variable permutation importance result [47]. This
statement explained why some highly correlated variables could interfere with the model
performance and can be excluded. For example, Bio9 (mean temperature of the driest
quarter) variable has the lowest percentage (0.94%) in the model ML1_b despite showing
negatively high correlations with Bio16, Bio13 and Bio8 (see Figure 3).

3.2. Species Response and Potential Habitat Suitability Distribution

Species’ responses to changes of the selected variables are depicted in Figure 5. The
response curves show how each environmental variable varies with the species locations.
The curves indicate how species habitat suitability is shifted against the variable of in-
terest (x-axis) when all other environmental variables are held constant at their average
sample value.

Based on the response curves, the species habitat suitability remains high (>0.85)
for the mean diurnal temperature range (Bio2) less than 7.4 ◦C, and from this point, the
habitat suitability decreases. The species’ response toward Bio2 suggests that the most
suitable habitat is achieved when the variation between the mean monthly maximum and
minimum temperature is small. It is interesting to note that the habitat suitability shows a
rapid increase against the mean temperature during the wettest quarter (Bio8). During the
driest quarter (Bio9), the index remains high at about 0.8 for temperature between 26.4 ◦C
and 27.0 ◦C during the wettest and driest quarters.

As for precipitation, the variable Bio13 (precipitation of the wettest month) signifi-
cantly contributes to the model with a variable importance score of 9.3% (Figure 5). The
highest habitat suitability was obtained when the precipitation during the wettest month
ranges from 575 mm to 600 mm. Beyond this range (575–600 mm), the habitat suitability
decreased significantly. However, for the precipitation of the wettest quarter (Bio16), the
habitat suitability value remains high when the precipitation ranges from 1200 to 1450 mm,
and the highest presence density is expected when the precipitation exceeds 1350 mm.
Moreover, the habitat suitability value is high when the precipitation during the driest
month (Bio14) is above 55 mm. Surprisingly, the highest presence density occurred when
the precipitation during the driest month is less than 60 mm.
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Figure 5. The model (ML1) response curve shows the density distribution of each environmental variable in the species
occurrences and background data. The habitat suitability index ranges from 0 to 1, the red line is the response curve of
the species presence, the green line is the background sample toward the environmental variables, and the blue line is the
predicted habitat suitability. Note: the Y-axis represents the habitat suitability index and density distribution values.

Moreover, it was reported that M. cajuputi is sensitive to salinity [4], and from the
response curve of BI variable the species is mainly found in areas with salinity index from
2.0 to 2.1. However, the habitat suitability remains high in less saline soil with a salinity
index from 1.6 to 2.6. The response curve of the silt percentage in the topsoil (siltpercent)
remains at high habitat suitability for silt content between 10–30%. However, the species
presence is most dominant in areas with a silt percentage below 15%. Furthermore, 3 out of
16 lithology classes have contributed significantly to the optimal habitat suitability, where
the species presence is mainly distributed on: (i) clay and silt (marine), (ii) sand (mainly
marine) and (iii) peat, humic clay and silt. Interestingly, elevation has the most significant
influence, especially in low altitudes ranging from 10 to 30 m above mean sea level, and the
presence density peak is at an altitude approximately 10 m above sea level. The response
curves of the soil properties also fit well with the description of the habitat on the coastal
and BRIS type of soil in Terengganu [13].

3.3. Changes of Habitat Suitability under the Present and Future Climate Scenarios

The predicted distributions of M. cajuputi under the current and future climate condi-
tions in Terengganu are shown in Figure 6. The present-day habitat suitability index (HSI
2019) identifies stretches of area suitable for M. cajuputi habitat along the coastal area from
Besut to Kemaman District (refer to Figure 1 for District’s location and boundary). Based
on the 2019 baseline map, only 10.82% of the total area of Terengganu falls under suitable
habitat. Of which, 7.42% fall under poor, 2.44% medium, and 0.96% high habitat suitability
(Figure 6e). The habitat suitability areas are expected to undergo significant changes for
different periods under different climate change scenarios. Compared to the current suit-
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ability prediction, it is surprising to see that the level of habitat suitability increased in the
future under RCP 8.5 extreme climate scenarios for specific regions (Figure 6). However,
the predicted future habitat suitability of M. cajuputi is likely to be degraded, from optimal
suitability to poor in some regions under different climate scenarios, as demonstrated in
Figure 6 and more details on the area suitability changes in Figure 7.

Based on the RCP 2.6 climate scenario, the projection in year 2050 reveals that the
habitat suitability for M. cajuputi would decrease further in Marang, Dungun and Kemaman
districts where the habitat will change from suitable to unsuitable (Figure 7a). However,
the level of habitat suitability shows large increases in Kuala Terengganu, Setiu and Besut
districts, as marked in light blue in Figure 7a. The largest contraction area of habitat
suitability of about 3.76% is under RCP 4.5, distributed from the North to the South of
Terengganu. Moreover, the habitat degradation from high/medium suitability to poor
was predicted the most under climate scenario RCP 4.5 with a total reduction of 1.09%.
On the contrary, a remarkable expansion of suitable habitat area is expected under the
climate scenario RCP 2.6 with a total expansion of 3.62%, especially in Kuala Terengganu,
Marang and Dungun districts (see the dark-blue marked area in Figure 7a). Under the
extreme climate scenario (RCP 8.5), the area of suitable habitat is predicted to decrease in
some parts of Setiu, Kuala Terengganu and Kemaman districts. Furthermore, the level of
high suitability habitat is projected to increase in Setiu, Kuala Terengganu, and Dungun
districts (Figure 6a,d). This can be seen clearly in Figure 7c, where the area that is predicted
to improve from poor suitability to moderate or high is shown on the map in light blue
(152.46 km2).

From all the future projections under different climate scenarios, the habitat suitability
of M. cajuputi species in Setiu district is the most stable where the area of contraction is
minimal, and the habitat suitability remains suitable even though the overall level of habitat
suitability decreased under different climate scenarios. As for the Marang area, the habitat
suitability seems unstable under different climate scenarios, as shown in Figure 7. The
changes in habitat suitability level show no distinct pattern in areas previously classified
as highly suitable habitat (notice the “Unchanged” areas in Marang). The suitable habitat
in Dungun and Kemaman (southern area) decreased significantly in 2050 under all climate
scenarios. Figure 6e highlights the changes of the unsuitable area under the current climate
(2019) and in 2050 under different RCPs where the area of unsuitable habitat is predicted to
increase in the future (noted the percentages in the stacked bar).

Overall, the modelling results seem to be strongly influenced by the soil properties,
especially the elevation and soil salinity and bioclimatic, which can be referred to the
model variable importance (Figure 4). Moreover, the variable importance indicates that the
potential species habitat suitability is also controlled by the temperature and precipitation
during the wettest quarter, as evidenced by the response curve where the habitat suitability
is high during times of high temperature and high precipitation. This could be associated
with rainfall seasons during the northeast monsoon (November to March) in Terengganu,
which also coincides with the coldest months (December, January and February) [48]. The
distribution of M. cajuputi forest obtained in this study is comparable with those reported
by the World Wide Fund (WWF) using Landsat 5 in 2010 [12], but the map classification
was not verified.

Data from the World Weather Online (WWO) website was used to derive statistics on
average precipitation and temperature, which were reliably sourced from global weather
satellites, the World Meteorological Organization, and a global telecommunication sys-
tem [49]. The climatic patterns from 2009 to 2020 for Setiu, Kuala Terengganu (K. Trg)
and Marang districts are shown in Figure S2 (Supplementary Materials S2). Generally, the
climate trend obtained from the WWO agrees with the earlier study where the climate
changes were analysed during the coldest months (December–January–February) that
coincide with the northeast monsoon and the warmest months (June–July–August) that
coincide with the southwest monsoon [48].
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Figure 6. Prediction of potentially suitable habitat for M. cajuputi species in Terengganu, Malaysia. The suitability index
was classified into high (0.75–1.0), medium (0.5–0.75), poor (0.25–0.5) and unsuitable (0–0.25) as presented on the map. The
map compared the habitat suitability under the current climate (a) with a future projection in 2050 using the ensemble
GCMs at RCPs of 2.6 (b), 4.5 (c) and 8.5 (d). Area percentage of habitat suitability under the current climate and future 2050
are shown in the stacked bar where colors represent the climate condition (e).
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Figure 7. Habitat suitability changes from the present climate (2019) to the future year (2050) under climate scenarios:
(a) RCP 2.6, (b) RCP 4.5 and (c) RCP 8.5. White pixel areas are the no-data pixel. Blue area marked the total expansion of
habitat suitability from unsuitable to suitable habitat. Gray area is where the habitat suitability prediction remained the
same and the red area marked the contraction of suitable habitat to unsuitable. Light blue and orange areas represent the
changes in the level of suitability from poor to high and from high to poor, respectively.

4. Discussion
4.1. Modelling Techniques and Performance Assessment

Many studies have used various species distribution techniques to understand the
species’ ecological niche distribution and predict the potential habitat suitability. Among
the species distribution models, MaxEnt model seems to be the preferred one for SDM
studies [37,50–53]. The ease of use and simple steps necessary to run MaxEnt appear
to have enticed many researchers to use it as a black box, despite mounting evidence
that using MaxEnt with default parameter values (i.e., auto-features) does not always
result in the optimal model [54,55]. Nonetheless, like any modelling approach, the quality
of input data (i.e., the reliability of environmental and species presence data) and the
parameterization employed for modelling significantly impact the model’s results using
MaxEnt [56,57]. Issues of multicollinearity among the predictor variables that could affect
the model performance were highlighted in the previous literatures [58] and reducing the
number of variables could reduce the model complexity and benefits the operation time
and model interpretability. In this study, we carefully selected the variables by comparing
the list of variables favored by step-wise VIF and variable permutation importance. This
variable selection method can avoid eliminating the importance variable for the species
model. Furthermore, the final selected variables have VIF scores less than ten. Even
though variables Bio16 and Bio13 have the highest collinearity, as shown in Figure 3, the
permutation importance score of these two variables still differs by 2.93%. This is because
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Maxent can regulate redundant variable contributions, making it resistant to predictor
collinearity in model training [59]. However, to avoid eliminating essential variables
by simply excluding the variables with high multicollinearity, we suggest that both the
variable permutation importance and VIF scores are considered as the basis for variable
selection, besides the variable relation to the species.

When comparing the model complexity, the most used metrics assessments are infor-
mation criterion such as Akaike information criterion (AIC) or AICc for smaller samples.
However, the use of AIC as an estimate of model parsimony may lead to uncertain or con-
fusing performance of the MaxEnt model [58]. Using AIC is acceptable for application with
another model such as GLM or GAM but in the case of the MaxEnt model, the use of AIC
or AICc is debatable because of a philosophical disconnection between machine learning
and classical modeling [44]. We found that using the model calibration assessment, such as
ECE and MCE, could help distinguish the model performance when the model performed
almost the same for AUC_test and CBI under variation of FC parameters. However, the
use of CBI helps reflect the propensity of the model prediction in the study area and deter-
mines the optimal model selection. Moreover, the evaluation of the threshold-independent
metrics is preferable for the MaxEnt model because it uses only presence data [60]. Because
of the residuals problem even after the bias correction, predictions made with clustered
ecological data were not as good as compared to models using herbarium datasets [21].
In our case, by employing the bias file in the model, it improved our model prediction
accuracy and correlation values. Although the value differences in AUC is very small, for
CBI assessment the bias correction significantly improves the CBI scores.

The common practice for modelling potential species distribution is using the biocli-
matic variables as predictors. However, in predicting plant species distribution or ecological
niche modelling, the climate-only model is incomplete as most plant species are highly
influenced by the soil properties [61]. Our results show that both bioclimate and edaphic
predictors are equally important, which is highlighted by the model’s variable importance.
It was found that combining both data as predictors has led to a better modelling result as
both climate and edaphic variables could help minimize an overestimation of the species
distribution range when predicted to the future [62,63]. In addition, the species that are
more influenced by the soil property than climate would be less prone to climate change
effect, and if the bioclimate has more influence on the species, their soil properties will
make the species distribution in a more acceptable range.

4.2. Melaleuca cajuputi Potential Suitable Habitat and Climate Change Impact

The RCPs represent four alternative greenhouse gas (GHG) emissions and atmospheric
concentrations, air pollutant emissions, and land use scenarios for the twenty-first century.
The Special Report on Emission Scenarios (SRES) is also commonly referred to in climate
change assessment studies, but RCPs which represent scenarios with climate policy cover
a wider range of scenarios compared to the SRES. In terms of overall forcing, the RCP 8.5 is
broadly comparable to the SRES A2/A1F1 scenario, RCP 4.5 to B1 scenario and for RCP 2.6,
but there is no equivalent scenario in SRES. The RCP 2.6 represents a scenario in which
global warming is limited to less than 2 ◦C above pre-industrial temperatures. While
RCP 4.5 represents the intermediate scenario and RCP 8.5 represents a very high GHG
emission scenario [64]. The most frequently used scenario in climate projection studies in
Malaysia is A1B (balance across all sources of technological change in the energy system)
in which there is no similar scenario for RCP.

As for M. cajuputi species, the future projection interestingly affects the species distribu-
tion differently where under the most extreme weather, the habitat suitability distribution
significantly decreased especially in Setiu and Kuala Terengganu districts, and the level
of suitability seems increasing toward the north, from the Dungun to Marang districts.
The local climate in Setiu has significantly greater monthly average high temperature and
monthly average precipitation trends compared to K. Trg and Marang during non-monsoon
months (details in Supplementary Materials S2). The significant variation in temperature
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and precipitation for the three regions could explain why the projected future habitat suit-
ability of M. cajuputi in Setiu remains high (Figures 6 and 7). As mentioned in Section 3.2,
the M. cajuputi species is sensitive to salinity, and the salinity variable ranked the highest
four by contributing 9.88% in the model prediction. According to Nguyen et al. (2009) [65],
a young M. cajuputi species can survive up to three months in a pot with soil salinity of
5 dS/m, while other Melaleuca species can survive up to 10 weeks with soil salinity from 2
to 60 dS/m [4]. Our results highlighted that the species habitat suitability in Terengganu
are high, mainly on soil with a salinity range between 1.7 and 2.2 dS/m. Moreover, our
finding in Section 3.3 suggests that the species presence localities are primarily in areas with
two climate conditions: high precipitation during the wettest months and low precipitation
during the driest months. This indeed agrees with the finding in Thailand that M. cajuputi
species can adapt well to flooding and dry conditions and grow taller in water-logging
areas than in dry areas [9]. In a climate study, the future sea level on the coast of Peninsular
Malaysia was simulated, and it was demonstrated that the mean sea level would continue
to increase by 0.517 m between 2040 and 2100 especially during the monsoon months [66].
Furthermore, the Malaysian Meteorological Department (2009), using GCM with average
temperature and rainfall from 1961 to1999 as a baseline, projected a temperature rise for
Peninsular Malaysia between 1.1 ◦C and 3.6 ◦C by 2095 [67,68]. Another study projected
increases of 0.32◦C per decade in the mean daily temperature for Peninsular Malaysia
amounted to a total increase of 0.96◦C in three decades (2019 to 2050) [69]. Because of the
expected sea level rise in the future [67], saltwater intrusion will be more common and will
increase the soil salinity level. Significant groups of terrestrial and freshwater species are
unable to adapt fast enough to stay within the spatially changing climatic envelopes at
high rates of warming.

The fast-changing climate is worrying, especially to the coastal ecosystem. M. cajuputi
species was reported to have high adaptability toward climate and other environmental
conditions. However, this species is not only threatened by climate change but also
other factors such as land reclamation, land development, agriculture, and illegal waste
dumping [70]. If no effort of conserving or rehabilitating the M. cajuputi forest, the coastal
ecosystem of Terengganu is at risk of disappearing. As mentioned in Section 2.1, M. cajuputi
is found native on BRIS soil and BRIS soil vegetation can easily catch fire, particularly in
non-monsoon months or drought season, which can occur naturally or induced by human
activities [70]. However, since M. cajuputi is a fire-adapted species which can increase
its survival rates during a fire or regenerate naturally after a forest fire, the ecosystem
resilience is less affected. Our modelling has simulated that by 2050, the habitat suitability
area in Setiu district is predicted to remain stable with some patches of area decrease
and increase in suitability level, but for Kuala Terengganu and Marang districts, the
suitability area varies under different climate scenarios. Unfortunately, in the Dungun
and Kemaman districts, the suitable habitat area would disappear if the current climate
change trend continued as predicted under scenarios RCP 4.5 and RCP 8.5. Based on the
model projection, it is worrying that the current reserve of M. cajuputi forest in Marang will
continue to deplete due to climate change while in Setiu area, the threat is associated with
anthropogenic activities.

The habitat suitability distribution was simulated by the variable’s response to the
presence samples regardless of bias of the land use and land cover (LULC). This is the
limitation of our model, which does not consider the current land use as a variable in the
modelling. Consequently, the model predicts habitat site suitability based on the bioclimatic
and edaphic data only. However, by knowing the potential suitable habitat of M. cajuputi
in the current and future states, it helps to make a better management decision or policy for
coastal ecosystem. Maintaining a healthy M. cajuputi forest will aid in the preservation of
ecological services for the benefit of the coastal environment, which supports the livelihood
of local communities.
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5. Conclusions

In this study, we successfully modeled the habitat suitability of M. cajuputi under the
current and future climate change scenarios. Our prediction showed that under the current
climate, Setiu region shows a better M. cajuputi habitat suitability compared to Marang
region in the long term. The predicted habitat suitability area is well distributed along
the coast and highly suitable on BRIS type of soil with low percentages of silt and a high
percentage of sand. The species distribution could also be affected by the temperature and
precipitation during monsoon months. Over the long term, soil salinity could also affect
the survival of M. cajuputi, especially when the sea level rise becomes more apparent. In
the future, the modelling result could be improved using the local bioclimate data and
land use data to get a better prediction of the habitat distribution under the current climate
and LULC. In support to the government’s effort to promote ecological conservation, we
recommend the inclusion of future climate scenarios in the existing conservation and
restoration strategies. The niche model of M. cajuputi species in Terengganu could give
significant insight to conservationist in their strategy to strengthen sustainable practices
especially in the Setiu district, which is currently surrounded by oil palm plantations.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/f12111449/s1, Supplementary Materials S1: MaxEnt Model Complexity; Supplementary
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Method; Figure S1: MaxEnt models tuning performances with various features combination (L, H,
LQ, LQH and LQHPT) and regularization multiplier (rm); Figure S2: Local climate of Setiu, Kuala
Terengganu and Marang districts; Table S1: List of Performance metrics performed in the evaluation
of 40 GCMs.
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Appendix A

Table A1. The selected environment variables for modelling the habitat suitability distribution of M. cajuputi.

Data Source Category Variables Abbreviations Units

SRTM Topographic Elevation elevation m

WorldClim Bioclimatic Annual mean temperature Bio1 ◦C
Mean diurnal range (mean of monthly max.
temp.—in. temp) Bio2 ◦C

WorldClim Bioclimatic Isothermality Bio3 ◦C
Temperature Seasonality Bio4 ◦C
Max temperature of the warmest month Bio5 ◦C
Min temperature of coldest month Bio6 ◦C
Temperature annual range (Bio5–Bio6) Bio7 ◦C
Mean temperature of wettest quarter (3 months) Bio8 ◦C
Mean temperature of driest quarter (3 months) Bio9 ◦C
Mean temperature of warmest quarter Bio10 ◦C
Mean temperature of coldest quarter Bio11 ◦C
Annual precipitation Bio12 mm
Precipitation of wettest month Bio13 mm

https://www.mdpi.com/article/10.3390/f12111449/s1
https://www.mdpi.com/article/10.3390/f12111449/s1
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Table A1. Cont.

Data Source Category Variables Abbreviations Units

Precipitation of driest month Bio14 mm
Precipitation of seasonality (coefficient of variation) Bio15 mm
Precipitation of wettest quarter Bio16 mm
Precipitation of driest quarter Bio17 mm
Precipitation of warmest quarter Bio18 mm
Precipitation of coldest quarter Bio19 mm

Department
Agriculture
Malaysia (DOA)

Soil properties Lithology categories lithology -
Topsoil pH topsoilph -
Soil class soilclass -
Topsoil Silt fraction siltpercent %

HWSD Soil properties Topsoil sand fraction sandpercent %
Topsoil clay fraction claypercent %
Topsoil gravel fraction gravelpercent %

Landsat 8 OLI Soil salinity index Brightness index BI -
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59. Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in Ecological Niche Modeling: Confusions and Challenges. Ecol.
Evol. 2019, 9, 10365–10376. [CrossRef] [PubMed]

60. Liu, C.; White, M.; Newell, G. Selecting Thresholds for the Prediction of Species Occurrence with Presence-Only Data. J. Biogeogr.
2013, 40, 778–789. [CrossRef]

61. Zuquim, G.; Costa, F.R.C.; Tuomisto, H.; Moulatlet, G.M.; Figueiredo, F.O.G. The Importance of Soils in Predicting the Future of
Plant Habitat Suitability in a Tropical Forest. Plant Soil 2020, 450, 151–170. [CrossRef]

62. Velazco, S.J.E.; Galvão, F.; Villalobos, F.; De Marco, P. Using Worldwide Edaphic Data to Model Plant Species Niches: An
Assessment at a Continental Extent. PLoS ONE 2017, 12, e0186025. [CrossRef] [PubMed]

63. Hageer, Y.; Esperón-Rodríguez, M.; Baumgartner, J.B.; Beaumont, L.J. Climate, Soil or Both? Which Variables Are Better Predictors
of the Distributions of Australian Shrub Species? PeerJ 2017, 5, e3446. [CrossRef]

64. Climate Change 2014 Synthesis Report; Pachauri, R.K.; Meyer, L. (Eds.) Core Writing Team: Geneva, Switzerland, 2014; Volume 5.
[CrossRef]

65. Nguyen, N.T.; Saneoka, H.; Suwa, R.; Fujita, K. Provenance Variation in Tolerance of Melaleuca Cajuputi Trees to Interactive
Effects of Aluminum and Salt. Trees-Struct. Funct. 2009, 23, 649–664. [CrossRef]

66. Ercan, A.; Bin Mohamad, M.F.; Kavvas, M.L. The Impact of Climate Change on Sea Level Rise at Peninsular Malaysia and
Sabah-Sarawak. Hydrol. Process. 2013, 27, 367–377. [CrossRef]

67. Tang, K.H.D. Climate Change in Malaysia: Trends, Contributors, Impacts, Mitigation and Adaptations. Sci. Total Environ. 2019,
650, 1858–1871. [CrossRef]

68. Le Loh, J.; Tangang, F.; Juneng, L.; Hein, D.; Lee, D.I. Projected Rainfall and Temperature Changes over Malaysia at the End of the
21st Century Based on PRECIS Modelling System. Asia-Pac. J. Atmos. Sci. 2016, 52, 191–208. [CrossRef]

69. Wong, C.L.; Yusop, Z.; Ismail, T. Trend Of Daily Rainfall and Temperature in Peninsular Malaysia Based on Gridded Data Set. Int.
J. GEOMATE 2018, 14, 65–72. [CrossRef]

70. Mohd Salim, J.; Azwa Radzi, M.; Mohd Razali, S.; Majid Cooke, F. Coastal Landscapes of Peninsular Malaysia: The Changes and
Implications for Their Resilience and Ecosystem Services. In Landscape Reclamation: Rising From What’s Left; IntechOpen: London,
UK, 2020; pp. 1–17. [CrossRef]

https://www.worldweatheronline.com/kuala-terengganu-weather-averages/terengganu/my.aspx
https://www.worldweatheronline.com/kuala-terengganu-weather-averages/terengganu/my.aspx
http://doi.org/10.1016/j.ecoleng.2011.12.004
http://doi.org/10.1017/S0376892913000337
http://doi.org/10.1016/j.ecoleng.2015.04.053
http://doi.org/10.1016/j.apgeog.2013.07.005
http://doi.org/10.1111/jbi.12227
http://doi.org/10.1111/ddi.12160
http://doi.org/10.7717/peerj.3093
http://www.ncbi.nlm.nih.gov/pubmed/28316894
http://doi.org/10.1111/2041-210x.12004
http://doi.org/10.1111/ddi.13211
http://doi.org/10.1002/ece3.5555
http://www.ncbi.nlm.nih.gov/pubmed/31624555
http://doi.org/10.1111/jbi.12058
http://doi.org/10.1007/s11104-018-03915-9
http://doi.org/10.1371/journal.pone.0186025
http://www.ncbi.nlm.nih.gov/pubmed/29049298
http://doi.org/10.7717/peerj.3446
http://doi.org/10.1073/pnas.1116437108
http://doi.org/10.1007/s00468-008-0309-5
http://doi.org/10.1002/hyp.9232
http://doi.org/10.1016/j.scitotenv.2018.09.316
http://doi.org/10.1007/s13143-016-0019-7
http://doi.org/10.21660/2018.44.3707
http://doi.org/10.5772/intechopen.82155

	Introduction 
	Materials and Methods 
	Study Area 
	Data Compilation 
	Melaleuca cajuputi Data 
	Sampling Bias 
	Environmental Data 

	Ecological Niche Modelling 
	Variable Selection 
	MaxEnt Model Complexity and Model Performance Assessment 


	Results 
	Variables Selection and Model Performance 
	Species Response and Potential Habitat Suitability Distribution 
	Changes of Habitat Suitability under the Present and Future Climate Scenarios 

	Discussion 
	Modelling Techniques and Performance Assessment 
	Melaleuca cajuputi Potential Suitable Habitat and Climate Change Impact 

	Conclusions 
	
	References

