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Abstract. The secondary tumor is stated to be more dangerous among cancer patients and this 

tumor is created through metastasis. Metastasis is the process of spreading a tumor from the 

primary location to the second part of the human body. This is an unpleasant problem among 

cancer patients because metastasis can contribute to high mortality cases among them. The 

presence of finger-like protrusions on the plasma membrane of cancer cells is known as the 

invadopodia. This structure can contribute to cancer cell invasion through the metastasis 

process. The formation of invadopodia involves several molecular interactions between 

extracellular matrix (ECM), ligand, actin, and matrix metalloproteinases (MMPs). The 

degradation of the ECM by the MMPs is mentioned as the starting point for the occurrence of 

cancer cell invasion. In this paper, the concentration of MMPs is taken in several functions of 

g  to observe the formation of invadopodia on the plasma membrane. Two-dimensional 

mathematical model of ligand and signal is solved numerically using the method of level set, 

ghost fluid with linear extrapolation, and finite-difference. Credit is given to the level set 

method which successfully detected the movement of the free boundary interface (plasma 

membrane) by setting the interface as a zero-level set function. Also, the neighboring meshes 

can be identified using this method. Results showed that the above-mentioned integrated 

methods effectively describe the movement of the free boundary interface and this directly 

points out the formation of protrusions on the plasma membrane. 

1. Introduction

The level set method is effective, mostly on tracking the changes of shape or boundaries. The study on

the level set method is first introduced by [1] to capture the moving fronts in many multi-physics

problems. A review on the level set techniques to many problems is stated in [2]. Further studies on

the level set method have been done by [3]. In their study, the Stefan problem is highlighted where it

is related to the evolution of smooth boundaries of different phases for a pure substance, for instance,

the changes from solid ice to water. Another exploration on the level set method is conducted by the

studies in [4–6]. Those studies proposed the numerical scheme for the level set method which

combines with the front-tracking and fixed domain methods to model the growth and interaction of

multiple dendrites in solidification.

Discussion on the method of a level set related to the problem of corrosion is presented in [7, 8]. 

They have been tracking the changes in the geometry of the metals due to the effect of corrosion using 

the method of level set. Apart from that, [9–12] described the moving of an arbitrary interface to solve 

the elliptic equations. Meanwhile, another implementation on the level set is explained in [13] to 
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determine the curvature-dependent growth of the cell in the tissue engineering applications to provide 

an initial template for cell attachment and subsequently cell growth and construct development.  

The behavior of the cancer cell is widely explored in [14, 15] where the level set method is 

performed to solve the free boundary of the individual cancer cell. In those studies, the moving 

interface is detected by the zero-level set function to predict the position of the interface for the whole-

time computation. These studies revealed that, the position of the interface is increasing as time 

increased and this is corresponding to the existence of protrusions or invadopodia on the plasma 

membrane. Invadopodia are small-punctuated finger-like protrusions founded on the plasma 

membrane that can be contributed to the cancer cell invasion through the metastasis process.  

The investigation on the invadopodia via the approach of mathematical modeling is done by [16]. 

In that study, the creation of invadopodia is explained in fixed plasma membrane using the 

mathematical modeling of the actin, ECM, MMPs, and ligand. Also, the rate constant of MMPs is 

varied to observe the stage of the invasiveness of cancer cells. It is proven that the higher the 

concentration of MMPs, the more invasive the cancer cells will become.  However, the actin is spotted 

in the extracellular region, which is in contradiction to the biological fact that actin is in the 

intracellular region. 

Instead of a fixed plasma membrane, [17–19] discussed the free boundary plasma membrane to 

observe the formation of invadopodia on the plasma membrane. In these studies, the mathematical 

modeling of time-independent of signal and ligand in collaboration with the level set method is 

focused on. Other than that, the methods of finite difference and ghost fluid with linear extrapolation 

are emphasized for the regular and neighboring grid points, respectively. Meanwhile, [20] studied the 

formation of invadopodia by using the time-independent mathematical modeling of two-dimensional 

signal transduction.  

Extending the study in [20], [21] determined the appearance of protrusions or invadopodia on the 

plasma membrane by including the modeling of the ligand into their model. In the previous study, the 

movement of the free boundary interface is accounted for by the gradient of the intracellular signal. 

However, in this paper, the motion of the interface is taken as the difference of gradient between 

intracellular signal and extracellular ligand. The level set method is applied to detect the moving 

interface by setting the interface as the zero-level set function. Also, the concentration of MMPs is 

taken in five different functions to observe the behavior of the protrusions on the plasma membrane. 

2. Mathematical Formulation

In this paper, the level set method is applied to detect the movement of the free boundary interface by

setting the interface to the zero-level set function. Invadopodia are the finger-like protrusions that can

be spotted on the plasma membrane and these structures can be contributed to the cancer cell invasion

through the metastasis process. There are several molecular processes involved in the formation of

invadopodia. The formation of invadopodia started when the degradation of the ECM by the MMPs

occurred. Hence, research on the MMPs is widely explored in [22–25] due to their importance.  In this

paper, the concentration of MMPs is taken as the function g  and from the degradation, ligand (
*c ) is

produced and diffused to the extracellular region (refer to equation (1)) [16]. Assume that, on the 

square domain, the ligand is absent and at any time t , the MMPs can be spotted on the plasma 

membrane to degrade the ECM.  

Thereafter, the ligand binds with the membrane-associated receptor such as the epidermal growth 

factor receptor (EGFR), and thus the signal ( ) is stimulated on the intracellular region (refer to 

equation (2)) [20]. Subsequently, signal plays a role in the up-regulation of MMPs and polymerization 

of the actin. In this paper, the domain is determined in the square domain that includes the regions of 

the extracellular (
*

0c

t ), intracellular ( 0t


), and interface ( t ) to separate any activities of ligand, signal, 

actin, and MMPs. The movement of the free boundary is consequent from the polymerization of actin 

and [15] considered it as the gradient of inner signal. Meanwhile, in this paper, the movement of the 
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free boundary is taken as the difference of gradient between intracellular signal and extracellular 

ligand as stated in equation (3).  

Instead of velocity on the plasma membrane, the information of velocity for the whole domain is 

required since we are using the level set method. Hence, the partial differential equations (PDEs) 

approach as mentioned in equation (4) is applied to represent the velocity extension [17]. Velocity 

extension is crucial to avoid discontinuities on the plasma membrane. As a result, the two-dimensional 

mathematical modeling for the formation of invadopodia is stated as equations below. 
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Referring to equation (4), the velocity on the interface is equal to the velocity extension on the 

interface.  

3.  Numerical Computation 

In this paper, the protrusion is observed on the plasma membrane of an individual cancer cell. Initially, 

the level set is taken as the equation of circle with radius r  to represent an individual cancer cell. 

Afterward, equation (5) is applied to determine the location of intracellular, extracellular, and 

interface. The ligand can be found in the extracellular region, while signal is in the intracellular region. 

Meanwhile, the zero-level set function is used to detect the location of the interface. 
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In discretization of the Laplacian operator in (1) and (2), the method of second-order centered 

difference and ghost fluid with linear extrapolation are performed for the regular and neighboring 

points, respectively. The regular point is the point that is exactly on the grid and far from the interface 

while neighboring point is the point where one of the points is on the other side of the interface. Figure 

1 indicated the presence of neighboring points from the right and below sides from the interface in the 

intracellular and extracellular regions. From the figure, the x  and y  are the distance of points ix  and 

jy  to the interface in x  and y  directions, respectively.  
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Figure 1. The neighboring points from the interface on the intracellular and 

extracellular region (a) Right neighboring point and (b) Below neighboring point. 

 

The ghost fluid method is most suitable to implement for the neighboring point because the finite 

difference method should involve five stencils points. However, for the neighboring point, one of the 

points is on the other side of the interface known as a ghost point. Hence, on the signal region, 

equations (6) and (7) are the equations used to discretize the points situated on the right and below 

sides, respectively. On the extracellular region, equation (8) is the formula to discretize the point that 

is situated on the right side, while equation (9) is for the point located on the below side from the 

interface. 
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In the meantime, the distance to the interface, x  and y  are computed using the formula as 

presented in equations (10) and (11), respectively. If the distance to the interface is one, then, the point 

is stated to be located exactly on the gridline or called a regular point. 
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On the other hand, for the extracellular region, the Lx  and Ly  in the figure 1, are the notation used 

for the distance of points ix  and jy  to the interface in x  and y  directions, respectively. Hence, the 

calculation used to interpret the Lx  and Ly  are as in equations (12) and (13).  

 

1Lx x = −  (12) 

 

1Ly y = −  (13) 

 

Next, the velocity or the movement of the interface is caused by the activity of actin 

polymerization. In this paper, the actin polymerization is accounted for as the difference of gradient 

between the intracellular signal and extracellular ligand. Also, in applying the method of level set, not 

only the velocity on the interface is required but the velocity with the whole domain is essential. 

Hence, the velocity extension is applied for the velocity in each area from the interface. The gradient 

operator,   in equation (4) is discretized based on the upwind technique for each point from the 

interface to all other areas.  

4.  Results and Discussion 

In this section, the results for the mathematical modeling of time-independent signal and ligand 

associated with invadopodia formation are presented. The following results are obtained from the 

numerical computation in two-dimensional space dimensions. In this paper, the concentration of 

MMPs, g  is varied to determine the existence of protrusions or invadopodia on the plasma membrane. 

There are five different types of functions g  used in this paper including trigonometric of cosine 

function, cos(3 ( ))cos( ( 0.3))g x y x=  +  +  +  , cited in [17], trigonometric with sine function, 

sin(3 ( ))sin( ( 0.3))g x y x=  +  +  +  , exponent, ( )exp ]g x y=  + , linear, (1 )g x y= − − , and 

quadratic, 2 2(1 )g x y= − −  where epsilon,   is taken as 
110 −= . By comparing the simulation 

results, the appearance of invadopodia is discussed. 

The initial level set is described as the equation of a circle with radius 2
3r =  as presented in figure 

2 and the domain is taken in a square domain, [ , ] [ , ]L L L L−  −  where 1L = . The discretization for the 

regular and neighboring points is carried out using the methods of second-order centered difference 

and ghost fluid with linear extrapolation, respectively. The step size, h  for x  and y  axes is computed 

as Lh
M

= , and 50M = . The computation is conducted up to 100  iterations and the protrusion obtained 

is observed.  

From the results, we can notice that the existence of protrusion using the exponent function is 

faster, which is at iteration 6, the outward protrusion existed on the plasma membrane as demonstrated 

in figure 5(a). This is followed by trigonometric with a sine function, where the protrusion is detected 

on the plasma membrane at iteration 7 as in figure 4(a). Figure 3(a) displayed the protrusion obtained 

for the trigonometric with cosine function is at iteration 8. Also, both linear and quadratic functions 

take a longer time for the protrusion to exist on the plasma membrane. The protrusions found using 
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linear and quadratic functions are at iterations 84 and 31, respectively. As shown in the figure of level 

set, most of the protrusions are noticed at the positive sides of x and y  axes. 

 

 
Figure 2. The initial level set. 

 

The movement of the free boundary interface is detected by setting the interface as the zero-level 

set function. Apart from the movement of the interface, the ligand and signal distribution profiles are 

also given. From the results, it is proven that the signal is spotted in the intracellular region while the 

ligand is situated in the extracellular region. This is achievable through the approach of the different 

sign of level set,  . The positive values of   indicated the extracellular region where the ligand is 

located, while negative values of   specified the intracellular region where signal is perceived. Note 

that, the protrusion can be found at the high density of ligand and signal. This is proven in a study 

conducted in [15], where it is shown that, there is a high concentration of signal on the plasma 

membrane as time increased. Also, the distribution profiles for ligand and signal are corresponding to 

the protrusion achieved.  

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 3. The distribution profiles of (a) level set; (b) ligand; and (c) signal for trigonometric with 

cosine function at iteration 8. 
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(c) 

Figure 4. The distribution profiles of (a) level set; (b) ligand; and (c) signal for trigonometric with sine 

function at iteration 7. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 5. The distribution profiles of (a) level set; (b) ligand; and (c) signal for exponent function at 

iteration 6. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 6. The distribution profiles of (a) level set; (b) ligand; and (c) signal for linear function at 

iteration 84. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 7. The distribution profiles of (a) level set; (b) ligand; and (c) signal for quadratic function at 

iteration 31. 
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Table 1. The absolute errors of level set for each function at 

one, 50, and 100 iterations. 
   

Iteration Function ( g ) Absolute error of 

level set 

1 

cosine 

sine 

exponent 

linear 

quadratic 

0.0784015312 

0.0784017722 

0.0784000017 

0.0784014562 

0.0784003224 

50 

cosine 

sine 

exponent 

linear 

quadratic 

0.0783977421 

0.0784152670 

0.0784012802 

0.0783960343 

0.0783991782 

100 

cosine 

sine 

exponent 

linear 

quadratic 

0.0752487780 

0.0752293699 

0.0752023648 

0.0751922051 

0.0751983292 

 

 

The absolute error for the level set is given in table 1 and figure 8 to study the effectiveness of the 

numerical computation. As shown in table 1, the absolute error for each function is described at one, 

50, and 100 iterations. There is a slight difference in results for all the functions given. The absolute 

error is shown to change slowly at the early iterations and then changed rapidly as iteration reached 

100. It is also seen that the absolute error is shown to decrease as iteration increased.  

 

 
Figure 8. The iteration versus absolute error of level set. 
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5. Conclusion

This paper studied the formation of invadopodia that is observed through the existence of finger-like

protrusions on the plasma membrane by emphasizing the mathematical modeling of signal and ligand.

The positive feedback loop on the formation of invadopodia has been proposed by [16] to show the

molecular interactions of MMPs, actin, ligand, and ECM. In this paper, the signal and ligand are

considered. The signal is very important for the invadopodia formation as well as for ligand since

signal is only stimulated after the binding of ligand with the membrane-associated receptor such as

EGFR occurred.

The main objective of this paper is to observe the availability of protrusion on the plasma 

membrane by using five different functions of g . Also, the zero-level set function is applied to detect 

the motion of the free boundary interface by setting the interface to zero level set function. Meanwhile, 

the regions of intracellular and extracellular are distinguished using the positive and negative signs of 

the level set. From the results, the signal is spotted in the intracellular region while the ligand is 

noticed in the extracellular region.  

Also, the movement of the interface is a result of the difference of gradient between intracellular 

signal and extracellular ligand. In the meantime, the extended velocity is also implemented due to 

applying the method of level set; not only is the velocity on the interface crucial, the velocity of the 

whole domain is also needed. The Laplacian operator for the signal and ligand is solved using the 

method of second-order centered difference and ghost fluid method with linear extrapolation, 

respectively.  

Credit to [17] that successfully showed the techniques to discretize the Laplacian operator 

especially dealing with the regular and neighboring points. From the numerical simulations, the 

exponential function shows the fastest on the existence of protrusions on the plasma membrane, 

followed by sine, cosine, quadratic, and linear functions.  

In addition, the protrusion can be spotted at the high concentration of ligand and signal. Hence, we 

can conclude that the high density of ligand and signal can affect the formation of the protrusions on 

the plasma membrane. The numerical error is also computed to examine the effectiveness of the 

numerical computation, and from the findings, it is found that the absolute error decreases as iterations 

of computing increased.  
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