Universiti Teknologi Malaysia Institutional Repository

A framework of resource conservation process integration for eco-industrial site planning

Ch’ng, Kar Wei and Mohamad, Siti Nur Hidayah and Wan Alwi, Sharifah Rafidah and Ho, Wai Shin and Liew, Peng Yen and Abdul Manan, Zainuddin and Sa’ad, Siti Fatimah and Misrol, Mohd. Arif and Lawal, Musa (2021) A framework of resource conservation process integration for eco-industrial site planning. Journal of Cleaner Production, 316 . ISSN 0959-6526

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.jclepro.2021.128268

Abstract

The concept of industrial symbiosis that promotes energy/material exchanges among different industrial enterprises has received growing attention. Industrial symbiosis synergistically engages traditionally separate entities to gain competitive advantages and efficiency in the consumption and utilisation of resources, utilities and wastes. Process integration is a powerful tool to optimise processes and identify scope for industrial symbiosis. Numerous studies have investigated the application of process integration in regard to the management of material resources. Previous works to guide systematic industrial symbiosis planning has only focused on low-carbon emission sites. There is a need to develop a systematic guideline for industrial site planners to use for the systematic planning of integrated industrial sites that also considers other resources such as waste and water. This research presents a framework for the systematic planning of an integrated industrial site using process integration tools. The framework comprises eight main stages and includes six process integration tools to systematically guide the planning and design of industrial sites to minimise energy, water, waste and emissions. A 95.58% reduction of waste disposal through landfilling, a 33.4% reduction in carbon emissions from waste disposal, a 45.70% reduction in steam, a 27.48% cooling water savings, 100% power reduction, a 49.10% reduction in CO2 emissions, 100% fresh CO2 savings, and a 100% freshwater savings for water headers 1 and 2 are obtained from the case study applying the framework proposed. The framework application will provide insights on how all the utilities and materials streams in the involving industries can be comprehensively integrated, hence reducing the need for fresh resources and promoting sustainability.

Item Type:Article
Uncontrolled Keywords:industrial symbiosis, pinch analysis, resource conservation framework
Subjects:Q Science > Q Science (General)
T Technology > TP Chemical technology
Divisions:Chemical and Energy Engineering
ID Code:95372
Deposited By: Yanti Mohd Shah
Deposited On:29 Apr 2022 22:33
Last Modified:29 Apr 2022 22:33

Repository Staff Only: item control page