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a b s t r a c t

This paper presents a novel supervised machine learning-based electric theft detection approach using
the feature engineered-CatBoost algorithm in conjunction with the SMOTETomek algorithm. Contrary
to the previous literature, where the missing observations in data are either ignored or imputed
with average values, this work utilizes k-Nearest neighbor technique for missing data imputation;
thus, an accurate and realistic estimation of the missing data is achieved. To mitigate the biasness to
the majority data class, the proposed model utilizes the SMOTETomek algorithm, which neutralizes
the mentioned effect by managing a proper balance between over-sampling and under-sampling
techniques. Feature Extraction and Scalable Hypothesis (FRESH) algorithm is utilized at the later stage
of the proposed NTL detection framework to extract and select the most relevant data features from
the provided dataset. Afterward, the model is trained using the CatBoost algorithm to classify the
consumers into two distinct categories, i.e., genuine and theft. Finally, to interpret the model’s decision
for the corresponding predictions, the tree-SHAP algorithm is utilized. To validate the efficacy of the
proposed ML based theft detection approach, its performance is compared with that of the traditional
gradient boosting ML algorithms such as XGBoost, lightGBM, Ensemble bagging, boosting ML models,
and other conventional ML models using five of the most widely used performance metrics, i.e.,
precision, accuracy, F1score Kappa and MCC. The proposed technique achieved an accuracy of 93% and
a detection rate of 92%, which is significantly higher than all the considered competing algorithms
under identical dataset and hyperparameters.

© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Background

The transmission and distribution (T&D) of electricity suffers
rom two major categories of losses, i.e., technical and non-
echnical. The technical losses account for the energy losses that
ccur in equipment that is essential for implementing the T&D of
lectricity. On the other hand, the non-technical losses (NTL) in
ny power system account for power theft, billing irregularities,
nd corruption within utility workers. According to a report,
tilities around the globe are losing approximately US$96 billion
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352-4847/© 2021 Published by Elsevier Ltd. This is an open access article under the
every year due to NTLs (Northeast Group, 2017). The mentioned
scenario is precisely depicted in Fig. 1, which shows the intensity
of the NTL issue in different parts of the world.

Owing to such massive economic loss, the power utilities and
researchers in the field of data mining, computer science, and
electrical engineering are trying several intelligent and effec-
tive methods to minimize NTLs. One of the efficient methods to
counter the electric theft issue is the implementation of smart
meters. Such energy meters can monitor and record the con-
sumers’ consumption data remotely and precisely and provide
the information to the utility directly in case of any suspicious
activity. However, despite the vast number of benefits, smart me-
ters are not feasible for countries suffering from severe economic
issues due to huge expenditures associated with their implemen-
tation and operation. Furthermore, increasing cyber threats still
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Fig. 1. Non-technical loss in billion dollars country-wise.

eed to be addressed appropriately for the wide-scale imple-
entation of such devices. In addition, the high-frequency data
athered from smart meters pose some serious data storage and
nalysis issues. It was estimated that the volume of data obtained
rom two million consumers’ smart meters might exceed 22 GB
er day (Rusitschka et al., 2010). Therefore, it is extremely chal-
enging to identify suspicious consumers’ profiles from such a
uge dataset.
The NTL detection approaches can be broadly classified into

hree major categories, i.e., theoretical, hardware, and non-
ardware based methods (Viegas et al., 2017). The theoretical
ethods utilize the relationship between the socio-economic
nd demographic factors for framing the policies to counter
TLs (Winther, 2012; Never, 2015; Yurtseven, 2015; Mwaura,
012). On the other hand, the hardware-based or state-based
ethods utilize physical instruments such as sensors, detec-

ion devices, transformers, and other electrical devices to detect
TLs (Chen et al., 2013; Xiao et al., 2013; Jaiswal and Ballal,
020; Saad et al., 2017). In these methods, the voltage, power,
nd current sensors are installed at various network nodes, that
riggers an alarm whenever the malicious customers attempt to
anipulate the actual grid characteristics at any network point.
espite an effortless working mechanism, these methods are not
easible for various power utilities due to additional maintenance
nd sensor deployment costs. Contrary to the hardware-based
ethods, the non-hardware-based energy-theft detection ap-
roaches do not require any additional NTL detection device.
hese methods are generally classified into two major categories,
.e., game-based and data-driven systems. In the former approach,
he theft detection method is developed as a game between the
ower thief and the service provider using game theory. Even
hough these approaches require a comparatively lower cost,
hey pose a severe challenge in identifying the key position of
layers, offenders, regulating authorities, and distributors; thus,
aking it too complex to implement. The second category of the
on-hardware-based machine learning techniques is data-driven
ethods. These methods are further classified into unsuper-
ised and supervised machine learning approaches. The former
ethods utilize a clustering approach to segment consumers’

oad profiles based on similarity or dissimilarity metric mea-
ures (Badrinath Krishna et al., 2016; Ferreira et al., 2013; Passos
únior et al., 2016; Hussain et al., 2020).

On the other hand, the supervised or classification-based theft
etection methods utilize pre-labeled data (i.e., ‘‘Genuine’’ and
‘Theft’’) to train the model at the initial stage. Based on the
nformation acquired from the training process, the model is
ade to classify the unlabeled data into two mentioned dis-

inct categories; thus, minimizing the expenses and labor of site-
nspections. Since this research work proposes a supervised ML-
ased approach, a detailed description of the most relevant litera-
ure in the mentioned research field is provided in the subsequent

ubsection.

4426
1.2. Positioning of our work in literature

The supervised-based NTL detection methods generally face
five major challenges, i.e., handling missing data values during
data pre-processing, data class unbalancing, selecting the most
relevant features, choosing an appropriate classifier, and inter-
preting the model’s prediction. This subsection reviews the most
relevant literature pertaining to the challenges mentioned above
in conjunction with the significance of the current research work.

Paria et al. (Jokar et al., 2016) presented a consumption
pattern-based energy theft detection (CPBETD) algorithm to iden-
tify the malicious consumption patterns in a smart grid network.
The proposed CPBETD algorithm was made to detect the high
energy theft areas at the transformer level by utilizing the data
collected from the various distribution transformer meters. In
another study (Jindal et al., 2016), the authors developed a highly
accurate energy theft detection framework by utilizing the sup-
port vector machine (SVM) intelligence in conjunction with the
decision tree algorithm. Even though both the studies have pro-
posed very effective theft detection frameworks, however, none
of them has tackled the missing data issue. Furthermore, the
authors in Tureczek and Nielsen (2017), after a detailed review
of 34 research papers on theft detection based on supervised ML
methods, concluded that only half of the considered articles had
addressed the issue of missing data values. Since current research
work has detailly handled the mentioned problem, it is essential
to emphasize its repercussions.

The consumption data obtained through the smart meters
is generally inconsistent and often contains null values. Several
factors, such as smart meter malfunction, inaccurate estimation
of data transferred, unplanned device repair, and storage prob-
lems, can be the root cause of this problem. It is extremely
difficult for a learning classifier to handle and learn patterns
from such data types. To overcome the stated issue in ML based
classification methods, various data imputation strategies have
been proposed in the literature, such as Hot deck imputation
method (Joenssen and Bankhofer, 2012), data clustering based
imputation (Zhang et al., 2008), Monte Carlo missing values im-
putation method (Roth and Switzer, 1995) etc. Two of the most
widely practiced solutions to counter this issue are to delete the
missing entries from the original data (listwise or pairwise) or
to impute the missing datapoints with mean values between the
adjacent data entries as witnessed in references (Buzau et al.,
2018a; Adil et al., 2020). The mentioned data adjusting methods
are elementary and reasonable; nevertheless, the former method
produces a significant information loss while the second provides
noisy, inconsistent, and outlying data values. To overcome the
stated issues, this study utilizes the k-Nearest neighbor-based
imputer which imputes the average value from pre-selected kth
number of nearest neighbors in a given sample of data, thus
providing very reliable estimates.

Another critical issue in smart meters’ labeled data sets for
NTL detection application is the data class unbalancing. It causes
difficulties for the learning systems to learn the concept re-
lated to the minority class (theft cases); thus, causing biasness
of ML models towards the majority samples. In order to achieve
an effective and unbiased ML model performance, a balanced
set of the dataset is essentially required. Two of the prominent
studies that have tackled the mentioned issue includes Hasan
et al. (2019) and Gunturi and Sarkar (2020). Both studies have
utilized the Synthetic minority oversampling technique (SMOTE)
to balance the data class with reasonable accuracy. Since the
SMOTE algorithm oversamples the minority class randomly, it
results in overfitting and low generalization ability of the model.
In another study (Buzau et al., 2018b), the authors have utilized
an under-sampling technique where few samples of the majority
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lass are removed to balance the data class. Such data balancing
echniques are easy to implement; however, they may cause
ubstantial data loss, resulting in lower accuracy of the developed
TL detection model. To avoid this issue, the current study uti-
izes an efficient statistical technique called SMOTETomek (Batista
t al., 2004a). It combines the intelligence of SMOTE (oversam-
ling) and Tomek link (under-sampling) to balance the data class
istribution.
As discussed earlier in this section, the third critical issue in

upervised-based NTL detection methods is the selection of the
ost relevant features for the model training. The efficiency of
lassification-based theft detection methods is highly dependent
n the type of input features selected. Since the smart meters’
ata is generally high dimensional data containing many redun-
ant and irrelevant features, it is essential to extract and select
he most relevant features and discards the unnecessary ones.
n this study, the mentioned issue is solved by using efficient
eature extraction and selection process. Feature extraction and
election procedure is an effective practice for reducing the in-
reased data dimensions, and redundant information in ML-based
TL approaches. It is worthwhile to mention that unlike most of
he ML-based NTL detection approaches in literature where either
eature extraction or selection process is adopted for model train-
ng, this research work utilizes both for acquiring highly relevant
eatures from the considered smart meter dataset. The proposed
pproach utilizes the intelligence of one of the most intelligent
lgorithms called the Feature Extraction and Scalable Hypothesis
FRESH) algorithm to accomplish the mentioned task. It does
o by utilizing more than 60 time-series analytical methods to
apture 794 features from each dataset sample. The extracted
eatures are reduced to 300 most relevant features through the
enjamini–Yekutieli statistical test. The resulting final set of fea-
ures are a combination of essential user consumption and newly
xtracted features.
Once the feature engineering process is completed, the next

hallenge is to select an appropriate classifier for efficiently seg-
egating the genuine and theft consumers. In this study, the
atBoost algorithm is utilized for the model training due to its
fficient handling of the categorical features. These categorical
eatures are handled during the pre-processing phase in most of
he traditional ML models, which consequently increase the com-
utational time and complexity. On the other side, the CatBoost
fficiently handle these features during the training process, thus
voids the mentioned problems faced by conventional classi-
iers. Furthermore, it utilizes the intelligence of ordered boosting,
hich avoids the prediction shift problem faced by XGBoost and

ts variants. Also, by enabling the overfitting detector feature
n its framework, the trained model can achieve an improved
eneralization ability.
Another important aspect of the proposed theft detection

odel is its novel interpretability of the model outcomes. Mostly,
ite inspections are initiated on the list of suspected consumers
enerated by the trained model on genuine and theft consumers’
ata. However, a model’s prediction to place the consumer in
particular category based on a given input feature set is not

ustified logically. Nevertheless, few studies in literature such
s Batista et al. (2004b) and Christ (2018), have employed sim-
listic decision tree diagrams to interrupt the model outcomes.
owever, the latest state-of-the-art theft detection models em-
loying deep learning, gradient boosting machines and ensemble
L techniques incorporate a diverse range of complex prediction
trategies, making themselves extremely difficult to comprehend
hrough simplistic tree diagrams. To deal with the mentioned
ssue, tree-SHhapley Additive exPlanations (SHAP) is utilized in
he current study. It assists in opening the black-box ML model’s
utcomes in terms of explaining how the model concluded a
ecision for a particular prediction.
4427
It is fair to mention and highlight the most relevant studies
on the current research work available in the literature. One of
such studies was carried out by Gunturi and Sarkar (2020), where
the authors have developed an ensemble machine learning-based
theft detection model. In another study, Punmiya and Choe (2019)
proposed a gradient boosted theft detector framework, which
employs the latest XGBoost, lightGBM, and CatBoost for model
training. The current study differentiates itself from the men-
tioned research works in its novel data class balancing and feature
engineering approach. Furthermore, unlike the quoted studies
where the model’s outcome interpretability was not evaluated,
this research work utilizes the tree-SHAP algorithm to accomplish
the mentioned task.

Concluding the detailed discussion, the list of steps executed
sequentially in order to accomplish the proposed supervised ML-
based NTL detection framework is presented as follows.

i. k-Nearest Neighbors imputation technique is employed to
handle the missing and erroneous data values in the ac-
quired dataset.

ii. SMOTE-Tomek based resampling technique is utilized to
tackle the data class imbalance issue.

iii. The FRESH algorithm is used to extract and select the most
relevant statistical features from raw smart meter data.

iv. The implementation of the state-of-the-art CatBoost algo-
rithm and its comparative analysis with other well-known
ML classifiers is carried out for identifying the NTLs.

v. Interpretation of the model outcomes is performed through
the tree-SHAP algorithm.

vi. To validate the effectiveness of the proposed theft detec-
tion framework, an extensive performance evaluation is
made based on five of the most widely utilized perfor-
mance metrics.

vii. The proposed NTL framework achieves the highest detec-
tion rate and the lowest false positive rates among all the
compared algorithms.

The rest of the paper is divided into three sections. Sec-
tion 2 presents the proposed research methodology and is fur-
ther sub-categorized to discuss the CatBoost algorithm’s theoret-
ical background, considered performance metrics, and proposed
framework results and interpretations. In Section 3, the proposed
model’s comparative analysis against the latest gradient boosting
decision trees (GBTDs) and traditional ML models is discussed in
detail. Finally, the conclusion is made in Section 4 of this research
work.

2. Research methodology

In this section, the proposed NTL detection framework is pre-
sented. The overall framework is broadly classified into three
major stages, i.e., data pre-processing stage, feature engineer-
ing stage, model training-testing, and interpretation stage. Each
of the stages is depicted in Fig. 2. and detailly described in
subsequent subsections.

2.1. Stage-1: Data pre-processing stage

Data pre-processing is required to transform the raw data into
a meaningful data structure. The electricity consumption data
acquired from the State Grid Corporation of China (SGCC) (Zheng
et al., 2018) is used for testing the efficacy of the proposed theft
detection model. Table 1 presents the metadata information of
the acquired dataset.

As presented in Table 1, the daily electricity consumption

of 42372 consumers for approximately 1035 days (2014-Jan to
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Fig. 2. Proposed theft detection framework.
able 1
tatistics of obtained SGCC data.
Description Value

The time window for electricity consumption 2014-01-01 to 2016-10-31
1035- days

Number of total consumers 42372
Number of electricity thieves 3615
Number of genuine consumers 38757
Total data records 42372 * 1035 = 43855020

2016-Oct). It comprises of 91.46% genuine and 8.54% theft con-
sumers. Fig. 3 and Fig. 4 depict the electric power consumption
patterns for few of the theft and the genuine consumers respec-
tively. It can be observed from the mentioned Figures that the
theft consumption patterns of the theft consumers are highly
irregular and contains low periodicity. On the other hand, the
patterns for the genuine consumers are periodical and exhibits
a correlation between the identical periods of the consecutive
years.

To check the missing information in the data, the NaN values
ere computed for each consumer. It was found that 25.6% of
3855020 data entries contains NaN or missing values, which is
ignificantly higher for any data set in the field of data mining.
he distribution of computed null values in terms of the his-
ogram is shown in Fig. 5. The histogram bar values depict the
umber of consumers falling in the missing values range.
The computed histogram illustrates that 22.6% of total con-

umers fall into the range of more than 700 missing values per
onsumer. To correctly estimate these consumers’ missing data
alues becomes extremely challenging since a significant portion
f the information is unavailable in the acquired dataset. There-
ore, a viable option left is to drop such highly inadequate entries
rom the rest of the dataset. The missing values in the remain-
ng consumers are imputed using the kNN interpolation tech-
ique (Troyanskaya et al., 2001). The kNN is a non-parametric and
azy learner algorithm that matches an observation in multidi-
ensional space to its nearest kth neighbors. The kNN’s capability
f dealing with almost all types of missing data makes it a suit-
ble candidate for the missing value imputation. It accomplishes
he imputation task by utilizing the Euclidean distance metric
4428
to initially find the consumer’s kth nearest neighbors and then
imputes the missing feature value using the mean of selected k-
neighbors. The current study utilizes the KNN-imputer module
available in the Scikit-learn ML package to impute the missing
data slots (Pedregosa et al., 2011). A few random consumers’
consumption samples are plotted to visualize the newly imputed
values in consumers’ consumption data, as shown in Fig. 6.

2.2. Stage-2: Data class balancing and feature engineering

This stage is further divided into two sub-stages, i.e., data class
balancing and feature engineering, as depicted in Fig. 2. Each of
the mentioned sub-stages is explained in subsequent subsections.

2.2.1. Data class balancing
For an efficient and unbiased classifying performance of a su-

pervised ML classifier, it is essential to extract and select the most
suitable features from a balanced dataset. Since the considered
smart meter dataset for the current study is unbalanced, as it oc-
curs in most NTL detection data set, it is necessary to balance the
class distribution before the feature extraction and selection pro-
cess. In order to solve this issue, the SMOTETomek (Batista et al.,
2004b) algorithm is utilized in the current study. SMOTETomek
combines the intelligence of SMOTE and Tomek links techniques
to over and under-sample data classes simultaneously. It accom-
plishes the mentioned task by discarding the majority class links
until both classes reach an equal number of entities. Even though
the SMOTE technique alone can mitigate the imbalanced data
class distribution issue, it skews the class distributions. Since in
most of the real-world smart meter datasets, clusters formed by
different data classes are not well expressed. Therefore, a set of
samples belonging to the minority or majority class is expected
to be dominated during the SMOTE technique’s oversampling
period. Consequently, feeding such biased data to the learning
classifier will lead to model overfitting.

On the other hand, SMOTETomek does not only helps in pro-
ducing well-defined data class distribution, but it also generates
data class clusters equally. The data class distribution for the
current study before and after using SMOTETomek is shown in
Fig. 7.
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Fig. 3. Electric consumption samples of consumers involved in power theft.

Fig. 4. Electric consumption samples of genuine consumers.

Fig. 5. Histogram of missing values present in SGCC dataset.
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Fig. 6. Missing value imputation using the K-nearest neighbor technique.
Fig. 7. Data class distribution before and after using the SMOTETomek technique.
Fig. 7, shows that genuine consumers are significantly higher
n number than those engaged in fraud before applying the
MOTETomek. In contrast, both the classes are well balanced after
mploying the proposed technique.

.2.2. Feature engineering
In this section, the proposed feature engineering process is

iscussed in detail. Feature engineering is the process of extrac-
ion and selection of the most important features from given data
ypically done to enhance the ML model’s learning ability. It is im-
ortant to note that the dataset acquired from the smart meters
ack statistical characteristics. For a theft detection model to be
4430
efficient, features fed to the model must reflect appropriately un-
derlying abnormalities in consumers’ consumption data. There-
fore, the additional characteristics of the provided dataset are
extracted using the feature extraction and selection process. In
this study, both the tasks are accomplished using the FRESH algo-
rithm, which simultaneously extracts and selects useful features
from the given balanced dataset. For ease in computation, the
FRESH algorithm authors have developed a standardized python-
based package called ‘‘ts-fresh’’, which makes use of the FRESH
algorithm within its framework. The source code and GitHub
page of the ts-fresh package can be found in the link provided
in Christ (2018). A complete list of extracted features and their
mathematical description can be found in Christ et al. (2016),
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Fig. 8. Feature extraction and selection process using the FRESH algorithm.
hile the simplified pictorial version of the feature extraction and
election process employing the FRESH algorithm is presented in
ig. 8.
The FRESH algorithm implementation using the ts-FRESH

odule is carried out in two steps, as depicted in Fig. 8. Initially,
94 features are extracted automatically from each consumer’s
onsumption data using more than 60 time-series characteriza-
ion methods. These extracted features can be broadly classified
nto temporal, statistical and spectral domains as depicted in
ig. 9.
Features such as entropy, zero-crossing points, spectral varia-

ion, Mel-Frequency Cepstral Coefficients (MFCC), skewness, kur-
osis, trend, linear and non-linear characteristics, correlation, and
arious statistical test-based features provide in-depth knowl-
dge of each consumer consumption sample. Due to the space
imitation all the extracted features are not shown in Fig. 9, for the
nterested reader as mentioned above the detailed documenta-
ion of each feature along with source code for its implementation
an be found in authors provided webpage (Christ, 2018).
In the second step, the derived features and consumers’ actual

onsumption data are combined to select only highly important
eature. This selection process is made by initially arranging the
eatures in descending order based on their significance gauged
hrough various statistical tests. Afterwards, the Benjamini and
ekutieli (2001) procedure is employed that sets a threshold for
eature selection criteria; thus, the features with the negligible
ontribution to the target variable are discarded automatically.
ince the feature-set selected by the FRESH algorithm contains
iverse data points scattered over a wide range, the features with
igher magnitudes will cause biasness during the model training.
herefore, it is crucial to standardize the accumulated features to
common scale. The current study utilizes the feature-wise Min–
ax data standardization method to overcome the mentioned

ssue. Min–Max converts each numerical attribute to the range
f 0 to 1 by using the following mathematical expression.

(xi) =
xi − min(X)

max (X) − min(X)
(1)

where X is a vector composed of xi daily electricity consumption
while the min(X) and max(X) are the minimum and maximum
values of X respectively.
4431
2.3. Stage-3: Model training and evaluation stage

In this section, the training and evaluation of the proposed NTL
detection model are discussed in detail. For ease of understanding
and interpretation, this section is divided into three sub-sections.

2.3.1. Performance evaluation metrics
In any supervised ML technique, the labeled data is provided

to the learning classifier for its training purpose initially. The
trained model is then evaluated for its ability to predict and
generalize the un-labeled data efficiently. The performance of
such models is assessed based on a number of performance eval-
uation metrics, such as mentioned in Messinis and Hatziargyriou
(2018). However, it is not feasible to evaluate and analyze all the
metrics mentioned in the stated study; therefore, few of the most
important metrics such as accuracy (Acc), recall, confusion matrix
(CM), precision (P), Cohen’s kappa coefficient (kappa), Matthews
correlation coefficient (MCC), and F1score are utilized to evaluate
the performance of the proposed classifier. The mathematical
expressions for calculating the mentioned metrics are depicted
in Eqs. (2)–(9).

Accuracy =
TP + TN

TP + TN + FP + FN
(2)

Recall or Detection rate =
TP

TP + FN
(3)

False − positive rate = FPR =
FP

FP + TN
(4)

False − negative rate = FNR =
FN

FN + TP
(5)

Precision = PR =
TP

TP + FP
(6)

F1score = 2∗
Precision ∗ DR
Precision + DR

=
2TP

2TP + FP + FN
(7)

Kappa =
ρo − ρe

1 − ρe
(8)

MCC =
TP ∗ TN − FP*FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

, (9)

where FP and TP denote the false positive and true positive
respectively, while FN and TN represent false negative and true
negative respectively. ρo is the predicted value and ρe is the
actual value.
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Fig. 9. Extracted features using the FRESH algorithm.
In addition to the appropriate selection of performance assess-
ent metrics, the performance evaluation of the considered ML
odel on different test datasets is also important. Therefore, k-

old cross-validation technique is recommended in most of the
iterature (Salman Saeed et al., 2020; Saeed et al., 2019). In the k-
old cross-validation technique, the entire dataset is divided into
he k-number of folds initially. Afterwards, the first k1 fold is used
o train the model, and the remaining (k-k1) folds are used for
alidation purpose. Finally, the outcomes of all the considered
valuation metrics are averaged to depict the performance of the
earning classifier.

.3.2. CatBoost classification algorithm: Theoretical background and
ts implementation in current classification problem

In this study, the CatBoost classification algorithm is utilized
or model training and evaluation purpose. CatBoost is a re-
ined version of the GBDTs, which utilizes a complex ensemble
earning technique based on the gradient descent framework.
uring model training, a set of decision trees (DTs) are con-
tructed sequentially to create each subsequent tree with de-
reased loss. In other words, each DT learns from the preceding
ree and influences the next tree to boost the model performance,
hus builds a strong learner. CatBoost algorithm differs from
he rest of GBTs in terms of having two prominent features,
.e., efficient handling of categorical features and ordered boost-
ng (Prokhorenkova et al., 2018). The learning classifiers handle
umerical features quite efficiently during the model training
hase; however, interpreting categorical features is complicated
or them. Therefore, in conventional approaches, categorical fea-
ures are transformed into useful information using the one-
ot encoding technique (Daniele, 2001) or gradient statistics (Ke
t al., 2017). In the former technique, each category of the original
ategorical features is replaced by the binary values, while in
he later technique, an estimated value is generated by using
radient statistics to replace the original categorical feature at
ach boosting step. Nevertheless, in the case of the categorical
4432
features with high repeatability, both the mentioned techniques
require large memory and other computational resources. To
avoid the mentioned problem, the CatBoost algorithm utilizes
efficient modified target-based statistics to appropriately han-
dle the categorical features during training time, thus saving
considerable computational time and resources.

Another important aspect of the CatBoost algorithm is its
ordered boosting mechanism. In traditional GBTs, all the training
samples are provided to construct a prediction model after exe-
cuting several boosting steps. This approach causes a prediction
shift in the constructed model, which consequently leads to a spe-
cial kind of target leakage problem. The CatBoost algorithm avoids
the stated issue by utilizing the ordered boosting framework.
Furthermore, contrary to the conventional learning classifiers, the
CatBoost algorithm eloquently handles the overfitting issue by
using several permutations of the training dataset; hence it turns
out to be the key motivation behind utilizing its intelligence in
the current study.

For the effective implementation of the proposed CatBoost
algorithm in the current NTL detection problem, the designed
model is initially trained on the data developed in Stage-2. Af-
terward, a10-folds cross-validation (CV) technique employing the
considered performance metrics is utilized for performance eval-
uation of the designed model. The corresponding outcomes are
depicted in Table 2.

As can be seen from Table 2 that the CatBoost model attained
an average accuracy and precision of 0.9338 and 0.9508 with a
standard deviation (SD) of 0.0029 and 0.0035, respectively. It is
essential to mention that in almost all data-oriented NTL detec-
tion systems, accuracy, and precision are two of the most widely
used metrics. Nevertheless, these metrics cannot be considered
as a conclusive measure to assess NTL detection-based classifiers’
performance. For example, precision is a critical performance
metric; however, it lacks significant information regarding False-
negative (FN) instances. The FN value implies consumers involved
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Table 2
10-folds cross-validation results achieved using the proposed model.
in theft yet classified as genuine; hence the failure of this kind can
cause permanent financial loss.

For that reasons, the proposed approach’s performance is fur-
her authenticated by computing the recall, F1score, kappa, and
CC, Recall or detection rate (DR) value specifies a classifier’s
it rate in accurately classifying the theft instances. The pro-
osed technique attained a high average DR value of 0.9237 with
tandard deviation (SD) of 0.0033. On the other hand, MCC is a
ore balanced and informative statistical metric, which provides
high score only if the prediction has achieved good scores in
ll four confusion matrix categories. MCC score ranges from −1
total conflict between outcome and observation) to +1 (perfect
rediction). The average value of MCC attained in this study
s 0.8677 with SD of 0.0059, which implies that the proposed
echnique correctly classifies most of the theft and genuine cases
rom the provided dataset.

.3.3. Proposed model’s outcomes interpretability using the tree-
HAP algorithm
In this section, the proposed theft detection model outcomes

r predictions are interpreted using Shapley values computed by
he tree-SHAP algorithm. The Shapley values assist in opening the
lack-box ML model outcomes extensively. These values provide
solution for fairly assigning the gains and costs to several

eatures working in alliance for predicting the model outcomes.
n simple words, these values assist in explaining how model has
oncluded a decision for a particular prediction. In this study, the
hapley values are computed using a recently introduced tech-
ique called tree-SHAP developed by Lundberg et al. (2020). The
ree-SHAP algorithm is specially designed for tree-based models,
nd ensemble gradient boosted machines. One of the important
eatures of this algorithm is that it computes the local feature in-
eraction, which in-turn facilitates the interpretation of the global
odel structure for each prediction. A detailed explanation and
ource code of the tree-SHAP technique is presented tree-SHAP
itHub webpage (https://shap.readthedocs.io/). Fig. 10 shows the
ummary plot generated by the tree-SHAP algorithm that helps
n interpreting the predicted outcomes of the proposed theft
etection model.
The summary plot shown in Fig. 10, plots the consumers’ ex-

racted features against the computed Shapley values. The Shap-
ey values are computed for every consumer’s each feature value
4433
and plotted against the selected features in order to evaluate its
impact on the model outcome. Since its quite challenging to show
all the features and their corresponding Shapley values in the
summary plot, therefore, only 20 most essential features are de-
picted in ascending order based on their significance in predicting
the model outcomes. For example, the entropy feature attained
the highest importance in terms of predicting the target variable,
as shown in Fig. 10. It implies that most of the consumers with
high entropy values (i.e., red color) obtain a positive SHAP value;
thus, impacting the model outcomes positively. Further aspects
of interpreting the ML model using the SHAP technique can be
found in this source (Molnar, 2018).

3. Comparative analysis of proposed method with conven-
tional ML classification methods

In this section, the performance of the proposed theft detec-
tion framework is compared against the latest GBTDs and other
well-known conventional ML models under an identical feature
set. The 10-fold cross-validation technique is employed in con-
junction with the five most widely utilized performance metrics,
i.e., precision, accuracy, F1scoreKappa, and MCC, to evaluate the
performance of all studied classifiers. The proposed framework is
sequentially implemented using the 8th generation, Intel Core-
i5, RAM-8-GB unit. It took approximately 280 s for the model
training and testing, while the feature extraction and selection
process took around 600 s. Since the classifier utilized in the
proposed framework is a modified variant of tree-based models,
therefore its performance is compared with other tree-based
models such as RF, ET, Ada Boost, XGBoost light and GBM. The
outcomes of this comparison are depicted in Fig. 11.

As evident from Fig. 11, the proposed technique outperforms
all the conventional ML methods in terms of accuracy, recall, pre-
cision, F1score, Kappa, and MCC; thus, proving its effectiveness
and significance. Another performance evaluation-based compar-
ison of the proposed method with a few of the well-known con-
ventional ML methods is made on identical performance evalua-
tion metrics. The corresponding outcomes are depicted in Fig. 12.
Once again, the proposed method’s performance superiority can
be observed from outcomes depicted in Fig. 12. It achieves an
accuracy, recall, precision, F1score, Kappa, and MCC of 93.38%, 92%,
95%, 93.7%, and 87%, respectively, which are significantly higher
than all the competing models.

https://shap.readthedocs.io/
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Fig. 10. SHAP value of the proposed model. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
Fig. 11. Performance evaluation of studied tree-based ML models.
4. Conclusion

In this paper, a novel feature engineered CatBoost-based NTL
detection framework is developed. At the initial stage of the
proposed NTL detection framework, the missing slots in the ac-
quired data set were imputed using kNN missing value imputer.
To avoid the data class imbalances, the SMOTETomek algorithm
was utilized which simultaneously over and under-sample the
data classes. The FRESH algorithm’s intelligence was utilized at
the later stage to extract and select the most relevant features
from the acquired smart meter data set, which consequently
4434
led to lowering the computational time and enhancing the pro-
posed classifier’s learning capability. To classify data into genuine
and theft consumers, the intelligence of the CatBoost algorithm
was employed. Finally, the model’s decision for a particular out-
come was interpreted using the tree-SHAP algorithm. To prove
the proposed framework’s superior classification performance,
its performance was compared with that of the latest gradient
boosted machines and traditional ML models based on few of
the well-known performance evaluation metrics. The proposed
technique outperformed all the considered competing algorithms
and achieved 93% accuracy, 92% recall and 95% precision.
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Fig. 12. Performance evaluation of studied conventional ML models.
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