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ABSTRACT In recent years, uncertain data clustering has become the subject of active research in many
fields, for example, pattern recognition, and machine learning. Nowadays, researchers have committed
themselves to substitute the traditional distance or similarity measures with new metrics in the existing
centralized clustering algorithms in order to tackle uncertainty in data. However, in order to perform uncertain
data clustering, representation plays an imperative role. In this paper, a Monte-Carlo integration is adopted
and modified to express uncertain data in a probabilistic form. Then three similarity measures are used to
determine the closeness between two probability distributions including one novel measure. These similarity
measures are derived from the notion of Kullback-Leibler divergence and Jeffreys divergence. Finally,
density-based spatial clustering of applications with noise and k-medoids algorithms are modified and
implemented on one synthetic database and three real-world uncertain databases. The obtained outcomes
confirm that the proposed clustering technique defeats some of the existing algorithms.

INDEX TERMS Uncertain data clustering, probability density estimation, bipartite matching.

I. INTRODUCTION
In data mining, data uncertainty entails some deviation of the
data from the ground truth due to small perturbations often
known as noise or uncertainty. In the era of big data, uncer-
tainty is one of the inherent characteristics of data. Nowadays,
data is growing constantly in volume as people are becoming
more connected than ever before through the internet. Uncer-
tain data is found in abundance today in web applications, IoT
sensor networks [1], [2], within enterprises [3], [4]. Uncertain
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data manifest both in structured and unstructured sources due
to outdated sensors, inaccurate measurement, or sampling
errors. For example, uncertainty is observed frequently in
weather and climate prediction. Small and random perturba-
tions to the atmospheric state variables viz., pressure, tem-
perature, winds, and humidity readings captured by various
sensors due to aging of the sensors or atmosphere itself is
non-linear which in turn results in forecast divergence from
the actual reality.

In recent years, uncertain data clustering has emerged as
an indispensable mining task for pattern recognition and sta-
tistical analysis [5], [6] because uncertainty exists in almost
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all real-world applications nowadays. A clustering algorithm
can help to avoid risks and to take decisions precautiously.
Previously various extensions of the conventional unsuper-
vised machine learning algorithms designed for certain data
were used to cluster uncertain data. For example, uncer-
tain versions of k-means, Uk-means [7], [8], k-medoids,
Uk-medoids [9], Uk-center clustering [10], and Uk-centroid
clustering [11], [12]. However, most of these algorithms
fail to cluster uncertain data properly because instead of
considering probability distribution function (PDF), these
algorithms consider a single point regarding an object like
a certain database. Normally, an uncertain data object can
be modeled by a PDF. Cormode et al. represented uncer-
tain data with the help of point PDF and then found a
closeness between two distributions by applying Euclidean
distance [10]. Gullo et al. expressed uncertain data objects
as PDFs which showed that the likelihood of a data object
becoming visible at every location in a multi-dimensional
region. These clustering algorithms depend upon geometric
distance metric, hence, the difference between uncertain data
with various distributions which are heavily overlapped are
difficult to identify. So, the previous works that extended
conventional unsupervised machine learning algorithms to
group uncertain data are restricted to using geometric dis-
tance as similarity measures, and cannot acquire the actual
distance between two uncertain data objects with different
PDFs [13]. In [14], Jiang et al. represented uncertain data
objects by applying kernel density estimation (KDE) [15] in
discrete and continuous domains. Further, Kullback-Leibler
(KL)-divergence was employed to measure the closeness
between uncertain data objects, and combine it into partition-
ing clustering algorithm, density-based spatial clustering of
applications with noise (DBSCAN), and k-medoids to group
uncertain data objects [14], [16], [17]. Some other popular
modeling schemes are kernel density estimation [14], [15],
fuzzy-logic [18], evidence-oriented using Dempster-Shafer
(DS) [19], [20], a stochastic method using Monte Carlo
simulation (MCS) [21]–[23] etc. In our previous study [24],
the Monte Carlo integration (MCI) based probabilistic
approach was applied to model the uncertain data and it
was proved that the MCI based modeling technique provides
better clustering accuracy over some of the existing modeling
techniques [18], [19], [21], [23]. The matching of multi-
views/features is a common problem in uncertain data/object
clustering. In general, the expected distance was considered
in most of the previous methods for uncertain data cluster-
ing [7], [8], [8] along with Uk-means [7], Uk-medoids [9],
fast DBSCAN [17]. However, some other distance mea-
sures such as geometric distance [16], uncertain distance [9],
maximum distance density and weighted intersection [25]
were also adopted in the literature. Clustering approaches
with the above said distance methods can work on uncertain
data to some extent. Moreover, the above-mentioned dis-
tance methods depend on the geometric positions of uncer-
tain data. However, these algorithms did not appraise the
probability distributions to represent uncertain data. So, these

clustering approaches cannot distinguish the dissimilar-
ity between uncertain data with various distributions
that are extremely overlapped in locations. Furthermore,
divergence-based similarity measures were used to han-
dle the shortcomings of the geometric distances. Indeed,
researchers have classically adopted divergence-based sim-
ilarity measures, for example, KL-divergence [14], Jeffrey
(J)-divergence [24] for clustering uncertain data. However,
both the above discussed divergence-based similarity mea-
sures are non-linear and do not comply with the metric
property. Moreover, some studies were based on the DS
evidence theory which entails a new Belief Jensen–Shannon
divergence to find the variance and conflict level between
pieces of evidence for multi-sensor data fusion. These ideas
emanate from the concept of evidence and belief entropy
developed by F. Xiao [26]. Furthermore, Xiao improved
the previous method [26] by introducing a reinforced belief
divergence method to compute the difference between basic
belief assignments in the DS evidence theory [27]. However,
general evidence theory combines evidence from various
sources and reaches a degree of belief by considering into
account all the viable evidence, thus requires a large com-
putation. Apart from probability theory to handle uncertain
data, a data-driven structure can be an interesting approach
to cope with uncertainty in the data along with better simi-
larity measures because machine learning algorithms based
on data-driven structures are more robust to outliers and
uncertainties. Recently, Cavaliere et al. presented a layered
geometrical structure that helps in analyzing the relationships
among the data to achieve better clustering [28]. In [29],
Kang et al. provided a graph-based learning framework that
captures global and local data features to achieve robust
clustering.

This paper presents a method to show the matching prob-
lem between two PDFs using a directed acyclic graph, where
every node denotes a sample point of a PDF and arcs represent
the similarity between two nodes. Here, the similarity is
measured by applying symmetric J-divergence. Matching is
required to compute the overall measure of closeness between
two PDFs. This matching problem can also be named as
the largest isomorphic subgraph problem. Then the majority
voting scheme is considered to compute the final closeness
between two distributions for suchmulti-views data. The sim-
ilaritymeasure proposed in this work has been integratedwith
conventional k-medoids andDBSCAN clustering algorithms.
Each of the experiments is performed on a weather database
from the CPC of the National Centers for Environmental
Prediction (NCEP), Japanese vowels, activities of daily living
(ADL), and synthetic data [14] to authenticate our mentioned
approach over state-of-the-art approaches.

The remaining work is structured as given below: The
proposed measure of closeness and its use in clustering are
presented in section II. In section III, we report the results
that are obtained by various clustering algorithms including
the proposed two approaches. Finally, conclusions are drawn
in section IV.
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II. PROPOSED METHODS
This section presents the proposed similarity measure
between two PDFs, which is based on the concepts of directed
acyclic graph and J-divergence. This section also describes
clustering algorithms, which consider the proposed similar-
ity measure. Later, the multivariate version of the proposed
similarity measure is addressed along with majority of vot-
ing decision rules. Lastly, updated k-medoids and modi-
fied DBSCAN approaches are discussed for uncertain data
clustering.

A. METHODS FOR ESTIMATING SIMILARITY BETWEEN
TWO PDFs
An uncertain data object is expressed as a PDF using MCI,
MCS, DS, and KDE modeling schemes using either uni-
variate or multivariate random variable(s). In the field of
statistics, the term univariate alludes to a probability dis-
tribution of an uncertain data object having one variable.
Two divergences namely, KL-divergence, J-divergence, and
the proposed similarity measure are considered for this
work in the modified DBSCAN and k-medoids clustering
algorithms.

1) ESTIMATION OF DIVERGENCE FOR UNIVARIATE
DISTRIBUTION
Definition 1: In a continuous domain, ζ , Eq. 1 is applied

to compute the closeness between two PDFs P and Q over
the same variable x, a measure called KL-divergence, where,
P denotes a posterior distribution of data while Q represents
prior distribution of P.

KL(P||Q) =
∫
x∈ζ

P(x) log(
P(x)
Q(x)

)dx (1)

The difference between the two PDFs P = {p1, . . . , ps}
and Q = {q1, . . . , qs} in discrete domain can be calculated
by Eq. 2 [30].

KL(P||Q) =
∑
x∈ζ

P(x) log(
P(x)
Q(x)

), (2)

where P(x) > 0 and Q(x) > 0 for any x ∈ ζ . Equation 2 can
also be expressed as Eq. 3.

KL(P||Q) =
∑
pi∈P

P(pi) log(
P(pi)
Q(pi)

) (3)

Sometimes, it may happen that the value of P(x) is equal
to zero then Eq. 4 is used to smoothing.

P′(x) =
P(x)+ δ
1+ δ|ζ |

, (4)

in which |ζ | is the number of sample data points of dis-
crete domain, ζ and a constant δ used to smooth probability
function, 0 < δ < 1. Furthermore, the aggregation of
P′(x) in the whole domain mentioned previously is 1. In the
rest of the article, instead of using P′(x), P(x) is used to
represent normalized density. J-divergence reduces the type-I

and type-II errors [31], [32] of KL-divergence by producing
large J-divergence, which is expressed by Eq. 5.

J (P||Q) = KL(P||Q)+ KL(Q||P) (5)

Therefore, J-divergence could be sufficient to measure
the complexity as well as it serves to distinguish the given
hypothesis. So, a similarity measure is proposed with the
help of J-divergence and the maximum bipartite matching
algorithm in this work.

2) A SIMILARITY MEASURE AND ITS PROPERTIES
A bipartite graph, G = (V ,E), is a graph where, every vertex
belongs to one of the two disjoint sets namely, V1 or V2,
and each edge, (Vu

1 − Vv
2), joins a vertex in V1 to a vertex

in V2. A maximum bipartite matching problem is defined by
finding out the largest subset of edges in a bipartite graph
in such a way that no two selected edges share a common
vertex [33]. For this study, V1 and V2 represent two PDFs
namely, P and Q where each data point of P and Q denotes
a vertex. A non-negative weight is allotted to each edge of
the bipartite graph formed by P and Q using J-divergence,
J (pu, qv) = (qv − pu) log

qv
pu
, between two data points pu ∈ P

and qv ∈ Q which, represents the highest degree of similarity
between pu ∈ P and qv ∈ Q. The reason behind the use
of the maximum bipartite matching algorithm is finding out
the closest data points of two PDFs [14], [34], [35]. Here,
a greedy-approach is adopted to obtain maximum bipartite
matching. The size of the maximum matching is the total
number of data points, s, of either P or Q as both having
the same number of data points. After matching, the order
of the data points of Q is changed. However, the data points
of P are still unchanged. The new data points of P and
Q are stored in X1 and X2 respectively, which is shown
in Fig. 1. So, the proposed similarity measure, dm, of the
two PDFs namely, P and Q could be obtained by Eq. 6
where, r denotes the index of X1 and X2. The pseudo-code
of finding a maximum matching of two PDFs is illustrated in
algorithm 1.

dm(P,Q) =
s∑

r=1

(X2(r)− X1(r)) log
X2(r)
X1(r)

(6)

Few attributes of the mentioned similarity measure are
discussed as follows:
Proposition 2: dm(P||Q) ≥ 0 and dm(P||Q) = 0 iff P = Q
Proof: According to Eq. 6 divergence based on maxi-

mum bipartite matching can be estimated between two PDF,
P and Q as Eq. 7.

.dm(P||Q) =
s∑

r=1

(X2(r)− X1(r)) log
X2(r)
X1(r)

, (7)

where ∀r (X2(r) − X1(r)) log
X2(r)
X1(r)

≥ 0 and dm(P||Q) = 0
iff ∀r X2(r) = X1(r). So, if P = Q then dm(P||Q) = 0. �
Proposition 3: dm(P||Q) = dm(Q||P)
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FIGURE 1. Illustration of maximum bipartite matching.

Algorithm 1 A Pseudo-Code to Estimate Divergence
Between Two PDF Using a Similarity Measure Based on
Maximum Bipartite Matching.
INPUT: P, Q F two PDFs
OUTPUT: dm(P||Q) F resultant similarity measure
for u = 1 to s do

for v = 1 to s do
edges[u, v]=(qv − pu) log

qv
pu

end for
end for
Sorting of edges in ascending order using any linear sorting
algorithm
r = 0 F index for adding maximum optimal match
for u = 1 to s do

for v = 1 to s do
if end points of edges are not marked visited then

X1(r) = pu F the uth data point in P and pu is
marked as visited

X2(r) = qv F the vth data point in Q and qv is
marked as visited

r = r + 1
end if

end for
end for
dm(P||Q) =

∑s
r=1(X2(r)− X1(r)) log

X2(r)
X1(r)

Proof: According to Eq. 7, dm(P||Q) =
∑s

r=1(X2(r)−
X1(r)) log

X2(r)
X1(r)

=
∑s

r=1(X1(r) − X2(r)) log
X1(r)
X2(r)

=

dm(Q||P) �
Theorem 4: f-divergence: The similarity measure pro-

posed in this work.
Proof: The proposed similarity measure between PDFs

P ∈ [0, 1]s and Q ∈ [0, 1]s can be given according to Eq. 7
as Eq. 8,

dm(P||Q) =
s∑

r=1

(X2(r)− X1(r)) log
X2(r)
X1(r)

(8)

Putting zr =
X2(r)
X1(r)

in Eq. 8 dm(P||Q) =
∑s

r=1(zr ×

X1(r) − X1(r)) log
zr×X1(r)
X1(r)

H⇒ dm(P||Q) =∑s
r=1((zr − 1) × X1(r)) log (zr ) =

∑s
r=1X1(r)ψ(zr ) =∑s

r=1X1(r)ψ(
X2(r)
X1(r)

) dm(P||Q) can be expressed as∑s
r=1X1(r)ψ(

X2(r)
X1(r)

). Hence, the proposed similarity mea-

sure is a f-divergence. �
Theorem 5: Bregman divergence: Not equivalent to the

similarity measure proposed in this work.
Proof: If the similarity measure proposed is equivalent

to a Bregman divergence, dm(P||Q) would be strictly convex
in P. So, our objective is to prove that dm(P||Q) is not convex
in P, which is as follows according to Eq. 7. dm(P||Q) =∑s

l=1(X2(r) − X1(r)) log
X2(r)
X1(r)

Hence,
δdm
δX1(r)

=
X2(r)
X1(r)

−

log(X1(r))− 1− log(X2(r)) If r 6= j
δ2dm

δX1(j)δX1(r)
= 0, and

δ2dm
δ2X1(r)

= −
1

X2
1(r)
−

1
X1(r)

Now, taking X1(r) and X2(r)

for ∀l, we get
δ2dm
δ2X1(r)

< 0. Hence, dm divergence is not

convex in P. �

3) ESTIMATION OF DIVERGENCE FOR MULTIVARIATE
DISTRIBUTION
Generally, univariate or one feature of an object is not suf-
ficient to separate itself from others. So, there is a need to
use multivariate or multiple features. We can say in the area
of statistics, the univariate PDF is a generalized form of the
multivariate PDF in a larger dimension. We have discussed
and proposed two approaches in this section, to calculate a
matching within two multivariate distributions by employing
dm similarity measure. However, two other similarity mea-
sures based on KL-divergence and J-divergence are used for
comparison purposes. A conventional clustering algorithm
is utilized to substitute the similarity measure step in the
proposed two approaches. The primary assumption of these
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FIGURE 2. Divergence for multivariate case using product method.

approaches is that the corresponding characteristics of the
distributions are exclusive to each other. One of the traditional
clustering algorithms called k-medoids is adopted and is
modified in this work where k is the total number of clusters
having d-dimensional features. So, the difference between
two PDFs of two uncertain data objects would be computed
using Eqs. 9, 10, and 11. Fig. 2 illustrates how similarity is
estimated between two PDFs of two uncertain data objects
and a cluster representative using Eqs. 6, 9, and 10.

KL(Ci||Oj) =
∑
xi∈Ci

(Ci,1(xi,1) ∧ · · · ∧ Ci,d (xi,d ))

log(
(Ci,1(xi,1) ∧ · · · ∧ Ci,d (xi,d ))
(Oj,1(xi,1) ∧ · · · ∧ Oj,d (xi,d ))

) (9)

J (Ci||Oj) = KL(Ci||Oj)+ KL(Oj||Ci) (10)

dm(Ci||Oj) =
d∑
l=1

dm(Ci,l ||Oj,l), (11)

where i, j and l represent ith-cluster, jth-uncertain data object
and l th feature respectively. Moreover, xi,− indicates a spe-
cific data point of each distributions.

The closeness within the distributions of an uncertain data
object and a cluster representative is measured by applying a
majority voting rule [36]–[38]. The majority voting scheme
executes in two steps: generation and consensus of votes.
The closeness within the l th distribution of an uncertain data
object and k-cluster representatives are estimated by applying
Eq. 12 and is saved in the array of dimension k named distl
in the first step.

distl = [D(C1,l ||Oj,l),D(C2,l ||Oj,l), . . . ,D(Ci,l ||Oj,l), . . . ,

D(Ck,l ||Oj,l)], (12)

in which i and j form the indicatives of the ith cluster and
jth uncertain data object respectively. Furthermore, a vote
vl of the l th-distribution for the jth uncertain data object is
calculated by applying Eq. 13.

[va, vl] = min(distl), (13)

where vl is the index of va, which is the first smallest value
in distl . Similarly, V = {v1, v2, . . . , vd }, vector would be
created using Eqs. 12 and 13. The vector V consists of d
components and d is the number of features of an uncertain
data object. Then Oj, uncertain data object, will be clustered
to ith-class if the highest votes are given using Eq. 14 in the
consensus stage. Fig. 3 shows the estimation of similarity
between two PDFs for a multivariate case using the majority
voting decision rule.

Ci = max
i
{v1, v2, . . . , vd } (14)

If two and more classes have obtained the same number of
votes then this tie is resolved by random allocation to Oj and
the associated random number is generated by the Mersenne
Twister algorithm [39].

B. UPDATED k-MEDOIDS CLUSTERING ALGORITHM AND
ANALYSES
It is clear from the literature that k-medoids is one of the pop-
ularly used unsupervised algorithms for clustering uncertain
data objects [14]. So, the conventional k-medoids algorithm
is modified with the application of the similarity measure
proposed in this study.

Let O = {O1, . . . ,O0} be a set, which consists of PDFs of
’0’ uncertain data objects in [0, 1]sd . The k-medoids clus-
tering algorithm aims to divide ’0’ uncertain data objects
in ‘k’ groups. Mathematically, the definition of a clustering
algorithm is as follows:

χ : minimize h(M ,C) =
0∑
i=1

k∑
j=1

mijD(Oi||Cj)

where,
k∑
j=1

mij = 1, mij = 0 or 1,

∀i ∈ {1, . . . , 0},∀j ∈ {1, . . . , k}

C = {C1, . . . ,Ck}Cj ∈ [0, 1]s ∀j ∈ {1, . . . , k}

D(Oi||Cj) is a similarity measure

between two uncertain objects (15)

The solution of χ can be obtained iteratively using algo-
rithm 2. The modified algorithm has two steps namely,
the building step and swapping step [14], [40].

Y = {M ∈ [0, 1]0k :
k∑
j=1

mij = 1, mij ≥ 0

∀i ∈ {1, . . . , 0},∀j ∈ {1, . . . , k}} (16)

The utmost point of Y obeys the condition of Eq. 15. The
χ ′ is known as the reduced problem of χ , which is redefined
as follows:
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FIGURE 3. Majority voting decision rule integrates with divergences to compute the closeness between two
PDFs.

Definition 6: The problem χ can be written as χ ′: χ ′:
minimize H(M), where H(.) is a concave function and M ∈ Y
Remark: if H (.) is a concave function then there exists

extreme point solution for the problem χ ′ lies in Y with
defined constraints in Eq. 16 similar to problem χ . If χ
problem is formulated using mij ∈ [0, 1] then solution of χ
will satisfy mij = 0 or 1. In other words, if H (M ,C) is a
concave in M for any fixed constraints C then the solution
of problem χ will satisfy mij = 0 or 1 and in case of convex
function estimation of class label will be difficult [41].

Earlier result of problem χ has an optimal solution.
Now, it’s time to characterize the partial optimal solution of
problem χ .
Definition 7: A point (M∗,C∗) will be a partial optimal

solution to problem χ if h(M∗,C∗) ≤ h(M ,C∗), ∀M ∈ Y
h(M∗,C∗) ≤ h(M∗,C), ∀C ∈ [0, 1]sd This partial optimal
solution is further solved with the help of two sub-problems
in each successive step of algorithm 2:

• Problem χ1: minimization of h(M , Ĉ) subject to M ∈ Y
and a fixed value of Ĉ ∈ [0, 1]sd

• Problem χ2: minimization of h(M̂ ,C) subject to a fixed
value of M̂ ∈ Y and C ∈ [0, 1]sd

χ1 and χ2 are solved iteratively. The solution of problem
χ1 is implicit for a specific Oi, miv = 1 if D(Oi,Cv) ≤
D(Oi,Cj) j, v = 1, 2, . . . , k However, the solution of problem
χ2 is not as easy as χ1. The procedure for the solution of χ2
is described in next theorem.
Lemma 8: The problem χ2 for any fixed M0 ∈ Y has a

solution if J-divergence based similarity measure dm is used
in k-medoids clustering.

Proof: Let us prove that if Ĉ is a solution of
χ2 for a given M0 ∈ Y then we have h(M ,C) =∑0

i=1
∑k

j=1mijdm(Oi,Cj) H⇒ h(M ,C) =∑0
i=1

∑k
j=1mij

∑s
r=1((Cj(r) − Oi(r)) log

Cj(r)
Oi(r)

) If Ĉ is a
solution of χ2 for any given M0 ∈ Y then Ĉ must satisfy the

following
δh

δCj(r) Cj(r)=
ˆCj(r)
= 0 Now, for any fixed M ∈ Y

δh
δCj(r) Cj(r)=

ˆCj(r)
=

∑0
i=1mij(1 + log(Cj(r)) −

Oi(r)
Cj(r)

−

log(Oi(r)))
δh

δCj(r) Cj(r)=
ˆCj(r)
= 0 implies that

0∑
i=1

mij
1
1

1+ log( ˆCj(r))

=

0∑
i=1

mij
1
ˆCj(r)

Oi(r)+ ˆCj(r) log(Oi(r))
(17)

Now, if we take min1≤i≤0Oi(r) = ˆOi(r) and apply in
Eq. 17 then

0∑
i=1

mij
1

1+ log( ˆCj(r))
≤

0∑
i=1

mij
ˆCj(r)

Ôi(r)+ ˆCj(r) log( ˆOi(r))

H⇒ min1≤i≤0Oi(r) ≤ ˆCj(r) Similarly, max1≤i≤0Oi(r) ≥
ˆCj(r)
Hence, max1≤i≤nOi(r) ≥ ˆCj(r) ≥ min1≤i≤0Oi(r) �
Lemma 9: The problem χ2 for any fixed M0 ∈ Y has

a unique solution if the proposed closeness measure, dm,
is employed in clustering.
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Algorithm 2 Uncertain Data Objects Clustering Using
Updated k-Medoids Algorithm

INPUT: O, k F 0-uncertain data objects and number of
clusters
OUTPUT: Clusters C = {C1, . . . ,Ck} F Building Phase
k representatives are selected randomly from the set of
uncertain data objects O. C1,C2, . . . ,Ck
for all Oi ∈ O do

Oi is assigned to closest cluster represented Cj and
corresponding mij = 1 else 0 F Using multivariate
product and majority of voting methods
end for
TD =

∑0
i=1

∑k
j=1mijD(Oi||Cj) F total divergence after

assignment F Swapping Phase
repeat

Select a random uncertain data object P
∈ O\{C1, . . . ,Ck}

if P ∈ any cluster Ci then
Ci will be swapped by P

end if
for all Oi ∈ O do

Oi is assigned to closest cluster represented Cj and
corresponding mij = 1 else 0 F Using multivariate
product and majority of voting methods

end for
TD1 =

∑0
i=1

∑k
j=1mijD(Oi||Cj) F total divergence

after assignment
DEC=TD1-TD F the total decrease in divergence

after swapping
iteration← iteration+ 1 F number of iteration in

algorithm

Pswap(DEC) =

{
1 if DEC > 0
eDEC×log(iteration) if DEC ≤ 0,

until Pswap(DEC) > random number

Proof: Assume for a fixed M0 ∈ Y there are two solu-
tions namely, C1

j and C2
j for problem χ such that C1

j 6= C2
j ,

where,C1
j (r) 6= C2

j (r) i.e. ∃j ∈ {1, . . . , k} and r ∈ {1, . . . , s}.
Assume, C1

j (r) ≤ C2
j (r) and apply in Eq. 17 as derived in

lemma 8. Now, two solutions can be expressed according to
Eq. 18.∑0

i=1mij(1+ log(C1
j (r))−

Oi(r)

C1
j (r)

) =
∑0

i=1mij log(Oi(r))

and

0∑
i=1

mij(1+ log(C2
j (l))−

Oi(r)

C2
j (r)

) =
0∑
i=1

mij log(Oi(r))

(18)

But,
∑0

i=1mij(1 + log(C1
j (r)) −

Oi(r)

C1
j (r)

) ≥
∑0

i=1mij(1 +

log(C2
j (r))−

Oi(r)

C2
j (r)

) since C1
j (r) ≤ C

2
j (r) Therefore, Eq. 18

is expressed as Eq. 19

0∑
i=1

mij log(Oi(r)) ≥
0∑
i=1

mij log(Oi(r)), (19)

Eq. 19 is a contradiction. �
Now, the convergence of k-medoids clustering algorithm

would be discussed in theorem 2.7.
Theorem 10: The modified k-medoids clustering algo-

rithm converges to an optimal solution of problem χ in finite
steps.

Proof: The k-medoids clustering algorithm converges
to optimal solutions for uncertain data objects in finite
steps [14]. Moreover, the solution of problem χ is also
obtained in finite iterations [41]. In this study, the proposed
measure of closeness combines with the k-medoids clustering
algorithm to partition uncertain data objects and the objective
function is defined to minimize h(M ,C). Lemmas 8 and 9
ensure that the problem χ has an optimal solution in finite
steps. �
The conventional DBSCAN clustering algorithm is also

updated in this work by applying the proposed similarity
measure. The modified algorithm is as follows:

C. MODIFIED DBSCAN CLUSTERING ALGORITHM
In [17], Kriegel et al. first used DBSCAN in order to
partition uncertain data objects. In the data region, clus-
ters are formed as dense spaces, which are segregated
by sparse spaces or spaces of lower object density [42],
[43]. This proposed algorithm finds out the arbitrary shape
clusters. The major concept fundamental to DBSCAN is
determining core uncertain data objects, reachable uncertain
data objects, density reachable uncertain data objects, and
outliers [17].
Definition 11: A core uncertain data object P consists of

at least µ neighborhood uncertain data objects inside the
radius ε in the set O as presented in Eq. 20.

|{Q ∈ O | D(P||Q) ≤ ε}| ≥ µ (20)

Definition 12: P and Q are both uncertain data objects
and can be called direct density reachable from each
other, if P is a core uncertain data object and Q is in
ε-distance from uncertain data object P with condition
to Q ∈ O\{P}.
Definition 13: P and Q are both uncertain data objects

and can be called reachable from each other, if w.r.t. ε and µ
if a path of uncertain data objects Q1, . . . ,Qi,Qi+1, . . . ,Qn,
with Q1 = P, and Qn = Q such that Qi can reach
directly to uncertain data object Qi+1 w.r.t. ε and µ for
∀i, 1 ≤ i ≤ n.
Definition 14: Outlier uncertain data objects are not

reachable from any other objects.
If P is any core uncertain data object and it creates a

cluster along with the other non-core or core uncertain data
objects or both provided they are approachable from P.
Every cluster contains a minimum of one core uncertain
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Algorithm 3 The Optimal Value of ε in Database Can Be
Computed by Applying the Following Pseudocode
Require: O F n-uncertain data objects
Require: µ F density threshold F M is a 2D matrix of size

n× n and all the entries are o, initially
Ensure: ε
1: for i = 1 to n do
2:

3: for j = 1 to n ∧ i 6= j do
4: M [i, j]← D(Oi||Oj)
5: end for
6: find the first µ-smallest values from M[i,1:n] and

store in W[i, 1:µ]
7: L[i]=max(W[i,1:µ])
8: end for
9: Sort L[1 : n] in ascending order and mark these values

to find the crucial variation in the curve and that corre-
sponds to ε.

data object and may also contain non-core uncertain data
objects. The initial stage of the modified DBSCAN is as
follows: first, a cluster is formed using each core uncertain
data object. Then, two clusters are integrated if any core
uncertain data object would be density-reachable to some
other core uncertain data object of another cluster. More-
over, all the non-core members are assigned to the nearest
core objects, where distance is measured by applying multi-
variate divergence techniques. It proceeds until there is nil
alteration in the membership of uncertain data objects of
clusters.

DBSCAN relies on three input parameters: density thresh-
old, µ, radius, ε. Initially, these parameters were chosen
arbitrarily by most of the researchers. However, optimum
values were obtained at the end of their experiments. In this
study, an optimum ε value is computed by introducing a
heuristic scheme. The proposed heuristic scheme is presented
in algorithm 3, which starts with the computation of similarity
measure between every set of the PDF of uncertain data
objects which is then followed by determining the great-
est valuation within the µ-minimum values related to each
uncertain data object and save in an array. Eventually, one
needs to arrange the resultant array in ascending order and
mark the values to obtain the decisive fluctuation appearing
in the curve and then store it as ε which will be one input to
DBSCAN together with µ [44].
Now, algorithm 4 presents a updated DBSCAN algorithm

to cluster uncertain data objects based on their distribu-
tions [14], [43].

III. EXPERIMENTAL RESULTS AND DISCUSSION
Each of the experiments is performed in Spyder 3.3.3 Python
development environment in virtue of 64-bits Python
3.7.0 compiler on a laptop Intel(R) Core(TM) i5
CPU@1.80GHz and 8-GB RAM running on macOS Mojave
version 10.14.5. Here, the I/O cost is not reported.

Algorithm 4 Updated DBSCAN Clustering Algorithm for
Uncertain Data Objects
Require: O F n-uncertain data objects
Require: k F number of clusters
Require: µ F Density threshold
Require: ε F Radius obtained from Algorithm 1
Ensure: Clusters C = {C1, . . . ,Ck}

for each uncertain data object P ∈ O do F Identify the
core uncertain data objects

if |{Q ∈ O|D(P||Q) ≤ ε}| ≥ µ then
S ← S ∪ P

end if
end for
for each core uncertain data object P ∈ S do F Join
neighboring objects

if {Q ∈ S|D(P||Q) ≤ ε∧ label(Q) 6= undefined} then
Join such Q neighboring uncertain core objects

into cluster Ci and label them
end if

end for
for each uncertain data object P ∈ O do

if label(P) 6= undefined then
label(P)← min

Ci∈C
{D(Ci||P) ≤ ε} F Assign

objects using multivariate product method and majority of
voting method

else
label(P)← Outliers F Assign Outliers

end if
end for

A. DATABASE DESCRIPTION
1) WEATHER DATA
Accumulation of weather data is done from 2500 var-
ious stations by the National Center for Atmospheric
Research data archive in 2008. Each station recorded daily
weather data in 2008. These weather data are downloaded
from http://rda.ucar.edu/datasets/ds512.0/index.html#! for
this study [45]. Three features namely, average humidity,
the average degree of temperature, and precipitation would
be noted for every entry. Each of the stations is classified
according to the Koppen-Geiger climate classification based
on the type of weather. Five classes: polar climate, tropi-
cal climate, temperate climate, dry climate, and continental
climate [46].

2) JAPANESE VOWELS
We have downloaded Japanese vowels from the UCI data
repository (http: //arc hive.ics.uci.edu/ml/). This database
consists of the utterance of two Japanese vowels spoken
by 9 males, which is represented using 640 time-series
data. In other words, the number of classes and the num-
ber of speakers are the same. Each time series data con-
sists of 7 to 29 whereas, every entry has 12 linear predic-
tive cepstrum coefficients. In this study, every time series
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TABLE 1. Comparison of validation indexes for different approaches by the updated DBSCAN clustering algorithm on weather data.

FIGURE 4. The performance measures in terms of validation indexes
obtained by executing the updated k-medoids clustering algorithm on
weather data.

data and each record are represented as an uncertain data
object and a sample point of the uncertain data object
respectively.

3) ACTIVITIES OF DAILY LIVING
The ADL database is again obtained from the UCI data
repository. It contains 262778 entries, which are measured
from 503 accelerometers. Every entry of the database con-
tains 3 information about the accelerometer namely, acceler-
ation along with the x-axis, y-axis, and z-axis. It is further
divided into five categories based on daily living activities:
getting up, climbing stairs, drinking, pouring water, and
walking. An uncertain data object is represented by each
accelerometer and each record obtained from an accelerom-
eter is considered a sample point of the uncertain data
object.

4) SYNTHETIC DATA
The synthetic database is synthesized using five distribu-
tions: Gaussian, Inverse Gaussian, Logistic, Inverse logis-
tic, and Uniform in d-dimensional space. Five hundred

FIGURE 5. The performance measures in terms of validation indexes
obtained by executing the updated DBSCAN clustering algorithm on
weather data.

different PDFs are generated for each type of distribution
within [0, 1] by changing variance and sample size, s, as 0.05i
and within 50 and 250 respectively, where i represents the ith

uncertain data object of a specific distribution.

B. EVALUATION METRICS
Accuracy is one of the well-known employed metrics in
machine learning and it refers to the closeness of predicted
value to the corresponding actual value. Intuitively, higher
accuracy represents a better and more effective machine
learning algorithm. However, accuracy alone can be mislead-
ing when the databases are imbalanced. Here, accuracy is
considered with other metrics such as Jaccard index, preci-
sion, recall, and f-score [47], [48] for assessing the results
generated by the modified clustering algorithms. These met-
rics also help to compare the performance of the updated clus-
tering algorithms with existing approaches. Non-parametric
statistical hypothesis test called Wilcoxon’s Rank-Sum test
is also performed with 5% significance level to determine
whether two dependent samples are selected from the same
data or not [49], [50].
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TABLE 2. Comparison of validation indexes for different approaches by the updated k-medoids clustering algorithm on weather data.

TABLE 3. Comparison of validation indexes for different approaches by the updated DBSCAN clustering algorithm on japanese vowel database.

TABLE 4. Comparison of validation indexes for different approaches by the updated k-medoids clustering algorithm on japanese vowel database.

TABLE 5. Comparison of validation indexes for different approaches by the updated DBSCAN clustering algorithm on ADL database.

FIGURE 6. The performance measures in terms of validation indexes
obtained by executing the updated k-medoids clustering algorithm on
Japanese Vowels.

C. RESULTS AND COMPARISONS
A b-spline function integrates with MCI for modeling uncer-
tain data objects [24]. The performance of MCI can be eval-
uated using a clustering algorithm. In the experiment, two

FIGURE 7. The performance measures in terms of validation indexes
obtained by executing the updated DBSCAN clustering algorithm on
Japanese Vowels.

clustering algorithms: modified k-medoids and DBSCAN
are considered. However, the performance relies upon the
order of a b-spline function and the correct order is obtained
experimentally. Initially, the order is altered from 2 to 6 with
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FIGURE 8. The performance measures in terms of validation indexes
obtained by executing the updated k-medoids clustering algorithm on
ADL.

an increment of size 1. This experiment is performed on
three above-mentioned real databases. The performance of
MCI is evaluated with the proposed similarity measure
(MBM), which is labeled asMCI-MBM. Similarly, MCI with
J-divergence is denoted as MCI-J. MCI with KL-divergence
is marked by MCI-KL. MCI with MBM and majority voting
scheme is tagged by MCI-V-MBM. MCI-J and the majority
voting scheme is called MCI-V-J. MCI-KL and majority
voting scheme is known asMCI-V-KL. Figs. 4 and 5 show the
results ofMCI-MBM,MCI-J,MCI-KL,MCI-V-MBM,MCI-
V-J, and MCI-V-KL by executing the updated DBSCAN
and k-medoids clustering algorithms on the weather data
respectively using above discussed five validity indexes.
It is clear from Figs. 4 and 5 that the MCI-MBM method
obtained the highest value for accuracy, precision, recall,
f-score, and Jaccard index with the b-spline function of
order 4. These results also present the sensitivity of curves to
variable order. These figures also prove the effectiveness of
the proposed similarity measure i.e. MBM over J-divergence
and KL-divergence.

Similarly, Figs. 6 and 7 show the results obtained by
the modified k-medoids and DBSCAN clustering algorithms
respectively on the Japanese vowels database. These two
figures also illustrate the effectiveness of the MCI-MBM
method over existing approaches. Moreover, all the methods
demonstrate similar trends as Figs. 4 and 5 with the b-spline
function of order 4.

Figs. 8 and 9 show the results obtained by the updated
k-medoids and DBSCAN clustering algorithms respectively

FIGURE 9. The performance measures in terms of validation indexes
obtained by executing the updated DBSCAN clustering algorithm on
ADL.

on the ADL database. These two figures also support the
previous conclusion. In other words, the order of the b-spline
function is 4 which helps to achieve the highest accuracy,
precision, recall, f-score, and Jaccard index.

In the second experiment, a comparative analysis of
MCI-MBM with three existing approaches is discussed,
where three uncertain data objects are modeled using
KDE [14], [15], DS [19], [20], and MCS schemes
[21]–[23]. However, the updated DBSCAN and k-medoids
algorithms are used to divide uncertain data objects. This
experiment is conducted on three real databases men-
tioned in Section 3.1. The KDE with MBM is marked by
KDE-MBM. Similarly, KDE with J-divergence and
KL-divergence are tagged by KDE-J and KDE-KL respec-
tively. The KDE with MBM and majority voting technique
is labeled by KDE-V-MBM. The KDE with J-divergence,
KL-divergence, and majority voting approach are called
KDE-V-J and KDE-V-KL. Similarly, we call DS-MBM: DS
with MBM, DS-J: DS with J-divergence, DS-KL: DS with
KL-divergence, DS-V-MBM: DS with MBM and major-
ity voting technique, DS-V-J: DS with J-divergence and
majority voting scheme, DS-V-KL: DS with KL-divergence
and majority voting approach, MCS-MBM: MCS with
MBM,MCS-J:MCSwith J-divergence,MCS-KL:MCSwith
KL-divergence, MCS-V-MBM: MCS with MBM and major-
ity voting technique, MCS-V-J: MCS with J-divergence
and majority voting scheme, and MCS-V-KL: MCS with
KL-divergence and majority voting approach. These meth-
ods are merged to the updated k-medoids and DBSCAN
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TABLE 6. Comparison of validation indexes for different approaches by the updated k-medoids clustering algorithm on ADL database.

FIGURE 10. The performance measures in terms of validation indexes
obtained by executing the updated k-medoids clustering algorithm on
synthetic data.

algorithms to cluster uncertain data objects. All the obtained
results are noted in Tables 1 to 6. Table 1 displays the
outcomes achieved by different approaches using the modi-
fied DBSCAN on weather data. The obtained results using
k-medoids on weather data are reported in Table 2.
Tables 3 and 4 illustrate the outcomes achieved by DBSCAN
and k-medoids algorithms on the Japanese vowels database.
The obtained outcomes on the ADL database using DBSCAN
and k-medoids algorithms are reported in Tables 5 and
6 respectively. It is observed from Tables 1 to 6 that
the proposed method i.e. MCI-MBM outperforms existing
approaches.

FIGURE 11. The performance measures in terms of validation indexes
obtained by executing the updated DBSCAN clustering algorithm on
synthetic data.

In the final experiment, all the above-said methods are
applied to the synthesized database by changing the sam-
ple size range 50-250 with an increment of 50 samples.
Fig. 10 illustrates all the obtained outcomes using dif-
ferent approaches in the case of the updated k-medoids.
Similarly, Fig. 11 shows the outcomes of the different
approaches by the modified DBSCAN clustering algorithm.
So, it may be inferred from all the results that the demon-
stration of the proposed methods surpasses other existing
techniques.

Then non-parametric Wilcoxon’s Rank-Sum is also per-
formed to compare the proposed technique over existing
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TABLE 7. Comparison of p-values from precision for wilcoxon Rank-Sum test of MCI-MBM by applying modified DBSCAN clustering
algorithms.

TABLE 8. Comparison of p-values from precision for wilcoxon Rank-Sum test of MCI-MBM by applying modified k-medoids clustering algorithms.

techniques based on the p-values achieved by the accuracy.
Tables 7 and 8 report the obtained p-values. Most of the
obtained p-values support eliminating the null hypothesis at a
5% level. In other words, available significant evidence based
on data states the superiority of the proposed method as com-
pared to that of state-of-the-art methods in this work. More-
over, Tables 7 and 8 also show that the statistical experimental
results for accuracy validation index are not significant in
some cases, where p-values are higher than 0.05. However,
Tables 1 to 6 also show the superiority of the proposedmethod
based on the values of accuracy, precision, recall, f-score, and
Jaccard index.

IV. CONCLUSION
In this study, uncertain data objects clustering is addressed
based on their distributions. Three measures of closeness:
KL-divergence, J-divergence, as well as a new devised mea-
sure are combined with k-medoids and DBSCAN clustering
algorithms. Some of the important properties of the proposed
similarity measure are discussed. The b-spline function is one
of the components of MCI meaning that the performance of
MCI depends on the order of the b-spline function. Generally,
determining the correct order of the b-spline function is a
difficult task. Thus, we conduct an empirical analysis to get
the value of the order. Three existing modeling schemes:
KDE, DS, and MCS are considered to compare with MCI.
All the experiments are performed on three real databases:
Japanese vowels, weather, and ADL, and one synthetic. It is
clear from the experimental results that MCI performs well
when the order of the b-spline function is 4 as compared
to other orders. Moreover, the MCI-MBM method is supe-
rior to existing approaches. As a future work, we would
like to develop an algorithm for finding out the optimum
order of the b-spline function. We would also like to merge
the proposed similarity measure with conventional clustering
algorithms.

Malaysia for the completion of the research.
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