PARAMETRIC SYSTEM IDENTIFICATION AND ACTIVE VIBRATION CONTROL OF VIBRATIONAL STRUCTURES USING GENETIC ALGORITHM

AZFI ZAIHAN BIN MOHAMMAD SOFI @ AZIZ

UNIVERSITI TEKNOLOGI MALAYSIA

To my beloved mother and father

ACKNOWLEDGEMENT

I wish to express my sincere appreciation to my supervisor, Dr. Intan Zaurah Binti Mat Darus for encouragement, guidance and critics. Without her continued support and interest, this thesis would not have been the same as presented here.

My fellow postgraduate students should also be recognized for their support. My sincere appreciation also extends to all my colleagues and others who have provided assistance at various occasions. Their views and tips are useful indeed.

I would also like to thank to all my family members. To my parents, Mohammad Sofi @ Aziz Bin Mohammad and Zainab @ Azizah Binti Awang for their prayers and inspiration to start up this journey, to my sister, Afiza Izura Binti Mohammad Sofi @ Aziz and Afiza Zurita Binti Mohammad Sofi @ Aziz, and also to my younger brother, Azfi Zaidi Bin Mohammad Sofi @ Aziz, for all their prayers.

ABSTRACT

A vibration system has advantages and disadvantages for us. Some of the disadvantages of the vibration system are discomfort, noise, malfunctioning, wear, fatigue and even destruction. An example of structure that leads to high vibration when subjected to disturbance forces is flexible plate structure. The aim of this research is to develop an Auto Regressive with eXogenous Input (ARX) model characterizing the dynamic behaviour of a two-dimensional (2D) flexible plate structure and the development of active vibration control (AVC) strategies for the structures. In order to construct the model, several sets of vibration data were obtained from the simulation of the flexible plate structures based on finite difference method. The sets of data obtained were utilised to develop ARX model using Least Squares (LS), Recursive Least Squares (RLS) and Genetic Algorithm (GA) methods. The models were validated using one step ahead (OSA) prediction, mean squared error (MSE) and correlation tests. Then, single-input single-output active vibration control (SISO-AVC) was devised using thus developed RLS and GA models. The performance of these systems was assessed in terms of comparison between uncontrolled signals, RLS-AVC and GA-AVC controlled signals in time domain, spectral density and attenuation of the signals in decibel (dB). The results show that GA is the best method in system modeling and vibration control of the simulated 2D flexible plate structures compared to RLS and LS.

ABSTRAK

Sistem getaran mempunyai kebaikan dan keburukan kepada kita. Antara keburukan sistem getaran ialah ketidakselesaan, kebisingan, kerosakan, haus, kelesuan dan kemusnahan. Satu contoh struktur yang mempunyai getaran tinggi apabila dikenakan daya gangguan ialah struktur plat fleksibel. Tujuan kajian ini adalah untuk membangunkan model ARX (Auto Regressive with Exogenous Input) yang mewakili getaran dan pembangunan Kawalan Getaran Aktif (AVC) untuk pengurangan getaran plat fleksibel 2-dimensi. Bagi membangunkan model tersebut, beberapa set data getaran diperolehi daripada simulasi yang berdasarkan pada kaedah pembezaan terhingga (finite difference method). Data yang diperolehi digunakan untuk membangunkan model ARX dengan menggunakan kaedah Least Squares (LS), Recursive Least Squares (RLS) dan Algoritma Genetik (GA). Model tersebut dinilai dengan menggunakan ramalan satu langkah kehadapan (OSA), Mean Squared Error (MSE) dan correlation tests. Kawalan getaran aktif satu-masukan satukeluaran (single-input single-output active vibration control) dibangunkan menggunakan model RLS dan GA yang telah diperolehi. Prestasi sistem-sistem ini dinilai dari segi perbandingan di antara isyarat tiada kawalan dengan isyarat kawalan RLS-AVC dan GA-AVC dalam domain masa, domain frekuensi dan pengurangan isyarat dalam decibel (dB). Keputusan menunjukkan bahawa GA adalah kaedah terbaik bagi pemodelan sistem dan kawalan getaran simulasi plat fleksibel duadimensi dibandingkan dengan RLS dan LS.

TABLE OF CONTENTS

CHAPTER	TITLE	PAGE
	DECLARATION	ii
	DEDICATION	iii
	ACKNOWLEDGEMENT	iv
	ABSTRACT	v
	ABSTRAK	vi
	TABLE OF CONTENTS	vii
	LIST OF TABLES	xi
	LIST OF FIGURES	xii
	LIST OF SYMBOLS	XV
	LIST OF ABBREVIATIONS	xviii
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Statement of the Problem	2
	1.3 Objectives	3
	1.4 Scopes	3

LITERATURE REVIEW	5
2.1 Active Vibration Control	5
2.2 System Identification	6
2.3 System Identification Procedure	7
2.4 Model Structure Selection: Auto Regressive with	
eXogenous input (ARX)	8
2.5 Other Model Structures for Linear System	9
2.5.1 Auto Regressive Moving Average with	
eXogenous input (ARMAX) Model Structure	9
2.5.2 Auto Regressive Moving Average (ARMA)	10
2.5.3 Output Error (OE) Model structure	11
2.5.4 Box-Jenkins Model Structure	12
2.6 Summary of Model Structures for Linear System	13
2.7 Parameter estimation: Least Squares (LS)	13
2.8 Parameter estimation: Recursive Least Squares (RLS)	16
2.9 Parameter estimation: Genetic Algorithm (GA)	18
2.9.1 Differences between GA and Traditional Methods	20
2.9.2 Simple Genetic Algorithm	21
2.9.3 Population Representation and Initialization	21
2.9.4 The Objective and Fitness Functions	23
2.9.5 Selection	26
2.9.5.1 Roulette Wheel Selection Methods	27
2.9.6 Crossover (Recombination)	28
2.9.7 Mutation	29
2.10 Genetic Algorithm (GA) Procedure	30
2.10.1 Step 1: Representation	30
2.10.2 Step 2: Initial population	32
2.10.3 Step 3: Evaluation	34
2.10.4 Step 4: Selection	35

2

	2.10.5 Step 5: Crossover	38
	2.10.6 Step 6: Mutation	39
	2.11 Genetic Algorithm (GA) for System Identification	42
	2.12 Model Validation	42
	2.12.1 One-step Ahead Prediction (OSA)	42
	2.12.2 Mean Squared Error	43
	2.12.3 Correlation tests	43
3	METHODOLOGY	45
	3.1 Introduction	45
	3.2 Representation of Physical Model	46
	3.3 Mathematical Model for Dynamic Motion of the Plate	52
	3.4 Initial and Boundary Conditions	56
	3.5 Algorithm Development	56
	3.6 Stability Criterion	60
	3.7 Plate Characteristic	61
4	RESULTS AND DISCUSSION	62
	4.1 Force and Deflection	62
	4.2 System Identification	65
	4.2.1 System Identification Using LS for Q_0	
	(Secondary source off)	65
	4.2.2 System Identification Using RLS for Q_0	
	(Secondary source off)	68
	4.2.3 System Identification Using GA for Q_0	
	(Secondary source off)	71
	4.2.4 System Identification Using LS for Q ₁	
	(Secondary source on)	74
	4.2.5 System Identification Using RLS for Q_1	
	(Secondary source on)	11

4.2.6 System Identification Using GA for Q ₁	
(Secondary source on)	80
4.3 Recursive Least Squares - Active Vibration Control	
(RLS-AVC)	83
4.3.1 RLS-AVC Using Finite Duration Step Input	
Force	83
4.3.2 RLS-AVC Using Random Input Force	85
4.4 Genetic Algorithm - Active Vibration Control	
(GA-AVC)	88
4.4.1 GA-AVC Using Finite Duration Step Input Force	88
4.4.2 GA-AVC Using Random Input Force	90
4.5 Comparative Assessment	92

5 CONCLUSION

96

REFERENCES

98

LIST OF TABLES

TABLE NO.	
-----------	--

TITLE

PAGE

2.1	Some common Black-Box SISO models	13
3.1	Properties of the plate	61
4.1	Selected points for simulation	64
4.2	Mean squared error	92
4.3	Actual and simulated natural frequencies of Q_0 and	
	Q_1 for the first three modes	93
4.4	Spectral attenuation achieved at the resonance	
	modes using finite duration step input force	94
4.5	Spectral attenuation achieved at the resonance	
	modes using random input force	95

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	The ARX model structure	8
2.2	The output error model structure	11
2.3	The BJ model structure	12
2.4	Diagrammatic representation of the RLS algorithm	17
2.5	Working principles of GAs	19
2.6	A Simple Genetic Algorithm	21
2.7	Roulette Wheel Selection	28
3.1	Schematic diagram for SISO feed forward AVC structure	46
3.2	Block diagram for SISO feed forward AVC structure	47
3.3	Square plate with 20×20 divisions along x and y-axis	57
4.1	Applied force at $x=0.36$, $y=0.54$	62
4.2	Deflection at each point at time $t = 0.5s$	63
4.3	Plate deflections at observation point	64
4.4	Actual and LS predicted output for Q ₀	65
4.5	Error between actual and LS predicted output for Q_0	66
4.6	Spectral density using LS for Q ₀	66
4.7	Correlation tests of LS for Q ₀	67
4.8	Actual and RLS predicted output for Q ₀	68
4.9	Error between actual and RLS predicted output for Q_0	69
4.10	Spectral density using RLS for Q ₀	69
4.11	Correlation tests of RLS for Q ₀	70
4.12	Actual and GA predicted output for Q ₀	71
4.13	Error between actual and GA predicted output for Q_0	72

4.14 Spectral density using GA for Q_0 72 4.15 Correlation tests of GA for Q₀ 73 Actual and LS predicted output for Q1 74 4.16 4.17 Error between actual and LS predicted output for Q₁ 75 4.18 Spectral density using LS for Q_1 75 4.19 Correlation tests of LS for Q₁ 76 4.20 Actual and RLS predicted output for Q₁ 77 4.21 Error between actual and RLS predicted output for Q₁ 78 4.22 Spectral density using RLS for Q1 78 79 4.23 Correlation tests of RLS for Q₁ 4.24 Actual and GA predicted output for Q₁ 80 4.25 Error between actual and GA predicted output for Q₁ 81 4.26 Spectral density using GA for Q₁ 81 4.27 Correlation tests of GA for Q₁ 82 4.28 Time domain response of RLS-AVC using finite duration 83 step input force 4.29 Spectral density of RLS-AVC using finite duration step input 84 force 4.30 Spectral attenuation of RLS-AVC using finite duration step input force 84 4.31 Random input force 85 4.32 Time domain response of RLS-AVC using random input force 86 4.33 Spectral density of RLS-AVC using random input force 86 4.34 Spectral attenuation of RLS-AVC using random input force 87 Time domain response of GA-AVC using finite duration step 4.35 input force 88 4.36 Spectral density of GA-AVC using finite duration step input 89 force

TITLE

FIGURE NO.

PAGE

FIGURE NO.	TITLE	PAGE
4.37	Spectral attenuation of GA-AVC using finite duration step	
	input force	89
4.38	Time domain response of GA-AVC using random input	
	force	90
4.39	Spectral density of GA-AVC using random input force	91
4.40	Spectral attenuation of GA-AVC using random input force	91

LIST OF SYMBOLS

A	-	A constant $n \times n$ matrix
$[a_j, b_j]$	-	The domain of variable x_j
a, b, c	-	Coefficients of linear difference equation
A(q), B(q), C(q), D(q), F(q)	-	Polynomials of model equation
В	-	Scalar constant related to the time step Δt and
		mass per unit area, ρ of the plate
С	-	Transfer characteristics of the controller
E	-	Transfer function of the paths through r_e
<i>e(t)</i>	-	White noise at time <i>t</i>
$eval(v_k)$	-	Fitness value; $k = 1,, population size$
F	-	Transfer function of the paths through r_f
$F(x_i)$	-	Individual fitness
$f(x_i)$	-	Individual's raw performance
$f(\cdot)$	-	A non-linear function
G	-	Transfer function of the paths through r_g
Н	-	Transfer function of the paths through r_h
h	-	Thickness of the plate
i	-	Value of variable at each grid points
INC	-	Difference between the fitness of adjacent
		individuals
L	-	Transfer characteristics of the secondary source
LOW	-	Expected number of trials of the least fit
		individual
M	-	Transfer characteristics of the detector
т	-	Sections in y direction

MAX	-	Used to determine the bias
MIN	-	Lower bound
m_j	-	Required bits
n	-	Sections in x direction
N_{ind}	-	Population size
P(t)	-	Time-dependent variable
p_k	-	Selection probability; $k = 1, 2,$, population
		size
Q_0	-	The equivalent transfer function characterized
		by $U_C = 0$
Q_I	-	The equivalent transfer function characterized
		by $U_C \neq 0$
q_k	-	Cumulative probability; $k = 1, 2,,$
		population size
q(x,y,t)	-	Transverse external force, with dimensions
		of force per unit area
r	-	Random number
r _e	-	Distance of detector relative to the primary
		source
r_f	-	Distance of secondary source relative to the
		detector
r _g	-	Distance of observation point relative to the
		primary source
r_h	-	Distance of observation point relative to the
		secondary source
Sum	-	A real-valued interval
t	-	Time
U_C	-	Secondary signal at the source locations
U_D	-	Primary signal at the source locations
U_M	-	Detected signal
u(t)	-	System input at time t
v_k	-	Chromosome; $k = 1,, population size$
W	-	Lateral deflection in the z direction

$\mathcal{W}_{i,j,k+1}$	-	Deflection of grid points $i = 1, 2,, n$ and $j = 1$,
		2,, <i>m</i> at time step $k+1$
$\mathcal{W}_{i,j,k},\mathcal{W}_{i,j,k-1}$	-	Corresponding deflections at time steps k and
		k-1
x_i	-	Phenotypic value of individual <i>i</i>
x_j	-	Variable
Y	-	Observed signal
<i>Y</i> _D , <i>Y</i> _C	-	Corresponding signal at the observation point
y(t)	-	System output at time <i>t</i>
$\hat{y}(t)$	-	Predicted output at time <i>t</i>
β	-	Parameter vector of LS estimation
$\Delta x, \Delta y$	-	Distance between mesh lines in x and y
		direction
$\varepsilon(t)$	-	Residuals or prediction errors
$\phi_{uarepsilon}(au)$	-	Cross correlation function between $u(t)$ and
		$\mathcal{E}(t)$
$\boldsymbol{\theta} = \begin{bmatrix} b_1 & b_2 \dots b_{nb} & f_1 & f_2 \dots f_{nf} \end{bmatrix}^T$	-	Parameter vector
ρ	-	The mass density per unit area
ω	-	Frequency in rad/s

LIST OF ABBREVIATIONS

AR	-	Autoregressive
ARMA	-	Auto Regressive Moving Average
ARMAX	-	Auto Regressive Moving Average with eXogenous input
ARX	-	Auto Regressive with eXogenous input
AVC	-	Active Vibration Control
BJ	-	Box-Jenkins
dB	-	decibel
FIR	-	Finite Impulse Response
GA	-	Genetic Algorithm
GA-AVC	-	Genetic Algorithm- Active Vibration Control
LS	-	Least Squares
MA	-	Moving Average
MSE	-	Mean Squared Error
OE	-	Output Error
OSA	-	One Step Ahead
RLS	-	Recursive Least Squares
RLS-AVC	-	Recursive Least Squares- Active Vibration Control
SGA	-	Simple Genetic Algorithm
SISO	-	Single Input Single Output
SISO-AVC	-	Single Input Single Output- Active Vibration Control

CHAPTER 1

INTRODUCTION

1.1 Background

Flexible structures are widely used in engineering system. For example, in civil engineering applications include skyscrapers and bridges, in aerospace structures include propellers, aircraft fuselage and wings, satellite solar panels and helicopter blades and in electromechanical systems include turbo generator shafts, engines, gas turbine rotors and electric transformer cores [1]. Flexible structure systems are known to exhibit an inherent property of vibration when subjected to disturbance forces, leading to component and/or structural damage [2]. That is why the vibration of flexible structure needs to be controlled. The purpose of vibration control in flexible structures is to dampen the response of the structure to external excitation. There are two methods to control vibration; passive and active vibration control (AVC). Active vibration control consists of artificially generating canceling sources to destructively interfere with the unwanted source and thus result in a reduction in the level of vibration at desired locations [2].

Active vibration control is characterized by two complementary processes; identification and control. In the process of identification a suitable model is developed that exhibits the same input/output characteristics as the controlled process (plant). In the process of control a control process is determined, implemented and tested on the plant on the basis of the identified model and control/performance objective [3].

In order to solve an engineering problem (usually of a physical nature), the problem have to formulated as a mathematical expression in terms of variables, functions, equations, and so forth. Such an expression is known as a mathematical model of the given problem. The process of setting up a model, solving it mathematically, and interpreting the result in physical or other terms is called mathematical modeling or briefly, modeling.

1.2 Statement of the Problem

In order to design a controller for vibration system, the mathematical model (mathematical equation) that represent the system must be obtain. Many conventional methods for system identification can be found in the literature, such as Least Squares (LS) and Recursive Least Squares (RLS). However, these methods have the potential risk of getting stuck at local minimum, which often result in poorly identified model [4]. In this project, Genetic Algorithm (GA) identification technique is sought to avoid the problem of convergence to local minima. After the mathematical model is achieved, the project is continued to develop controller using Genetic Algorithm-Active Vibration Control (GA-AVC) and the performance are compared to the conventional RLS-AVC controller.

1.3 Objectives

1) To carry out system identification of vibrational structure using conventional parametric modeling techniques known as Least Squares (LS), Recursive Least Squares (RLS) and intelligent parametric modeling known as Genetic Algorithm (GA).

2) To develop conventional active vibration control using Recursive Least Squares and intelligent active vibration control using Genetic Algorithm.

1.4 Scopes

1) Data acquisition of vibrational structure. The data is obtained from other researcher. The data is simulated based on finite difference method.

2) Parametric modeling using LS, RLS and GA. Modeling is carried out using LS, RLS and GA based on ARX (Auto Regressive with eXogenous input) model and the data obtained.

3) Validation of model using one step ahead (OSA) prediction, mean squared error (MSE) and correlation tests. Validation of model is carried out to observe the performance of LS, RLS and GA.

4) Development of active vibration controller for vibration suppression of the flexible plate structure using conventional RLS-AVC.

5) Development of active vibration controller for vibration suppression of the flexible plate structure using intelligent GA-AVC.

6) Comparative assessment between RLS-AVC and GA-AVC in terms of comparison between uncontrolled signals, RLS-AVC and GA-AVC controlled signals in time domain, spectral density and attenuation of the signals in decibel (dB).