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ABSTRACT 

 

 

  

 

 A vibration system has advantages and disadvantages for us.  Some of the 

disadvantages of the vibration system are discomfort, noise, malfunctioning, wear, 

fatigue and even destruction.  An example of structure that leads to high vibration 

when subjected to disturbance forces is flexible plate structure.  The aim of this 

research is to develop an Auto Regressive with eXogenous Input (ARX) model 

characterizing the dynamic behaviour of a two-dimensional (2D) flexible plate 

structure and the development of active vibration control (AVC) strategies for the 

structures.  In order to construct the model, several sets of vibration data were 

obtained from the simulation of the flexible plate structures based on finite difference 

method.  The sets of data obtained were utilised to develop ARX model using Least 

Squares (LS), Recursive Least Squares (RLS) and Genetic Algorithm (GA) methods.  

The models were validated using one step ahead (OSA) prediction, mean squared 

error (MSE) and correlation tests.  Then, single-input single-output active vibration 

control (SISO-AVC) was devised using thus developed RLS and GA models.  The 

performance of these systems was assessed in terms of comparison between 

uncontrolled signals, RLS-AVC and GA-AVC controlled signals in time domain, 

spectral density and attenuation of the signals in decibel (dB).  The results show that 

GA is the best method in system modeling and vibration control of the simulated 2D 

flexible plate structures compared to RLS and LS. 
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ABSTRAK 

 

 

 Sistem getaran mempunyai kebaikan dan keburukan kepada kita.  Antara 

keburukan sistem getaran ialah ketidakselesaan, kebisingan, kerosakan, haus, 

kelesuan dan kemusnahan.  Satu contoh struktur yang mempunyai getaran tinggi 

apabila dikenakan daya gangguan ialah struktur plat fleksibel.  Tujuan kajian ini 

adalah untuk membangunkan model ARX (Auto Regressive with Exogenous Input) 

yang mewakili getaran dan pembangunan Kawalan Getaran Aktif (AVC) untuk 

pengurangan getaran plat fleksibel 2-dimensi.  Bagi membangunkan model tersebut, 

beberapa set data getaran diperolehi daripada simulasi yang berdasarkan pada kaedah 

pembezaan terhingga (finite difference method).  Data yang diperolehi digunakan 

untuk membangunkan model ARX dengan menggunakan kaedah Least Squares 

(LS), Recursive Least Squares (RLS) dan Algoritma Genetik (GA).  Model tersebut 

dinilai dengan menggunakan ramalan satu langkah kehadapan (OSA), Mean Squared 

Error (MSE) dan correlation tests.  Kawalan getaran aktif satu-masukan satu-

keluaran (single-input single-output active vibration control) dibangunkan 

menggunakan model RLS dan GA yang telah diperolehi.  Prestasi sistem-sistem ini 

dinilai dari segi perbandingan di antara isyarat tiada kawalan dengan isyarat kawalan 

RLS-AVC dan GA-AVC dalam domain masa, domain frekuensi dan pengurangan 

isyarat dalam decibel (dB). Keputusan menunjukkan bahawa GA adalah kaedah 

terbaik bagi pemodelan sistem dan kawalan getaran simulasi plat fleksibel dua-

dimensi dibandingkan dengan RLS dan LS. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.1  Background 

 

 

 Flexible structures are widely used in engineering system.  For example, in 

civil engineering applications include skyscrapers and bridges, in aerospace 

structures include propellers, aircraft fuselage and wings, satellite solar panels and 

helicopter blades and in electromechanical systems include turbo generator shafts, 

engines, gas turbine rotors and electric transformer cores [1].  Flexible structure 

systems are known to exhibit an inherent property of vibration when subjected to 

disturbance forces, leading to component and/or structural damage [2].  That is why 

the vibration of flexible structure needs to be controlled.  The purpose of vibration 

control in flexible structures is to dampen the response of the structure to external 

excitation.  There are two methods to control vibration; passive and active vibration 

control (AVC).   Active vibration control consists of artificially generating canceling 

sources to destructively interfere with the unwanted source and thus result in a 

reduction in the level of vibration at desired locations [2]. 

 

 

  



 2

Active vibration control is characterized by two complementary processes; 

identification and control.  In the process of identification a suitable model is 

developed that exhibits the same input/output characteristics as the controlled 

process (plant). In the process of control a control process is determined, 

implemented and tested on the plant on the basis of the identified model and 

control/performance objective [3].  

 

 

In order to solve an engineering problem (usually of a physical nature), the 

problem have to formulated as a mathematical expression in terms of variables, 

functions, equations, and so forth. Such an expression is known as a mathematical 

model of the given problem. The process of setting up a model, solving it 

mathematically, and interpreting the result in physical or other terms is called 

mathematical modeling or briefly, modeling.  

 

 

 

 

1.2  Statement of the Problem 

 

 

 In order to design a controller for vibration system, the mathematical model 

(mathematical equation) that represent the system must be obtain. Many 

conventional methods for system identification can be found in the literature, such as 

Least Squares (LS) and Recursive Least Squares (RLS). However, these methods 

have the potential risk of getting stuck at local minimum, which often result in poorly 

identified model [4]. In this project, Genetic Algorithm (GA) identification technique 

is sought to avoid the problem of convergence to local minima. After the 

mathematical model is achieved, the project is continued to develop controller using 

Genetic Algorithm-Active Vibration Control (GA-AVC) and the performance are 

compared to the conventional RLS-AVC controller.  
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1.3  Objectives 

 

 

1) To carry out system identification of vibrational structure using conventional 

parametric modeling techniques known as Least Squares (LS), Recursive Least 

Squares (RLS) and intelligent parametric modeling known as Genetic Algorithm 

(GA). 

 

2) To develop conventional active vibration control using Recursive Least Squares 

and intelligent active vibration control using Genetic Algorithm.  

 

 

 

 

1.4  Scopes 

 

 

1) Data acquisition of vibrational structure. The data is obtained from other 

researcher. The data is simulated based on finite difference method. 

 

2) Parametric modeling using LS, RLS and GA.  Modeling is carried out using LS, 

RLS and GA based on ARX (Auto Regressive with eXogenous input) model and the 

data obtained. 

 

3) Validation of model using one step ahead (OSA) prediction, mean squared error 

(MSE) and correlation tests.  Validation of model is carried out to observe the 

performance of LS, RLS and GA. 

 

4) Development of active vibration controller for vibration suppression of the 

flexible plate structure using conventional RLS-AVC. 

 

5) Development of active vibration controller for vibration suppression of the 

flexible plate structure using intelligent GA-AVC. 
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6) Comparative assessment between RLS-AVC and GA-AVC in terms of 

comparison between uncontrolled signals, RLS-AVC and GA-AVC controlled 

signals in time domain, spectral density and attenuation of the signals in decibel 

(dB). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 




