Computers, Materials & Continua . < Tech Science Press

DOI1:10.32604/cmc.2021.014391
Review

Automated Test Case Generation from Requirements:
A Systematic Literature Review

Ahmad Mustafa’', Wan M. N. Wan-Kadir', Noraini Ibrahim', Muhammad Arif Shah*",
Muhammad Younas’, Atif Khan', Mahdi Zareei’ and Faisal Alanazi’

'Department of Software Engineering, School of Computing, Universiti Teknologi Malaysia Johor Bahru,
Johor, 81310, Malaysia
2Department of Computer Science, Government College University, Faisalabad, 38000, Pakistan
3Department of Software Engineering, Pak-Austria Fachhochschule Institute of Applied Sciences and Technology,
Haripur, 22620, Pakistan
4Department of Computer Science, Islamia College Peshawar, Peshawar, Pakistan
STecnologico de Monterrey, School of Engineering and Sciences, Zapopan, 45201, Mexico
®Department of Electrical Engineering, Prince Sattam Bin Abdulaziz University, Al Kharj, 11942, Saudi Arabia
*Corresponding Author: Muhammad Arif Shah. Email: arif. websol@gmail.com
Received: 17 September 2020; Accepted: 18 October 2020

Abstract: Software testing is an important and cost intensive activity in
software development. The major contribution in cost is due to test case
generations. Requirement-based testing is an approach in which test cases are
derivative from requirements without considering the implementation’s inter-
nal structure. Requirement-based testing includes functional and nonfunc-
tional requirements. The objective of this study is to explore the approaches
that generate test cases from requirements. A systematic literature review based
on two research questions and extensive quality assessment criteria includes
studies. The study identifies 30 primary studies from 410 studies spanned
from 2000 to 2018. The review’s finding shows that 53% of journal papers,
42% of conference papers, and 5% of book chapters’ address requirements-
based testing. Most of the studies use UML, activity, and use case diagrams
for test case generation from requirements. One of the significant lessons
learned is that most software testing errors are traced back to errors in nat-
ural language requirements. A substantial amount of work focuses on UML
diagrams for test case generations, which cannot capture all the system’s
developed attributes. Furthermore, there is a lack of UML-based models
that can generate test cases from natural language requirements by refining
them in context. Coverage criteria indicate how efficiently the testing has been
performed 12.37% of studies use requirements coverage, 20% of studies cover
path coverage, and 17% study basic coverage.

Keywords: Test case generation; functional testing techniques; requirements-
based test case generation; system testing; natural language requirement;
requirements tractability; coverage criteria

@ This work 1is licensed under a Creative Commons Attribution 4.0 International License,
@ which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly cited.

http://dx.doi.org/10.32604/cmc.2021.014391

1820 CMC, 2021, vol.67, no.2

1 Introduction

Software testing has a primary role in evaluating software quality and minimizing the project’s
cost and delivery in time. The developed system’s quality can be measured by the customer’s
approval and satisfaction of the developed system. Software testing can be defined as [I] “a pro-
cess of exercising or evaluating a system or system components by manual or automated means
to verify that it satisfies specified requirements.” The test cases are designed to check that all
functional requirements are successfully incorporated into the system. These test cases validate the
developed system against its specifications, and it assured that all requirements from the customer
are successfully incorporated in the resulting system.

Furthermore, the testing process is divided into three subtasks, namely, test case generation,
execution, and evaluation [2]. In this systematic literature review, we are focusing on test case
generation techniques from requirements. According to IEEE Std 829, a test case a set of inputs,
conditions, and expected results for under test systems. A test document states inputs, expected
results, and a set of execution conditions for a test item [3]. The test phase is considered one
of the most expensive tasks which take 40%-60% of the time, cost, and effort. Most of the
time, software testing is planned with very few resources, without proper techniques or tools that
may support it [4]. Often time delay in the software testing phase occurs due to the lack of
resources [5]. Moreover, software testing is challenging for the software testing research community
from academia and the software development industry [6].

Recently, automation in the testing process is considered to reduce time, costs, and effort. The
automated case generations can be used to uncover faults and defects in artifacts during the early
stage of software development [7]. The Software requirements specifications should be precise and
unambiguous in order to support the automation process in software testing [8]. In the software
development industry, the natural language (NL) is often used for requirements documentation
because it is easy to understand, and the no additional training required to understand NL. After
documenting the requirements, software design diagrams are modeled based on these requirements.
These unified models are used in the development of the system. Manual generation of test cases
from the requirements and design phase can be time-consuming and prone to human error [9].

The software requirements-based test (RBT) cases generation technique is widely used in
the software development field to support software tester. The generated test cases with RBT
guarantee that the software system is performing as per customer expectations. These tests provide
a ground for functional testing of the system [l0]. Functional testing is a critical factor for
risk management, quality management, and delivery of the resulting system well in time. This
systematic review pinpoints the possible challenges linked with test case generation techniques
from requirements. Moreover, this paper attempts to bridge the gap in requirements and testing
and areas to improve requirements and testing. However, the focus of the study on automated
testing, and we try to find the answers to the following questions:

e What are the existing approaches to generate test cases from requirements?
e What are the challenges in requirements-based testing?

To answer these questions, we designed a systematic procedure to retrieve all the works
related to requirements-based test cases generations. The rest is organized in the following sections:
(2) The Material and Method—(3) Results and Discussion, (4) challenges in Requirements Based
Testing, (5) Threat to validity, and (6) Conclusion.

CMC, 2021, vol.67, no.2 1821

2 Research Methodology

A Systematic Literature Review (SLR) is a method in Evidence-Based Software Engineering
(EBSE) proposed by Kitchenham et al. [11]. First, we defined the review protocol, as shown in
Fig. 1 in which we explained the objectives, research questions, search strategy, studies selection
criteria, and search string definition as presented below.

Research Objectives

4

Research Questions

I

Search Strategy

Search Terms Resources

\ /

| Search Process |

il

Study Selection

[Scrutiny |

Quality Assessment criteria for assessing the
relevance

<

| Data Synthesis |

Figure 1: Phases of the review study

2.1 Review Protocols

A systematic review protocol defines the reason, speculation, and arranging techniques for the
review. It was planned before a review is started and used as a guide to carry out the review.
Fig. 1. shows the phases of review, such as objectives, research questions, search strategy, study
selection, and data analysis.

2.2 Research Objectives
After selecting the domain, the following aim of this review study are stated below:

e Identify the existing proposed solution that addresses the automated test cases generations
of functional testing from requirements.

e Analyze on the base of quality assessment criteria indicators if current approaches offer
an appropriate solution for a real project and improve the quality of test phase with
reduction of cost and time to market, requirement coverage, and dynamic change manage-
ment methodology.

e Identify the gaps in existing approaches.

e Propose future works about the enhancement of the automated process of functional test
case generation from requirements.

1822 CMC, 2021, vol.67, no.2

2.3 Research Questions

The research questions are an essential part of the systematic review, as suggested by
Kitchenham et al. [11]. To achieve the objectives mentioned in (Section 2.2), we identify the
following research questions:

e What are the current approaches to generate test cases from requirements?
e What are the challenges in requirements-based testing?

2.4 Search Terms

From our two research questions, we derived the following keywords: “functional test cases
generation, functional testing, functional testing techniques, requirements-based test cases genera-
tion, requirements-based testing techniques, system testing, requirements change effect on software
testing, traceability of requirements, coverage criteria.” A search string was constructed using
relevant terms based on research questions

2.5 Searching Strategy

The SLR procedure advises searching from several electronic sources [12]. During phase 1 of
the search, we search from Scopus, a web of science, and google scholar. We read the abstract of
studies. After reading the studies at the 2nd phase, we downloaded the related studies from the
electronic databases, as shown in Fig. 2.

Fig. 2. shows a total of 410 studies found related to the study area during the publishing years
2000-2018. These studies are published in different digital Libraries such as ACM, IEEE, Science
Direct, Springer, and other digital libraries. Fig. 2. shows the number of published papers in the
journal, conference, and book chapter on test case generation. Fig. 3. shows that the research area
under observation is getting the attention of researchers.

124
}‘2‘8 112
100 86
80 56
. >
0 []
D % o & &>
Y'C/ \{éO Q\@ .i&% Q&?
Sy R &
e M

Figure 2: Number of studies digital libraries wise

2.6 Studies Selection Process

For the selection of appropriate studies, many criteria were developed. The studies that met
the following conditions were included in primary studies.

e Research papers

e Studies that contains system test case generation process.

e Studies that proposed an approach or methodology for system-level test case generation.
e Papers written in the English language.

CMC, 2021, vol.67, no.2 1823

352
66
353846 " 40
japnihnieeapuiy gy 1 1 8 1 BN

00t
£00C
00T
§00T
900T
L00T
800T
600T

I

I

I

I

I

I

1

I

000T

Figure 3: The accumulated number of publications per year

The following types of paper were excluded:

e Studies those are not addressed requirements-based test case generations.
e Studies that are not addressed problems/issues/challenges in requirements-based testing.

Fig. 5 shows the number of search phrases and selected studies numbers at each phase. In
phase 1, the search was performed on digital libraries mentioned in Section 2.6 by applying the
search terms specified in Section 2.5. The search was on the base of titles, abstracts, and keywords
of the research studies. We obtained 410 studies. Many of the studies were irrelevant and not
precisely addressing our research questions. Therefore, in phase 2, we remove duplicate studies,
and some studies were not in the English language. As a result, 352 studies were obtained. At
phase 3, we categorized studies into four parts as shown in Fig. 4.

200

184

180
160 142
140
120
100

80

60

40 23

20 3

. |

Conference Journal Articles Book Chapters Technical Reports
papers

Figure 4: Number of articles categorized wise

Moreover, those studies were also removed because they are not fulfilling the
following criteria:

In stage 4, we apply the quality assessment criteria mentioned in Section 2.8. After phase 4,
we again verified the titles of research papers in the of 30 primary selected studies.

1824

Phase 1

ACM
56

ScienceDirect f—
112

Spring
pringer '—86

Other Digital
Libraries 32

|
|
|
|
|
f | Duplicate |
L/ 410 g
IEEE Xplore L‘les//_'—» Exclusion |
124 L |
|
|

CMC, 2021, vol.67, no.2

Phase 2 Phase 3

Exclusion based
on criteria
Sorting based on
category

w
G
2
A
23
=
=3
o
13
P

Phase 4

Quality
Assessment —
Criteria

Exclusion based

/ | A
231 studies Z Abstract and

%4—

:

30 Primary
studies

Figure 5: Phases of the search strategy

Table 1: Primary studies data extraction form

No Data extraction attributes Description Address
General detail
01 Study_id Unique id of each primary study (PS)
Studies description
02 Title Full Title of the primarily selected study
03 Authors Authors name of primary studies
04 Year Study publication year
05 Type of study Type of documents: conference paper, journal
article, book chapter or technical report
06 Publisher Name of publisher
Study content
07 Objective Main objectives of the study RQI1, RQ2
08 What are test cases What is technique input to generate test cases RQI1, RQ2
generation techniques Notation used
which take input from
the requirement
10 Coverage criteria How effectively has the testing been performed? RQI1
11 Challenges identified What are the problems while generating test RQ2
cases from requirements?
12 Tools support Is the approach is supported by tool and RQ1
support is partial/fully automated?
13 Validation Which method is used for validation of the RQI1, RQ2

study?

CMC, 2021, vol.67, no.2 1825

2.7 Quality of the Studies

Kitchenham et al. [11] proposed criteria for assessing the primary studies’ quality, reducing
favoritism, and increasing validity when assessing the primary studies. Below mentioned questions
were applied for the checking of the quality of primary studies.

e Are the aims and objectives of selected primary studies are defined and reported?

e Is the domain/context in which the research was conducted is defined efficiently?

e Are the test case generation techniques from the requirements (RQ1) in the study is
mentioned clearly?

e Is there any reliable method for validation of the technique/approach?

e Are the outcomes of the study stated clearly and related to the object of study?

e Does the conclusion of the study is according to the defined goal of the study?

2.8 Data Extraction

For studies included in the automated test case generation review from requirements, we iden-
tified twelve elements mentioned in Tab. 1. In the data extraction stage, we collect the information
related to the research questions from studies. For data extraction purposes, we develop a form
with a test-retest process [I11] for the reliability and correctness of the selected data. The data
extraction form is shown in Tab. 1.

3 Results and Discussion
3.1 Primary Studies

After exploring for online resources of digital databases mentioned in Section 2.6, the first
410 studies were found. The study selection process is discussed in Section 2.7. As a result, we
got 30 primary studies addressing requirement based test case generation: techniques, tool, and
context of studies mentioned in Tab. 2.

3.2 The Input to Generate Test Cases

Fig. 6 shows a pie chart of the dissemination of input used to generate test cases. Most of the
approaches take input from UML diagrams to generates functional test cases. 21% of approaches
are taken input from natural language requirements. However, the focus of these approaches is the
real-time embedded system. However, the researcher is intended to map the concept of enterprise
application software (EAS), desktop application software. Studies that focus on the UML diagram
as input are only focusing on functional test case generation. UML is unable to capture the non-
functional requirements of the system.

3.3 Notation Used

The notation used is a fundamental aspect that is considered while defining requirements.
Fig. 7 shows the analyzed approaches and notation used as input of requirements for the test case
generation process. Most of the approaches are using 31% of approaches are using metamodel to
capture information from requirements. Other notations used, such as UML diagrams, Behaviors
trees, formal notation, and SCR notations.

3.4 Transformation Techniques

The transformation mechanism takes input from requirements using specific notations and
finds the best set of test suits while covering requirements. Fig. 8. shows that 30% of studies
are using particular generation algorithms. Other studies use standard techniques like active

1826 CMC, 2021, vol.67, no.2

testing techniques model, BEAST Technique, bounded model checking, Class diagram, CPM, and
Cyclomatic complexity. ECP, BVA & CRF, equivalency partition, NLP, Petri net, Round strip
strategy and Extended Use cases, State transition diagram, symbolic model checker, text mining

& symbolic execution methodology, TSL, and some techniques are unknown.

Table 2: Tool support and validation of approaches

ID Tools Context ID Tools Context
PS1 Junit Case study the car rental PS16 TestGen-IF A case study on intelligent
system transportation systems
PS2 GenTCase Experiment study PS17 jUCMNav Application message sequence
charts
PS3 LEIRIOS Overview study PS18 Unknown Library system, web publishing
system
PS4 No Case study embedded PS19 EDT-Test Experiment study
system
PS5 No Experiment study PS20 NDT-suite NA
PS6 Visual Case study enterprise PS21 BT Analyser Automated teller machine
Paradigm system example
PS7 RT-Tester, Aerospace and PS22 APTGEN Digital applications
T-VEC tool automotive industry
PS8 STATEST Case study bank system PS23 Eclipse base Case study
1.1.0. Tool ReDSeT
PS9 DODT tool Embedded system PS24 Unknown Automotive domain
MoMuT::
REQ
MATLAB
Simulink
PS10 Junit Agile testing in the PS25 Junit Experiment study web-based
network e-commerce system
PS11 C-Set Automobile control PS26 aToucandTest Case networking domain
system
PS12 Unknown Model driven testing PS27 Spreadsheet No
PS13 C&L tool Web application PS28 T-VEC tool Vending machine, nuclear power
plant control
PS14 NDT- suite Experiment study web PS29 REBATE Case study industrial
application cyber-physical systems
PS15 aToucand4Test Enterprise and autopilot PS30 known Experiment aerospace

application

3.5 Requirements Coverage Criteria

This section briefly summarizes the requirements coverage criteria results. Coverage criteria

indicate how efficiently the testing has been performed. There are two main categories of coverage
criteria: structural coverage and requirement coverage [13]. Fig. 9. Indicates that 12.37% of studies
use requirements coverage, 20% of studies cover path coverage, and 17% study basic coverage.
Similarly, other used coverage criteria include code coverage, edge and flow weight coverage, events
coverage, fault coverage, and functional and MC/DC coverage.

CMC, 2021, vol.67, no.2 1827

visual Activity
use-case model requirements diagrams
10% 3% 7% categor
Use Case Test fton
partition
Models method
3% 17%
UML model
3%
Testing Model
7%
Functional
requirements
4%
NL
Requirements
Scenario Restricted Test 2%

21% Case Model
4%

Figure 6: Input technique to generate test cases

UML state Z notation .
machine 3% Behavior Trees

7% 10% Condition/Action

Determination
4%

Extended FSM
7%

UML diagrams
24%

FSM
7%

TCMeta
3%

SCR notation Metamodeling
4% 31%

Figure 7: Notation used in test cases generation from requirements

Mainly three are three coverage criteria (functional, structural chain, tolerance range) to estab-
lish a test suite’s adequacy. The functional criterion is based on a user-specified requirement for the
verification of each functional requirement. This criterion validates that functional requirements
cover the given set of test cases.

The structural coverage criteria check how the given test suite covers many behaviors of
the requirements specification. Finally, the resistance goes criteria to determine what kind of
qualities distinguished resilience scope of each information variable must be chosen for definitive
tests, such as an average worth, two limits esteem, and one out-of-run esteem [I4]. Almeida
et al. [15] proposed an approach for requirement coverage for aerospace safety-critical software
development. Verification and validation process, for example, the use of MC/DC (Modified

1828

Condition/Decision Coverage). The proposed approach automatically generates test cases from the

requirements written in XML format.

TSI, unKnown
3% 10%

text mining &

CMC, 2021, vol.67, no.2

symbolic
execution
methodology Algorithms
3% 30%
symbolic model
checker
3%
State transition
diagram
7% B model
Round strip 3%
strategy and
Extended Use
cases
3% BEAST
Petri net Technique
3% 3%
NLP
equivalency 10% ECP,BVA & bou:hd;i;: odel
partition CRF Class diagram 3% s
3% 3% 3%

Figure 8: Transformation techniques

code coverage Edge and flow
4% weight coverage
3% events coverage
3%

Structural coverage o
17%

fault coverage
3%

Functional coverage
10%

MC/DC coverage

3%

Requirements
coverage
37%

Path coverage
20%

Figure 9: Coverage criteria used in primary studies

The coverage criteria specify the requirements to be covered by the system test cases. However,
in reality, due to the infeasibility problem, such criteria are limited. Infeasibility problem dealt
with system specifications that cannot be covered by any test case. To resolve this issue, authors
revisited and tried to improve existing techniques such as the resistance go criteria to determine
each information variable’s qualities distinguished resilience scope must be chosen for explicit tests,
such as an ordinary worth, two limits, and one out-of-run esteem. Researchers proposed a new
technique lightweight gray box scheme, by combining these two techniques [16].

3.6 Tools Used for Test Cases Automation

The tool field indicates that the degree of tool development to support each approach. The
details of these tools and their context are described in Tab. 2.

CMC, 2021, vol.67, no.2 1829

3.7 Relationship Between Requirement and Test Case Generation

The software industry’s goal is to develop the error-free software that fulfills the needs of
system stakeholders. The longer the gap between error introduction and error discovery, the higher
the error cost. Testing is an essential phase during the development cycle of software, and gener-
ating test cases is an essential activity during the testing phase. Software Requirements are often
stated in Natural Language (NL), and in NL requirements, it is hard to detect the ambiguity and
incompleteness. The analyst manually extraction the features from the NL requirement documents.
During the requirements phase, testing activity participates in the software requirement verification
process and helps identify ambiguity, inconsistency, and missing/incomplete requirements. The
analyst uses NL for communication because it is easy to understand, and no specialized training
is required to understand NL. It is universal, and everyone can explain and apply NL to any
problem domain. Fig. 9 is a summary of requirements issues that maybe affect the TCG process.
Since during systems testing, 56% of errors are followed back to mistakes in the requirements.
Ineffectively sorted out requirements, regularly in NL, are among the significant reasons for
software projects’ disappointments. Ambiguity is one of the significant issues in NL requirements.
Any statement is considered ambiguous if it has multiple meanings. In NL requirements, it is
hard to detect the ambiguity and incompleteness. How can unambiguous, consistent, and complete
Natural Language Requirements improve automated test case generation?

4 Challenges in Requirements Based-Testing

We identified the following challenges in test case generation from requirements.

4.1 Traceability

The first identified challenge in the requirements-based testing approaches is lack of trace-
ability. The traceability from requirements to executable test cases is one of the keys factors of
success in any software project [15]. Traceability is mandatory in many engineering standards,
such as (e.g., IEEE-Standard 830-1998). Traceability is the linkage with the source; a document
is considered as traceable if it is clear and linked with reference. Traceability has two types:
(1) backward traceability, connection with the previous stage of development, and (2) forward
traceability connection with all subsequent steps from existing state [17].

Dealing with a Traceability Matrix from requirements to test cases is the actual test in
keen card programming approval. It gives numerous advantages in the overall programming life-
cycle: Verifies that all requirements were applied and tried; Smooths change sway examination, by
perceiving application components influenced by a prerequisite change; Supports in the venture
the executives by following the test inclusion of every necessity; Helps to recognize the related
requirements when a test falls flat [18].

In the literature, many references focus and address the traceability issue in software develop-
ment and specifically in requirements and testing level (extra due space required cannot define all);
for example, state-of-the-art Model-based Testing is addressed the tractability but with missing
support of non-functional requirements testing. Most of the Model-based testing approaches focus
on functional testing as the detail is mention in Section 3.5 coverage criteria, selection algorithms,
and the like.

1830 CMC, 2021, vol.67, no.2

4.2 Requirements and Testing Alignment

Alignment of requirements and tests is an essential factor that may help during the devel-
opment process coordination between organizational units is very important to develop a good
quality software product on time and within budget.

Sabaliauskaite, et al. [19] conducted an interview study with the research question of what
challenges in aligning requirements and testing are. As a result of the study, the researcher
categorized the challenges as under organization and processes, people, tools, requirements process,
change management, traceability, and measurement [20].

4.3 Change Management

Change inevitably happens, so there must be a plan for changes to requirements throughout
a development project and after the product is released to the field. Thus, we must establish
processes and tools to manage changing requirements on how to evaluate that the functional
and non-functional requirements are effectively comprehended in software implementation. The
main challenging to handle the change of how to map each source’s requirements onto the
individual test cases. In an industrial context, the suitability of mapping a requirement is usu-
ally not formally established. This gap is that most of the time is filled with test review and
inspection. Therefore, there is a need to develop a mechanism that can validate each requirement
successfully implemented.

4.4 Natural Language Requirements Issues

Another critical issue recognized that natural language requirements such as ambiguity, incon-
sistency, and incompleteness of natural language statements significantly impact software testing
quality. Furthermore, 56% of errors are traced back to errors in requirements [21]. Inadequately
sorted out requirements, regularly in everyday language, are among the significant reasons for
programming ventures’ disappointments. Ambiguity is one of the most crucial issues in natural
language requirements. Any statement is considered as Ambiguous if it has multiple meanings.

5 Threat to Validity

A systematic literature review is a method of Evidence-Based Software Engineering (EBSE).
Validity is the primary concern in EBSE studies while filtering the studies. In this study, we take
care of threats to construct, internal, and external validities [22].

Construct validity refers to this systematic literature review to fulfill its primary purpose or
not. To address the construct validity, we first define review phases, searching strategy as the
primary concerns. The search keywords used in this study were extracted from two research ques-
tions. We tried our best to match these keywords against studies from digital libraries mentioned in
Section 2.6. Though, and we cannot guarantee the completeness and the comprehensiveness of the
searching strategy. We looked through each chosen essential examination’s references rundown to
distinguish extra important essential investigations to decrease this risk. Furthermore, the pursuit
uncovered three articles in the Chinese language [23-25], which we excluded.

Internal validity refers to how system literature review primary studies are extracted from
410 studies found from digital libraries. It focuses on errors in the design and conduct of the
study [12]. To address internal validity, we emphasized data extraction.

CMC, 2021, vol.67, no.2 1831

We used the data extraction form and quality assessment criteria proposed by Kitchenham
et al. [11]. Though, in a few studies, some necessary information used to summarize primary
studies in Appendix A Tab. 2 was missing. It may be considered as a threat to internal validity.

External validity refers to how we might be wrong to generalize the study outcomes. [12].
External validity is all about the generalizability of the study results. The following issues constrain
our systematic review: (1) it is focused on a very specific problem; (2) the problem under focus is
relatively new, and (3) it covers a predefined period (2001-2018).

6 Conclusion

This study has presented a review study on Requirements based test case generation from
2000 to 2018. The study carried out to acquire knowledge areas requirements-based test case
generation and identify future research. The emphasis was on finding answers for identified
research questions (Section 2.4). For this propose, we identified 30 studies based on quality
assessment criteria (Section 2.8). Our results show that it is possible to generate test cases from
requirements, based on testing approaches identified in primary studies (RQ1). For the formalism
of requirements, most approaches use UML-based models such as use case, activity, and class
diagrams to generate test cases. For the transformation from natural language requirements to
formal model following approaches are applied, such as Petri net, scenario, model checking,
bounded model checking, and state transition diagram. These models used different knowledge
representation Z notation, finite state machines, behavior trees, metamodeling, and UML state
machines. Likewise, for coverage criteria in the path, multiple-condition, edge and flow weight,
flow weight, event, and requirement coverage.

As for RQ2, most studies discuss challenges (Section 4) associated with requirements-based
test generation. These are trackability, alignment of requirements and testing, requirement cover-
age, and natural language requirements issues, i.e., ambiguity, incompleteness, and inconsistency.

In the future, we will develop a model of test case generation from requirements using
Natural Processing Language. This model will have capabilities to fit in the context of the
DevOps software development process. It takes user stories’ input in the form of natural language
requirements, classifies them, refines them, automatically translates natural language requirements
to a logical format to be validated, and finally generates test cases from these requirements. Fur-
thermore, this dynamic model will help the practitioner in successful software project development
while maximizing the quality and minimizing the project’s cost and delivery in a short time. This
model will also prove a new paradigm for the research community to focus on natural language
requirements rather than the unified modeling.

Funding Statement: This work was supported by Tecnologico de Monterrey, Mexico.

Conflicts of Interest: The authors declare that they have no conflicts of interest to report regarding
the present study.

References

[11 IEEE, “ISO/IEC/IEEE international standard—systems and software engineering,” ISO/IEC/IEEE
29148:2011(E), pp. 1-94, 2011.

[2] P. C. Jorgensen, Software Testing: A Craftsman’s Approach, 4™ ed. London: CRC Press, 2016.

[3] IEEE Standards Committee, “IEEE standard for software and system test documentation,” IEEE Std
829-2008 (Revision of IEEE Std 829-1998)—Redline, pp. 1-161, 2008.

1832 CMC, 2021, vol.67, no.2

[4] H. Shah, M. J. Harrold and S. Sinha, “Global software testing under deadline pressure: Vendor-side
experiences,” Information and Software Technology, vol. 56, no. 1, pp. 6-19, 2014.

[5] M. Felderer and R. Ramler, “Integrating risk-based testing in industrial test processes,” Software Quality
Journal, vol. 22, no. 3, pp. 543-575, 2014.

[6] M. Nazir and R. A. Khan, “Testability estimation model (TEM OOD),” in Proc. of Int. Conf. on
Computer Science and Information Technology, Berlin, Heidelberg: Springer, pp. 178-187, 2012.

[71 D. E. Semos, J. Bozic, B. Garn, M. Leithner, F. Duan et al, “Testing TLS using planning-based
combinatorial methods and execution framework,” Software Quality Journal, vol. 27, no. 2, pp. 703-
729, 2019.

[8] B. Aysolmaz, H. Leopold, H. A. Reijers and O. Demirors, “A semi-automated approach for generating
natural language requirements documents based on business process models,” Information and Software
Technology, vol. 93, pp. 14-29, 2018.

[9] O. Olajubu, S. Ajit, M. Johnson, S. Turner, S. Thomson et al., “Automated test case generation from
domain specific models of high-level requirements,” in Proc. of the 2015 Conf. on research in adaptive and
convergent systems, ACM, Prague Czech Republic, pp. 505-508, 2015.

[10] R. Gao, J. S. Eo, W. E. Wong, X. Gao and S.-Y. Lee, “An empirical study of requirements-based
test generation on an automobile control system,” in Proc. of the 29th Annual ACM Symp. on Applied
Computing—SAC, New York, USA: ACM Press, pp. 1094-1099, 2014.

[11] B. Kitchenham and S. Charters, “Guidelines for performing systematic literature reviews in software
engineering,” Technical report, EBSE, 2007.

[12] B. Kitchenham and P. Brereton, “A systematic review of systematic review process research in software
engineering,” Information and Software Technology, vol. 55, no. 12, pp. 2049-2075, 2013.

[13] M. Utting and B. Legeard, Practical model-based testing: A tools approach. Morgan Kaufmann,
Elsevier, 2010.

[14] 1. Ober and I. Ober, “SDL 2011: Integrating system and software modeling,” in Proc. 15th Int. SDL
Forum Toulouse, France: Springer, 2011.

[15] M. A. Almeida, J. de Melo Bezerra and C. M. Hirata, “Automatic generation of test cases for critical
systems based on MC/DC criteria,” in Proc. of 2013 IEEEIAIAA 32nd Digital Avionics Systems Conf.,
IEEE, East Syracuse, NY, USA, pp. 7C5-1-7C5-10, 2013.

[16] B. Sébastien, M. Delahaye, R. David, N. Kosmatov, M. Papadakis et al, “Sound and quasi-complete
detection of infeasible test requirements,” in 2015 IEEE 8th Int. Conf. on Software Testing, Verification
and Validation, 1EEE, Graz, Austria, pp. 1-10, 2015.

[17] B. Vogel-Heuser, A. Fay, 1. Schaefer and M. Tichy, “Evolution of software in automated production
systems: Challenges and research directions,” Journal of Systems and Software, vol. 110, pp. 54-84, 2015.

[18] F. Bouquet, E. Jaffuel, B. Legeard, F. Peureux and M. Utting, “Requirements traceability in automated
test generation,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1, 2005.

[19] G. Sabaliauskaite, A. Loconsole, E. Engstrom, M. Unterkalmsteiner, B. Regnell ez al, “Challenges
in aligning requirements engineering and verification in a large-scale industrial context,” in LNCS
Department of Computer Science, Lund University, vol. 6182. Sweden: Springer, pp. 128-142, 2010.

[20] J. Kukkanen, K. Vékevédinen, M. Kauppinen and E. Uusitalo, “Applying a systematic approach to link
requirements and testing: A case study,” in Proc. 16th Asia-Pacific Software Engineering Conf., 1EEE,
Penang, Malaysia, pp. 482-488, 2009.

[21] K. Ellis, Business analysis benchmark: The impact of business requirements on the success of technology
projects. New Castle: IAG Consulting, 2008.

[22] C. Wohlin, P. Runeson, M. Host, M. Ohlsson, B. Regnell er al, “Experimentation in software
engineering: An introduction—kluwer academic publishers,” Doedrecht the Netherlands, 2000.

CMC, 2021, vol.67, no.2 1833

[23] Z. Xiaoyan, H. Ning and Y. Ying, “OWL-S based test case generation,” Journal-Beijing University of
Aeronautics and Astronautics, vol. 34, no. 3, pp. 327, 2008.

[24] Y. Yu, N. Huang and Q. Luo, “OWL-S based interaction testing of web service-based system,” in Proc.
3rd Int. Conf. on Next Generation Web Services Practices, IEEE, Seoul, South Korea, pp. 31-34, 2007.

[25] Y. Ying, J. Maozhong and H. Ning, “Testing control flow of composite service,” Journal of Beijing
University of Aeronautics and Astronautics, vol. 35, pp. 117-121, 2009.

