DESIGN AND DEVELOPMENT OF THERMODYNAMICS APPARATUS USING DESIGN FOR MANUFACTURE AND ASSEMBLY (DFMA) METHODOLOGY

WAN ABD. RAHMAN ASSYAHID BIN WAN IBRAHIM

A project report submitted in partial fulfillment of the requirements for the award of the degree of Master of Mechanical Engineering (Advance Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > MAY, 2006

To my beloved wife Suriati Aliza bt. Ab. Samad and my naughty kids; Wan Amirul Arif I love you all.

ACKNOWLEDGEMENTS

I wish to express my sincere appreciation to my thesis supervisor, Tuan Haji Dr. Ariffin Bin Abdul Razak, for encouragement, guidance, critics and friendship. Without his continued support and interest, this thesis would not have been the same as presented here.

Special thanks must go to Ahmad Humaizi Helmi and Ahmad Faizal Bin Salleh for their truly support, co-operation and assistance. Thanks are also goes to friends who had helped me directly or indirectly upon the project completion.

Finally, my very special, sincere and heartfelt gratitude goes to my beloved wife and family for giving me tremendous courage while I was struggling with this project. Their assistance and support was invaluable.

Wan Abd. Rahman Assyahid

May, 2006

ABSTRACT

Thermodynamics is an essential subject in Mechanical Engineering curriculum. The thermodynamics principles have been applied in many applications to fulfill human needs. Mechanical engineers use thermodynamics principles in their study to design a wide variety of energy system such as jet engines and rockets, refrigeration system, air conditioning system, chemical process and power plant. This would explain that thermodynamic was one of the critical areas which need to be well understood. However, the majority of students perceive thermodynamics as a difficult subject. By having the suitable experiment apparatus designed to demonstrate thermodynamics process and system have been learned, such an apparatus would enhance the teaching and learning of thermodynamics. Therefore, an apparatus for this purpose is necessary to be developed. The apparatus should be portable and mobilize which demonstration in both lecture and laboratory session is possible. A Boothroyd-Dewhurst Design for Manufacturing and Assembly (DFMA) Methodology had been applied to optimize the design apparatus. The application of Boothroyd-Dewhurst (DFMA) Methodology will simplify the design through minimizing the part component for ease of assembly and manufacture. In addition, this methodology also provides analysis for selection of manufacturing process and material for developed apparatus. Therefore, the overall development cost could be minimized. The aim of this project is to successful develop an apparatus which could demonstrate the 1st Law of Thermodynamics-closed system based on Boothroyd-Dewhurst DFMA Methodology.

ABSTRAK

Termodinamik merupakan salah satu mata pelajaran asas yang terpenting dalam kurikulum kursus Kejuruteraan Mekanikal. Prinsip-prinsip termodinamik diaplikasikan dalam penciptaan dalam pelbagai peralatan bagi kemudahan kehidupan manusia. Jurutera mekanikal menggunakan prinsip termodinamik untuk mereka bentuk pelbagai jenis peralatan seperti enjin jet dan roket, sistem penyejukan/pendinginan, sistem loji pemprosesan kimia dan sistem loji penjanaan tenaga. Hal ini menjelaskan bahawa bidang termodinamik merupakan satu bidang yang amat kritikal dan amat perlu dikuasai dengan sebaik yang mungkin oleh para pelajar. Akan tetapi sehingga kini, kebanyakan pelajar masih menganggap bidang termodinamik adalah satu bidang yang amat sukar untuk dipelajari. Dengan adanya alat ujikaji yang bersesuaian bagi menerangkan proses termodinamik yang dipelajari, maka sessi pembelajaran akan menjadi lebih menarik dan berupaya memudahkan pemahaman para pelajar. Justeru itu, satu alat ujikaji termodinamik wajar dibangunkan. Alatan ujikaji yang dibangunkan ini adalah bersifat mudah alih yang boleh digunakan untuk demontrasi dalam kuliah dan juga dalam makmal. Bagi mengoptimum reka bentuk alat ujikaji ini, kaedah Reka bentuk untuk Pembuatan dan Pemasangan (DFMA) yang dipelopori oleh Boothroyd-Dewhurst telah digunakan. Kaedah yang diguna pakai ini adalah bertujuan untuk memudah dan meringkaskan reka bentuk alat ujikaji ini dengan meminimumkan jumlah komponen bagi memudahkan kerja pemasangan dan pembuatan. Pemilihan bahan proses pembuatan juga dapat ditentukan melalui kaedah ini. Kesan dari aplikasi kaedah ini adalah kos keseluruhan produk dapat diminimakan. Matlamat akhir projek ini adalah untuk membangunkan satu alat ujikaji makmal yang menggunakan prinsip Hukum Pertama Termodinamik sistem tertutup dengan menggunakan kaedah Reka bentuk untuk Pembuatan dan Pemasangan (DFMA) yang diperkenalkan oleh Boothroyd-Dewhurst.

TABLE OF CONTENTS

CHAPTER		TITLE	PAGE
	ACK	NOWLEDGEMENT	v
	ABS'	TRACT	vi
	ABS'	TRAK	vii
	TAB	LE OF CONTENTS	viii
	LIST	FOF TABLES	xiv
	LIST	COFFIGURES	XV
	LIST	T OF SYMBOLS	xviii
	LIST	COF APPENDICES	XX
1	INTI	RODUCTION	1
	1.1	Introduction to the Problem	1
	1.2	Objective of Project	2
	1.3	Scope of Project	2
	1.4	Project Methodology	3
	1.5	Significant of Findings	5
	1.6	Report Structure	5
	1.7	Summary	7

LITE	ERATURE REVIEW	8
2.1	Introduction	8
2.2	Thermodynamics Systems and Boundary	9
2.3	The 1st Law of Thermodynamics	11
2.4	Energy Balance	11
2.5	Energy Change in System	12
2.6	Mechanism of Energy Transfer, E_{in} and E_{out}	14
	2.6.1 Heat Transfer	14
	2.6.2 Work	14
	2.6.3 Mass Flow	15
2.7	1st Law of Thermodynamics in	15
	Piston Cylinder Analysis	
2.8	Product Development Process	22
2.9	Identifying Customer Needs	24
2.10	Product Design Specifications (PDS)	25
2.11	Engineering Design Process	26
2.12	Concept Generation	27
2.13	Concept Selection	29
	2.13.1 Concept Screening	30
	2.13.2 Concept Scoring	32
2.14	Design for Manufacture and Assembly (DFMA)	35
2.15	Overview of Design For Manufacture (DFM)	36
2.16	DFM Methodology	37
2.17	Boothroyd-Dewhurst DFM Methodology	38
	2.17.1 General Shape Attribute	40
	2.17.2 Process Capabilities	41
2.18	DFM Guidelines	42
	2.18.1 Design for Ease of Fabrication	42
	2.18.2 Design within Process Capabilities	42
	2.18.3 Simplify the Design and	
	Reduce Parts Number	43
	2.18.4 Standardize and use common	
	parts and materials	43
2.19	Overview of Design For Assembly (DFA)	43

2.20	DFA I	Methodol	ogies	44
	2.20.1	The Bo	othroyd-Dewhurst DFA Method	44
		2.20.1.1	Theory of Evaluation	45
		2.20.1.2	Evaluation Procedure	45
	2.20.2	The Hit	achi Assemblablility	
		Evaluat	ion Method	49
		2.20.2.1	Theory of Evaluation	49
		2.20.2.2	2 Evaluation Procedure	50
	2.20.3	The Luc	cas DFA Method	51
		2.20.3.1	Theory of Evaluation	51
		2.20.3.2	2 Evaluation Procedure	51
2.21	DFA (Guideline	8	53
	2.21.1	Reduce	Part Count and Part Types	55
	2.21.2	Elimina	te Adjustments	56
	2.21.3	Self Lo	cating and Aligning	56
	2.21.4	Conside	er Handling Part from Bulk	57
	2.21.5	Conside	er Ease for Handling	58
	2.21.6	Elimina	te Threaded Fasteners	59
	2.21.7	Minimi	ze Variations, Use Standard Part	59
	2.21.8	Easy Se	rviceability and Maintainability	59
	2.21.9	Minimi	ze Assembly Directions	60
	2.21.1	0 Provide	e Easy Insertion and Alignment	60
2.22	Summ	ary		61
CON	CEPTU	AL DES	IGN DEVELOPMENT	62
3.1	Introd	uction		62
3.2	User F	Requirem	ents	63
3.3	Prepar	e Produc	t Design Specification	64
3.4	Conce	pt Gener	ation	65
	3.4.1	Concep	t No. 1	65
		3.4.1.1	Concept Description	66
		3.4.1.2	The Advantage and Disadvantage	67
	3.4.2	Concep	t No. 2	68
		3.4.2.1	Concept Description	68

		3.4.2.2	The Advantage and Disadvantage	69
	3.4.3	Concept	t No. 3	70
		3.4.3.1	Concept Description	70
		3.4.3.2	The Advantage and Disadvantage	71
	3.4.4	Concept	t No. 4	72
		3.4.4.1	Concept Description	72
		3.4.4.2	The Advantage and Disadvantage	73
3.5	Select	ion Criter	ia	74
	3.5.1	Ease of	Handling	74
	3.5.2	Low Co	st	75
	3.5.3	Safety		75
	3.5.4	Ease of	Manufacture	75
	3.5.5	Lightwe	eight	76
	3.5.6	Portabil	ity	76
	3.5.7	Ease of	Maintenance	76
3.6	Conce	pt Screen	ing	77
3.7	Conce	pt Scorin	g	78
3.8	Final (Concept S	Selection	80
3.9	Summ	ary		81
DES	IGN FO	R MANU	JFACTURE AND	
ASSI	EMBLY	(DFMA)) ANALYSIS	82
4.1	Introd	uction		82
4.2	Produ	ct Structu	re and Part Quantity	83
	4.2.1	Assemb	ly Drawing	84
	4.2.2	Explode	ed Drawing	85
	4.2.3	Bill Of I	Material (BOM)	86
	4.2.4	Part Fur	action and Critics	87
4.3	Booth	royd-Dev	vhurst DFM Analysis	90
4.4	Booth	royd-Dev	vhurst DFA Analysis	93
4.5	Appar	atus Anir	nation	96
4.6	Summ	ary		97

FAB	RICATION AND ASSEMBLY	98
5.1	Introduction	98
5.2	Development –Phase 1	99
	5.2.1 Cylinder Liner	99
	5.2.2 Piston	101
	5.2.3 Cylinder Liner Cover	103
5.3	Development – Phase 2	103
	5.3.1 Base Support	104
	5.3.2 Cylinder Liner Support	105
5.4	Development – Phase 3	106
	5.4.1 Cylinder Assembly	106
	5.4.2 Thermometer Installation	108
	5.4.3 Piston Indicator Assembly	109
	5.4.4 Piston Installation	110
5.5	Complete Assembly	112
5.6	Summary	113
TEST	FING AND OPERATION WORK PROCEDURE	114
6.1	Introduction	114
6.2	Apparatus Preparation	115
6.3	Safety Instruction	117

6.4	Work Procedure	118
6.5	Data Collection	126
6.6	1 st Law of Thermodynamics Analysis	128
	6.6.1 Work Analysis, W	130
	6.6.2 Total Internal Energy Analysis, ΔU	131
	6.6.3 Net Heat Enter to System, Q	134
6.7	Summary	135
DISC	CUSSION	136
7.1	Introduction	136

7.2	Product Development Approach	137
7.3	Design For Manufacture and Assembly Methodology	137
7.4	Fabrication and Assembly	141

	7.5	Apparatus Testing and Functionality	142
	7.6	Summary	142
8	CON	ICLUSIONS	143
	8.1	Conclusion	143
	8.2	Recommendation And Future Work	144
	REI	FERENCES	145
	API	PENDICES A1 - E	146 - 156

LIST OF TABLES

TABI	LE NO. TITLE	PAGE
2.1	Example of customer needs for the suspension fork	24
2.2	Example of concept screening matrix	30
2.3	Example of concept scoring matrix table	32
2.4	Concept rating	33
2.5	Shape Generation Capabilities of Processes	41
2.6	Boothroyd-Dewhurst DFA Evaluation table	46
2.7	Evaluation table of old piston assembly	47
2.8	Evaluation table of new design piston assembly	48
3.1	Product Specification	64
3.2	Screening matrix	77
3.3	Relative performance rating	78
3.4	Concept scoring matrix	79
4.1	Bill of Material of developed apparatus	86
4.2	Part functions	87
4.3	Shape attributes and material requirement data for cylinder	91
4.4	Process elimination for cylinder	92
4.5	Alpha (α) and beta (β) angle for each part	94
4.6	Computation Design Efficiency of the apparatus	95
6.1	Work Procedure for operating the apparatus	119
6.2	Table for data record	127
6.3	Testing data	128

LIST OF FIGURES

FIGURE	NO. TITLE	PAGE
1.1	Project flowchart	3
2.1	Close system	10
2.2	Open system	10
2.3	Piston cylinder apparatus	15
2.4	Lifting the piston by steam pressure	16
2.5	Concept development phase	22
2.6	Five steps of concept generation	28
2.7	Generation of new concepts of potato peeler	29
2.8	Design flow in DFM	37
2.9	Compatibility matrix between processes and materials	39
2.10	Old design of piston assembly	47
2.11	New design of piston assembly	48
2.12	Example of AEM symbols and penalty scores	50
2.13	Application of DFA guidelines	54
2.14	Part reduction using DFA guidelines	55
2.15	Self locating and aligning parts	56
3.1	Design Concept No. 1	65
3.2	Design concept No. 2	68
3.3	Design concept No. 3	70
3.4	Design concept No. 4	72
3.5	Final design concept	80
4.1	Product structure	83
4.2	Assembly drawing of final design concept	84
4.3	Exploded drawing of final design concept	85

LIST OF FIGURES – CONTINUED

4.4	Step 1, piston at rest position	96
4.5	Step 2. piston start lift-up	96
4.6	Step 3, piston still lifting	96
4.7	Step 4, piston reach to final position	96
5.1	Cylinder Liner	99
5.2	Flow Chart of Cylinder Liner Fabrication Process	100
5.3	The Piston	101
5.4	Piston after modification	102
5.5	Aluminum sheet	103
5.6	Base support	104
5.7	Two inches angle iron	104
5.8	Cylinder liner support	105
5.9	Cylinder liner before assembly	106
5.10	Cylinder liner after assembly	106
5.11	Cylinder liner after wrapping with woven	107
5.12	Cylinder liner after assembled with aluminum cover	108
5.13	Thermometer installation	108
5.14	The assembly of indicator on piston	109
5.15	Ring Expander	110
5.16	Piston and ring	110
5.17	Special tool to insert piston to cylinder liner	111
5.18	Method to insert piston into cylinder	111
5.19	Complete Assembly of Apparatus	112
6.1	Lubrication oil is applied on the cylinder liner inner wall.	115
6.2	Complete apparatus arrangement	116
6.3	Hot surface sign on cylinder liner	117
6.4	Hot surface sign on base support	118
6.5	Complete Apparatus	119
6.6	Checking all fittings	119
6.7	Applying lubrication oil	119

LIST OF FIGURES – CONTINUED

6.8	Close bottom valve	120
6.9	Water is filled to cylinder	120
6.10	Initial temperature	120
6.11	Initial pressure	121
6.12	Initial piston position	121
6.13	Butane gas weight measurement	121
6.14	Installation of Butane gas container to gas stove burner	122
6.15	Placing gas stove burner	122
6.16	Flame directed to bottom of cylinder liner	122
6.17	Observation of temperature increasing	123
6.18	Temperature at 90° C	123
6.19	Ready to shut down gas burner	123
6.20	Piston slowly lifts up	124
6.21	Shut down gas burner	124
6.22	Piston lift to new position	124
6.23	Final water temperature	125
6.24	Piston final position	125
6.25	Final Pressure	125
6.26	Measurement final butane gas weight	126
6.27	Illustration of experimental process	129
7.1	Percentage of theoretical minimum parts	138
7.2	Comparison between parts that need special tool to total part	139
7.3	Percentage of assembly time	139

LIST OF SYMBOLS

E_1	=	Initial energy
E_2	=	Final energy
Ein	=	Total energy entering the system
Eout	=	Total energy leaving from system
ΔE_{system}	=	Change in the total energy in the system
E_{final}	=	Energy at final state
Einitial	=	Energy at initial state
ΔU	=	Change in internal energy
ΔΡΕ	=	Change in potential energy
ΔΚΕ	=	Change in kinetic energy
m	=	Mass of system, kg
u ₂	=	Specific internal energy at final state
u ₁	=	Specific internal energy at initial state
V_2	=	Final velocity, m/s
\mathbf{V}_1	=	Initial velocity, m/s
g	=	Gravity acceleration, m/s ²
Z ₂	=	Final height, m
z_1	=	Initial height, m
Q	=	Heat supplied to system, Joule
W	=	Work done by system, Joule
\mathbf{X}_1	=	Initial position, m
X_2	=	Final Position, m
Р	=	Pressure, Pa
V	=	Volume, m ³
А	=	Area, m ²
F	=	Force, kg / ms ^{-2} or Nm

LIST OF SYMBOLS (CONTINUED)

\mathcal{V}_{f}	=	Specific volume: Saturated liquid, m ³ /kg
Vg	=	Specific volume: Saturated vapour, m ³ /kg
Vfg	=	Specific volume: Evaporation, m ³ /kg
u_f	=	Internal energy : Saturated liquid, kJ/kg
<i>u</i> _g	=	Internal energy : Saturated vapour, kJ/kg
u_{fg}	=	Internal energy : Evaporation, kJ/kg)
<i>V</i> ₁	=	Specific volume at initial state, m ³ /kg
<i>v</i> ₂	=	Specific volume at final state, m ³ /kg
Х	=	Quality
C_v	=	Specific heat of Ideal gas, kJ/kg
T_1	=	Temperature at initial state, °C
T_2	=	Temperature at final state., °C

LIST OF APPENDICES

|--|

TITLE

PAGE

A1	Gantt Chart for Semester 1	146
A2	Gantt Chart for semester 2	146
B 1	Te Standard Thermodynamics Properties	147
	Table for water	
B2	Example of Product Design Specification	148
B3	General Capabilities of a range of commonly	150
	used manufacturing processes.	
С	Data for estimated times for manual handling	154
	(Boothroyd-Dewhurst)	
D	Data for estimated times for manual insertion	155
	(Boothroyd-Dewhurst)	
E	Lucas DFA method - Manual Handling and	156
	Manual Fitting Analysis	

CHAPTER 1

INTRODUCTION

1.1 Introduction to the Problem

Thermodynamic is an essential subject in Mechanical Engineering curriculum. The thermodynamics principles have been applied in many applications to fulfill human needs. Mechanical engineers use thermodynamics principles in their study to design a wide variety of energy system such as jet engines and rockets, refrigeration system, air conditioning system, chemical process and power plant. These would explain that thermodynamic was one of the critical areas which need to be well understood. However, the majority of students perceive thermodynamics as a difficult subject. Failure to understand the fundamental of thermodynamics will result negative thinking toward the subject. A proposal to integrate between thermodynamics theories and applications during learning process is one of the solutions to avoid negative paradigms among the students. Therefore, an experimental apparatus that applied thermodynamics theory is needed to be developed. This project is carried out to design and develop an experimental apparatus that can demonstrate thermodynamics theory. The aim of developing this experimental apparatus is to integrate between theories learned in lecture room to the real applications. The experimental apparatus had been developed is mainly focused to demonstrate the 1st Law of Thermodynamics-closed system. Design for Manufacturing and Assembly (DFMA) Methodology has been used during design and development stages. The application of DFMA methodology during design and

development is to ensure the developed experimental apparatus is ease to manufacture as well as ease to assemble in cost-efficient and at same time to achieve higher product performance characteristics. As the end result, an experimental apparatus is successful fabricated and ready to use in Thermodynamics laboratory.

1.2 Objective of Project

The objective of the project is to design and develop a portable experimental apparatus based on the 1st Law Thermodynamics using Boothroyd-Dewhurst DFMA Methodology.

1.3 Scope of Project

The scopes of the project are

- 1. Understanding the DFMA Methodologies for manual assembly.
- 2. Application of Boothroyd-Dewhurst DFMA during product assembly analysis and manufacturing process selection.
- 3. The use of 1st Law Thermodynamics close system in the experimental apparatus.
- 4. The use of water or gas as working fluid in experimental apparatus.
- 5. The animation of the proposed design using animation software.

1.4 Project Methodology

The project is conducted in two consecutive semesters which are summarized in figure 1.1.

Figure 1.1: Project Flow Chart

The project is accomplished in two semesters. The milestones of project activities are shown in Gantt chart in Appendix A1 for semester 1 and Appendix A2 for semester 2.

In the first semester, the project starts by carrying out a literature review on product development process, continued with Design for Manufacture and Assembly (DFMA) and end up with 1st Law of Thermodynamics theory. The DFMA Methodologies that being discussed are the Boothroyd-Dewhurst DFMA, the Lucas-Hall Evaluation Method, and the Hitachi Assemblability evaluation Method (AEM). The development process continues by preparing Product Design Specification (PDS). The PDS was a product specification that being generated based on user requirements. The next task is to generate several design concepts, then to select the final design concept using concept screening and concept scoring method. Preparation assembly and exploded drawing is also done for DFA analysis. The Boothroyd-Dewhurst DFMA analysis is used to obtain design efficiency also to determine the product material and manufacturing process.

In second semester, the project continues with material preparation and fabrication. The experimental apparatus then will be tested. The evaluation and improvement is carried-out during product testing. Finally, the product performance is discussed and recommendations for future improvement are proposed.

1.5 Significant of Findings

The aim of DFMA methodology is to simplify the design. In other word, DFMA target is to minimize components in experimental apparatus. Minimizing the components means fewer components per unit product. Fewer components will lead to reduce the overall production cost. Therefore, the experimental apparatus is expected to be ease of fabrication and assembly. In other perspective, the experimental apparatus will help students to understand the thermodynamics theory. As the final result, student's performance will increase and students may not more perceive thermodynamics as a difficult subject but they will find that thermodynamics is one of the interesting subjects.

1.6 Report Structure

The report consists of eight chapters. Chapter 1 is about introduction to the project. An overall picture of the project can understand within this chapter. The objectives and scopes are explained, while the significant of the project is described at the end of chapter.

Chapter 2, deals with a literature review on 1st Law of Thermodynamics, Product Development Process and DFMA Methodology. In 1st Law of Thermodynamics review, the analysis of piston cylinder within close system is clearly overview. Related equations and data are also been provide. Then, a Product Development Process is explain touching steps for systematic of product development is process such as identifying user needs, then generating the concept design is clearly overviewed. The review ends with the concept selection procedure. In DFMA review, three methodologies is described such as Boothroyd-Dewhurst DFMA, Lucas DFA and Hitachi AEM. However, the Boothroyd-Dewhurst DFMA Methodology is explained in details. The chapter concludes with a DFA guidelines during product development process. Chapter 3 focuses on the development process of the experimental apparatus. This chapter starts with the user requirements, followed by preparation of Product Design Specifications. Concept generation, selection and evaluation are done in this chapter. At the end of the chapter a final design concept is proposed for further development.

Chapter 4 focuses on DFMA analysis of proposed design concept. Starting with preparing the assembly drawing and explode drawing, the DFMA analysis is done using Boothroyd-Dewhurst Methodology. This chapter ends with DFM analysis of main part of the experimental apparatus.

Material preparation and fabrication process of the experiment apparatus is included in Chapter 5. The fabrication processes are showed in sequence using series of photograph. This chapter ends with complete apparatus that ready to the tested.

Chapter 6 deals with development of operating procedure of the apparatus and apparatus testing. The procedure is prepared step-by-step and there are photographs included at every steps performed. To avoid any accident, a safety instruction is given and potential hazards are identified with safety countermeasure. The chapter ends with an analysis of 1st Laws of Thermodynamics using data during testing.

A discussion of overall project is done in Chapter 7. Included in the discussion are product development processes, DFMA application as well as the 1st Laws of Thermodynamics applied in this project. Overall results from the project are also been discussed to evaluate the performance of developed apparatus.

The final chapter gives an overall conclusion about undertaken project. The project achievement is summarized and concluded by referring to the end results gained during completing the project. This chapter ends with recommendation for future work that could be done for further improvement of the apparatus.

1.7 Summary

The project to design and development a portable experimental apparatus that demonstrate the First law of Thermodynamics is carried out in two consecutive semesters. The aim of the apparatus is to integrate between thermodynamics theory and application. Boothroyd-Dewhurst DFMA Methodology had been applied in design stage in order to minimize product components as well as to simplify the design for ease of assembly and manufacture. To systematic organize design and development tasks; a project objective, scopes and methodology are prepared to ensure the project started in the right direction until the end.