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ABSTRACT 

 

 

 

 

 Hard turning is a more economical technology that is developed to substitute 

grinding in the finishing operations of hardened material (HRC 45 and above).  

However, the potential of this technology is limited due to the high cost of ceramics 

and cubic boron nitride (CBN) cutting inserts.  In order for hard turning to be truly 

viable, the performance of more economical cutting tools must be justified.  This 

research project was undertaken to investigate the performance of KC 5010 physical 

vapor deposition (PVD) titanium aluminium nitride (TiAlN) conventional and wiper 

geometry inserts during finish hard turning of Stavax Electro-Slag-Refining (ESR) 

stainless tool steel (HRC 47 - 48).  Tool performance, tool failure modes and wear 

mechanisms were investigated under various cutting conditions.  Machinability 

parameters namely tool life and surface roughness were evaluated.  Response surface 

methodology (RSM) was used to model the relationship between the response of 

interest (tool life and surface roughness) and several variables (cutting speed and 

feed rate) for the conventional insert.  It was found that flank wear near the nose in 

the minor flank region of the insert was the main wear form found on KC 5010 

inserts as crater wear was not severe.  The wear mechanisms responsible were 

mainly abrasion and adhesion.  At high cutting speed (170 m/min), there was a 

strong tendency for the tools to fail catastrophically.  Wiper geometry inserts were 

capable of producing better surface finish compared to conventional geometry inserts 

but with a shorter tool life for similar cutting conditions.  The tool life and surface 

roughness models developed for conventional inserts were found to be statistically 

valid and adequate to predict the machining responses under certain cutting 

conditions.  Only minimal discrepancy was found between the predicted and actual 

values.  Based on this analysis, hard turning with coated carbide conventional and 

wiper geometry inserts is indeed promising.  
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ABSTRAK 

 

 

 

 

 Larik keras merupakan satu teknologi ekonomik yang dibangunkan sebagai 

alternatif kepada proses pencanaian untuk pemesinan kemasan keluli keras (HRC 45 

ke atas).  Walau bagaimanapun, potensi teknologi ini agak terbatas disebabkan oleh 

kos mata alat seramik dan boron nitrida kiub yang tinggi.  Bagi memastikan 

teknologi larik keras benar-benar sesuai, kesesuaian penggunaan mata alat yang lebih 

ekonomik perlu disiasat.  Kajian kerja ini bertujuan untuk menguji prestasi dan 

kelakuan mata alat konvensional dan “wiper” KC 5010 karbida yang disaluti 

titanium aluminium nitrida melalui proses deposit wap fizikal semasa larik keras 

kemasan keluli tahan karat “Stavax Electro-Slag-Refining” (HRC 47 - 48).  Prestasi 

mata alat, mode tamat hayat dan mekanisme kehausan mata alat dikaji pada pelbagai 

parameter pemotongan.  Parameter kebolehmesinan iaitu jangka hayat mata alat dan 

kualiti permukaan larik benda kerja melalui ukuran kemasan permukaan turut 

diperiksa.  “Response surface methodology” digunakan untuk mendapatkan 

hubungan statistik di antara hasil keputusan pemotongan (jangka hayat dan kualiti 

permukaan) dan beberapa pembolehubah (halaju pemotongan dan kadar uluran) 

untuk mata alat konvensional.  Hasil kajian menunjukkan kehausan rusuk di 

bahagian puncak penyayat samping merupakan bentuk kehausan utama pada mata 

alat KC 5010 di mana “crater wear” tidak teruk.  Mekanisme yang mengakibatkan 

kehausan mata alat ialah “abrasion” dan “adhesion”.  Pada kelajuan pemotongan 

tinggi (170 m/min), didapati “catastrophic failure” mudah berlaku.  Mata alat 

“wiper” berupaya menghasilkan kualiti permukaan yang lebih baik berbanding mata 

alat konvensional tetapi jangka hayat mata alat adalah lebih pendek untuk parameter 

pemesinan yang sama.  Model jangka hayat dan kualiti permukaan bagi mata alat 

konvensional didapati sah dari segi statistik dan ramalan sahih dapat diperolehi.  

Berdasarkan kajian ini, disimpulkan bahawa larik keras menggunakan mata alat 

karbida bersalut konvensional dan “wiper” adalah berpotensi. 
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

Machining which includes turning is one of the most versatile processes in 

the manufacturing industry for processing, shaping or cutting various types of 

workpiece materials.  The trend in the industry today is towards near net shape 

manufacturing.  In turning of hardened material, this is known as finish hard turning 

or simply as hard turning.  Previously, near net shape manufacturing of hardened 

material by turning is not possible and often secondary processes such as grinding or 

lapping are required.  Parts are cut to a size close to the final dimension and shape 

before being heat treated and finish ground to the final dimension.  However, with 

the advances in cutting tool materials, hard turning is able to be conducted with 

either cubic boron nitride (CBN) or ceramic tools which are of higher cost.  The 

advances in tool coating technology allow for the investigation of the use of lower 

cost coated carbide tools which will results in significant economic savings. 

 

 

 

 

1.1 Background  

 

 

 The investment in metal machining increases yearly despite the development 

of thermoplastics and near net processes or modern machining processes such as 
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ultrasonic machining, chemical machining and electrical discharge machining 

(Childs et al., 2000).  This phenomenon is mainly due to the capability of machining 

to achieve high precision and complicated free-form shapes at a reasonable cost 

which is unrivalled by other processes.  At the same instance, metal machining has 

undergone advances in machine tools and tool materials to keep pace with the current 

requirements such as better surface finish and higher hardness materials. 

 

 A good surface finish can lead to longer service life and improved efficiency 

of the engineering component.  Previously, this can only be done by secondary 

processes such as grinding.  However, the idea today is to eliminate this step by 

replacing it with finish hard turning which is capable of producing a similar surface 

roughness.  Finish hard turning is a process in which hardened steels with hardness 

Rockwell C (HRC) 45 and above are finish turned.  Such hardened steel especially 

stainless tool steel has wide applications in the mold and die industry.  This is mainly 

due to the properties of the material that has good corrosion resistance, polishability, 

wear resistance, machinability, stability in hardening and high surface finish.  The 

roughness average, Ra value to be achieved in finish turning is 1.6 µm and below.  

This value is consistent with the requirement found on many engineering drawings.  

Gillibrand et al. (1996) performed the turning of medium carbon steel with this 

criterion in mind and found that titanium nitride (TiN) coated carbide tools gave an 

improvement in tool life of between 250 and 300 percent, during finish turning, 

compared to uncoated carbide tools.  

 

 Titanium carbide (TiC) coated tool is one of the very first coated carbide 

tools introduced by Sandvik.  Ekemar (1982) showed that TiC coated tool performs 

better than cemented carbide in terms of tool life and cutting forces when machining 

steel and cast iron.  Sandvik then came up with the alumina titanium carbide coated 

cemented carbide a few years later.  The tool consists of 6 µm of TiC and 1 µm of 

aluminium oxide (Al2O3).  When machining steel, Ekemar (1982) has successfully 

used the insert at low as well as high cutting speeds.  Colding (1982) demonstrated 

that the wear rate, cutting forces and cutting edge temperature are considerably lower 

in these coated tools compared to uncoated carbide.  Kalish (1982) also obtain the 

same conclusions when the TiC coated inserts are compared to cemented titanium 

carbide during machining of AISI 1045 steel.  
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 Hale and Graham (1982) investigated the crater and flank wear of Al2O3, TiC 

and TiN coated carbide tools when turning AISI 4340 steel (HRC 29).  It was found 

that the crater wear increases significantly after the coating is penetrated due to 

increasing contact between the chip and the substrate material.  The crater wear 

resistance is directly proportional to the thickness of the coating.  The influence of 

coating thickness indicates that flank wear first increases with increasing coating 

thickness and then levels off at thickness greater than about 4 to 6 µm.  Gates Jr. and 

Peters (1982) investigated the use of chemical vapor deposition (CVD) coatings 

when turning AISI 4140 steel of hardness values between HRC 30 and 32.  It was 

found that multilayer coatings of Al2O3, TiC and TiN performed well with respect to 

flank and crater wear.  

 

 Lim et al. (1999) investigated the wear mechanisms of TiC coated carbide 

during dry turning of hot-rolled carbon steel.  It was found that the mechanisms 

responsible for the wear of TiC coating on cemented carbide tools are discrete plastic 

deformation, cracking, attrition and abrasion.  Perry et al. (1999) successfully tested 

physical vapor deposition (PVD) TiN coated carbides which have been subjected to 

pulsed intense electron beam treatments on 4130 steels with hardness value of HRC 

15.  It is shown that the flank wear is halved due to the treatment at low energy level.  

Prengel et al. (1997) demonstrated the superiority of high-ionization sputtered 

titanium aluminium nitride (TiAlN) coating during turning, milling and drilling of 

several workpiece materials.  Jindal et al. (1999) evaluated ion-plated PVD TiN, 

titanium carbon nitride (TiCN) and high-ionization sputtered PVD TiAlN coated 

carbides in turning Inconel 718 (HRC 35.5), medium carbon SAE 1045 steel (HRC 

17) and ductile iron (HRC 22.5) at low and high cutting speeds.  It was found that 

TiAlN coated tools showed the best metal cutting performance followed by TiCN 

and TiN coated tools.  

 

 Che Haron et al. (2001) investigated the wear behavior of multilayer TiCN, 

Al2O3 and TiN coated carbide when turning tool steel with a hardness value of HRC 

23.  It was found that wear progression of carbide tools are generally in three stages: 

at the initial stage, followed by the gradual stage and finally the abrupt stage of wear.  

Noordin et al. (2001) evaluated the suitability of various coated carbide tools when 

finish turning AISI 1010 steel through cutting forces, microstructure and surface 
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finish parameters.  Noordin et al. (2004) in their study on the performance of coated 

carbide when turning AISI 1045 steel utilized response surface methodology (RSM).  

It was found that feed rate is the most significant factor in influencing the cutting 

force and surface roughness.  

 

 Many researchers investigated the advantages of using coated carbide as 

compared to uncoated carbide.  Agrawal et al. (1995) also studied this aspect with 

stainless steel and found an increased in cutting forces when TiN coated carbide was 

used.  However, Venkatesh (1984) demonstrated that TiN coated tools outperformed 

uncoated carbide during turning of mild steel.  Kudapa et al. (1999) successfully 

used medium temperature chemical vapor deposition (MT-CVD) coated tools to 

machine AISI 4340 steel with a maximum hardness of HRC 32.  This success is 

attributed to the increased edge toughness, smoothness and the absence of thermal 

cracks in the coatings.  Pfouts (2000) identified that PVD coatings offer advantages 

over CVD in certain operations and workpiece materials such as titanium, nickel-

base alloys and non-ferrous materials.  

 

From the literature reviewed, coated carbide tools are commonly used for 

either conventional rough or finish turning of steels with hardness values of HRC 32 

and below.  The workpiece hardness value can be slightly higher with a chromium-

based coating that serves as a thermal barrier (Scheerer et al., 2005).  Varadarajan et 

al. (2002) used multicoated hard metal carbide inserts for turning AISI 4340 steel 

with a hardness value of HRC 46.  However, the experiments were conducted in hard 

turning with minimal fluid (HTMF) condition.  The results showed a reduction in 

cutting forces and surface roughness and an increase in tool life.  It is also noted that 

Kang et al. (2003) was able to use PVD TiAlN coated tool for die steel with a 

hardness of HRC 62 during high speed milling.  Sharif et al. (2000) demonstrated 

that TiAlN coating outperformed uncoated tools during drilling of titanium alloy.  In 

short, coating technology gives various combinations of materials and possibilities.  

It is clear that the major weakness of a cemented carbide tool is related to its lower 

toughness.  Deshpande et al. (1996) tried to bridge this gap with high speed steel by 

experimenting with an iron-based binder for carbide.  Preliminary testing had shown 

positive results when turning steel with hardness of HRC 20.  It resulted in higher 
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cutting speeds, longer tool life and better chipping resistance.  The potential of using 

coated carbide tool for higher hardness workpiece is there but is yet to be explored.  

 

Presently, ceramic and cubic boron nitride (CBN) cutting tools are widely 

used for finish turning of hardened workpiece material.  Konneh (1997) successfully 

used alumina TiC based ceramic tool for finish turning of various tool steels.  At 

higher hardness stainless tool steels of between HRC 45 and 50, Balakrishnan (2003) 

demonstrated the success in using whisker reinforced ceramic inserts which is 

normally applicable to nickel based alloys.  The tool life constant was obtained as 

0.7478 and reduced with increasing cutting speeds.  Zhao et al. (1999) successfully 

tested silicon nitride (Si3N4) ceramic cutting tool material against stainless steel using 

pin-on-disk method.  Venkatesh et al. (2000) found that a higher negative side 

cutting edge angle gave better surface finish and lower cutting forces when using 

alumina TiC based ceramic on tool steels.  Kevin Chou and Song (2004) found that 

large nose radius gave finer surface finish with ceramic inserts when turning HRC 61 

AISI 52100 steel.  

 

Cubic boron nitride (CBN) inserts are commonly used to turn hardened steels 

of very high hardness values.  Experiments conducted with high speed steel as 

workpiece showed that at this particular range of hardness, CBN inserts are superior 

compared to carbide as carbide inserts worn out rapidly.  CBN is used to replace 

grinding to produce crankshaft in the automotive industry (Colding, 1982).  

Poulachon et al. (2001) identified a limiting value of hardness at HRC 50 with 

polycrystalline cubic boron nitride (PCBN) inserts where above this limit cutting 

temperature decreases but cutting forces increases.  Kevin Chou (2003) obtained 

satisfactory results in terms of cutting forces and wear with CBN-low inserts during 

intermittent cutting of steel bars (HRC 62 to 64).  Most researchers noted the 

formation of a white layer when machining hardened steel.  According to Ramesh et 

al. (2005), this hard and brittle layer associated with tensile surface residual stresses 

is found to be detrimental to fatigue life.  

 

It is interesting to note that the investigation of finish hard turning is limited 

to ceramic and CBN cutting tools although claims are made by various cutting tool 

manufacturers that certain coated carbide tools are suitable.  In addition, there is also 
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very limited research work done for wiper inserts for turning operation that is 

claimed to be able to produce the same surface finish at twice the normal feed rate.  

Only de Souza Jr. et al. (2005) investigated the use of PCBN wiper inserts during 

face milling of cast iron.  This project is designed in such a way to investigate these 

claims.  If they are proven to be true, this will be a breakthrough for carbide tools in 

hard turning. 

 

The response surface methodology (RSM) approach that is proven to be 

successful in developing machinability models will also be undertaken to avoid one-

factor-at-a-time study (Tan, 2003).  Currently, most RSM works are done by 

Alauddin et al. (1996a) and are concentrated on the drilling and milling process.  

Alauddin et al. (1996b, 1997a and 1997b) made a lot of studies on the tool life, 

surface finish and cutting forces of the end milling process using RSM.  Onwubolu 

and Kumar (2005) investigated the drilling forces using RSM approach.  It is noted 

that with the exception of a few investigators, RSM is not widely used for modeling 

the performance of cutting tools especially for turning.  However, response surface 

methodology is known to be useful for the modeling and analysis of problems in 

which a response of interest is influenced by several variables and the objective is to 

optimize this response (Montgomery, 1991).  

 

 

 

 

1.2 Problem Statement 

 

 

 Ceramic and cubic boron nitride (CBN) cutting tools or inserts are mainly 

used for hard turning of steels.  These inserts performed relatively well but the 

associated cost is significantly higher.  Coated carbide tools which are relatively 

lower in cost are seen as a possible replacement especially with the introduction of 

new coatings such as physical vapor deposition (PVD) titanium aluminium nitride 

(TiAlN).  Furthermore, wiper inserts are also claimed to be able to produce the same 

surface quality at higher feed rate and better surface finish at a feed rate of the 

conventional insert.   
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Currently, there are no or little studies done to support these claims, 

particularly for the application of coated carbide in hard turning.  This led to a strong 

and widespread resistance to the use of coated carbide during finish hard turning 

which is a waste of opportunity to reduce operation cost.  

 

 

 

 

1.3 Objectives 

 

 

 The ultimate aim of this work is to evaluate the performance and behavior of 

physical vapor deposition (PVD) titanium aluminium nitride (TiAlN) cutting tool 

(KC 5010) during the finish hard turning of Stavax ESR stainless tool steel (HRC 47 

to 48).  The specific objectives of this project are: 

 

1. To apply response surface methodology (RSM) in developing empirical 

machinability models which include tool life model and surface roughness model. 

2. To investigate the performance of the insert at various cutting speeds and feed 

rates during hard turning. 

3. To compare the performance of conventional and wiper inserts at various cutting 

speeds with the feed rate fixed at a certain value. 

 

 

 

 

1.4 Scope 

 

 

 The scope of this project covers the following: 

 

1. The study concentrates on the use of conventional PVD TiAlN coated carbide for 

hard turning.  Wiper PVD TiAlN coated carbide inserts will only be used for 

comparison purposes. 
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2. The use of Stavax ESR stainless tool steel of hardness value between HRC 47 and 

48 as the workpiece material. 

3. The evaluation of the performance of the cutting inserts is limited to the tool life, 

tool failure modes, tool wear mechanisms and surface finish of the workpiece. 

4. The use of Response Surface Methodology (RSM) to develop empirical 

machinability models. 

 

 

 

 

1.5 Significance of the Study 

 

 

 It is expected that the results from this study would provide better 

understanding of the characteristics, performance and application of the conventional 

and wiper geometries of KC 5010 coated carbide inserts in the manufacturing 

industries particularly those involved in the machining of hardened materials and in 

the mold and die industries.  Predictable tool performance will improve the 

productivity and minimizes tool cost.  It is also hoped that grinding operations can be 

substituted by coated carbide turning at a significantly lower cost by reducing power 

consumption and cycle time.  Furthermore, it is hoped that coated carbide inserts are 

capable of replacing ceramic inserts which are two to four times higher in cost.  Last 

but not least, it is expected that this study will be useful towards achieving effective 

and economical machining processes.  

 

 

 

 




