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ABSTRACT 

 

 

 

The aim of this research project is to develop an autopilot system that enables 

the helicopter model to carry out autonomous hover maneuver using on-board 

intelligence computer. The main goal of this project is to provide a comprehensive 

design methodology, implementation and testing of an autopilot system developed 

for a rotorcraft-based unmanned aerial vehicles (UAV). The autopilot system was 

designed to demonstrate autonomous maneuvers such as take-off and hovering flight 

capabilities. For the controller design, the nonlinear dynamic model of the Remote 

Control (RC) helicopter was built by employing Lumped Parameter approach 

comprising of four different subsystems such as actuator dynamics, rotary wing 

dynamics, force and moment generation process and rigid body dynamics. The 

nonlinear helicopter mathematical model was then linearized using small 

perturbation theory for stability analysis and linear feedback control system design. 

The linear state feedback for the stabilization of the helicopter was derived using 

Pole Placement method. The overall system consists of the helicopter with an on-

board computer and a second computer serving as a ground station. While flight 

control is done on-board, mission planning and human user interaction take place on 

ground. Sensors used for autonomous operation include acceleration, magnetic field, 

and rotation sensors (Attitude and Heading Reference System) and ultrasonic 

transducers. The hardware, software and system architecture used to autonomously 

pilot the helicopter were described in detailed in this thesis. Series of test flights were 

conducted to verify autopilot system performance. The proposed hovering controller 

has shown capable of stabilizing the helicopter attitude angles. The work done for 

this project gives solid bases and chances for fast evolution of Universiti Teknologi 

Malaysia autonomous helicopter research. 
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ABSTRAK 

 

 

 

Hasrat utama projek penyelidikan ini adalah untuk membangunkan satu 

sistem pemanduan automatik bagi membolehkan model helikopter menjalankan misi 

berautonomi dengan hanya menggunakan keupayaan pengkomputeran pintar. Tesis 

ini disediakan adalah untuk menerangkan dengan terperinci kaedah rekabentuk, 

pelaksanaan dan pengujian sistem pemanduan automatik yang dibangunkan pada 

pesawat rotor tanpa juruterbang. Sistem pemanduan automatik direka bagi 

melakukan misi berautonomi seperti penerbangan berlepas dan apungan. Bagi 

rekabentuk pengawal, model dinamik tidak linear bagi helikopter kawalan jauh telah 

dibina menggunakan kaedah Pengumpulan Parameter melibatkan empat subsistem 

yang berbeza yang terdiri daripada dinamik badan tegar, aktuator, sayap berputar dan 

proses penghasilan daya dan momen. Model matematik helikopter tidak linear yang 

diperolehi akan dilinearkan menggunakan teori perubahan kecil untuk kegunaan 

analisis kestabilan dan rekabentuk suapbalik linear. Suapbalik keadaan linear untuk 

penstabilan helikopter dapat diperolehi menggunakan kaedah Penetapan Kutub. 

Sistem keseluruhan terdiri daripada sebuah komputer pada helikopter dan komputer 

kedua sebagai pengkalan bumi. Pengawalan helikopter dijalankan oleh komputer 

helikopter manakala operasi perancangan misi dan interaksi pengguna dilakukan di 

pengkalan bumi. Penderia yang digunakan untuk operasi berautonomi termasuklah 

penderia pecutan, medan magnet dan putaran serta penderia ultrasonik. Sistem 

perkakasan dan perisian yang digunakan untuk pemanduan berautonomi helikopter 

telah dibincangkan dengan lebih lanjut dalam tesis ini. Beberapa siri ujikaji 

penerbangan telah dijalankan bertujuan untuk mengesahkan prestasi sistem 

pemanduan automatik. Pengawal apungan yang direka didapati mampu untuk 

menstabilkan sudut gayalaku penerbangan helikopter. Kerja-kerja yang dijalankan 

untuk projek ini diharap dapat dijadikan asas dan peluang yang baik untuk 

memangkin penyelidikan helikopter berautonomi Universiti Teknologi Malaysia. 
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CHAPTER 1 

 

 

 

INTRODUCTION 

 

 

 

1.1 Background of the Research 

 

Agile and precise maneuverability of helicopters makes them useful for many 

critical tasks ranging from rescue and law enforcement task to inspection and 

monitoring operations. Helicopters are indispensable air vehicles for finding and 

rescuing stranded individuals or transporting accident victims. Police departments 

use them to find and pursue criminals. Fire fighters use helicopters for precise 

delivery of fire extinguishing chemicals to forest fires. More and more electric power 

companies are using helicopters to inspect towers and transmission lines for 

corrosion and other defects and to subsequently make repairs. All of these 

applications demand dangerous close proximity flight patterns, risking human pilot 

safety. An unmanned autonomous helicopter will eliminate such risks and will 

increase the helicopter’s effectiveness. The first major step in developing unmanned 

autonomous helicopter is the design of autopilot control system for the craft itself. 

The work presented in this thesis is to develop an autopilot control system for a 

helicopter model in autonomous hovering.  

 

An unmanned aerial vehicle (UAV) indicates an airframe that is capable of 

performing given missions autonomously through the use of onboard sensors and 

manipulation systems. Any type of aircraft may serve as the base airframe for a UAV 

application. Traditionally, the fixed-wing aircrafts have been favored as the 

platforms simply because their simple structures, efficient and easy to build and 
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maintain. The autopilot design is easier for fixed-wing aircrafts than for rotary-wing 

aircrafts because the fixed-wing aircrafts have relatively simple, symmetric, and 

decoupled dynamics. 

 

However, rotorcraft-based UAVs have been desirable for certain applications 

where the unique flight capability of the rotorcraft is required. The rotorcraft can take 

off and land within limited space and they can also hover, and cruise at very low 

speed. The agile maneuverability of model scaled helicopter or remote control (RC) 

helicopter sold in commercial market can be useful for an unmanned surveillance 

helicopter in a hard to reach or inaccessible environment such as city and mountain 

valley. Unmanned surveillance helicopter offers a lot benefits in search and rescue 

operations, remote inspections, aerial mapping and offer an alternative option for 

saving human pilot from dangerous flight conditions (Amidi, 1996).  

 

Beside these advantages, helicopters are well known to be unstable and have a 

faster and responsive dynamics due to their small size. Model scaled helicopter can 

reach pitch and roll rates up to 200 deg/s with stabilizer bar, yaw rates up to 1000 

deg/s and produces thrust as high as two or three times the vehicle weight (Mettler et 

al., 2002a). The helicopter dynamics are inherently unstable and require velocity 

feedback as well as attitude feedback to stabilize and control. Velocity feedback 

needs the accurate velocity estimates, which can be obtained by the use of an inertial 

navigation system. The inertial navigation system in turn requires external aids so 

that the velocity and position estimates do not diverge with the uncompensated bias 

and drift of the inertial instruments, i.e., accelerometers and rate gyroscopes. Another 

irony is that, even though UAVs are typically smaller than the full-size manned 

vehicles, they usually require more accurate sensors because the demanded sensor 

accuracy is higher when the vehicle is smaller. 

 

An autopilot system is a mechanical, electrical, or hydraulic system used to 

guide a vehicle without assistance from a human being. In the early days of transport 

aircraft, aircraft required the continuous attention of a pilot in order to fly in a safe 

manner and results to a very high fatigue. The autopilot is designed to perform some 

of the tasks of the pilot. The first successful aircraft autopilot was developed by 

Sperry brothers in 1914 where the autopilot developed was capable of maintaining 
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pitch, roll and heading angles. Lawrence Sperry has demonstrated the effectiveness 

of the design by flying his aircraft with his hands up (Nelson, 1998). Modern 

autopilots use computer software to control the aircraft. The software reads the 

aircraft's current position and controls a flight control system to guide the aircraft. 

 

As an unmanned vehicle, issues such as remote sensing, terrain and obstacle 

recognition, radio link and data acquisition must be solved for absolute reliability. 

The design must be proven to work given the constraints of the environment especially 

due to lack of immediate and flexible human intervention available on board. An 

autonomous control mechanism should be able to accommodate and manage all of 

the issues mentioned above in real-time. It also must be able to plan its flight and 

mission goals without continuous human guidance. As general remarks, the 

autonomous helicopter is built basically by putting together state-of-the-art 

navigation sensors and high performance onboard computer system with real-time 

software control on commercially available remote-control helicopter model (Shim, 

2000). The autonomous unmanned helicopter system design problem alone 

encompasses many challenging research topics such as system identification, control 

system architecture and design, navigation sensor design and implementation, hybrid 

systems, signal processing, real-time control software design, and component-level 

mechanical-electronic integration. The vehicle communicates with other agents and 

the ground posts through the broadband wireless communication device, which will 

be capable of dynamic network internet protocol (IP) forwarding. The vehicle will be 

truly autonomous when it is capable of self-start and automatic recovery with a 

single click of a button on the screen of the vehicle-monitoring computer.  

 

 

 

1.2 Research Problem Description 

 

Among many issues that must be addressed in the important area of 

autonomous helicopter, this thesis will cover three important issues only, i.e. the 

helicopter mathematical modeling and identification, hardware, software and system 

integration and control system design. To begin with, in order to determine the most 

effective control strategy that governs the overall architecture of a model scaled 
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helicopter, a detailed knowledge of the structure and functions of the helicopter in 

the form of a mathematical model is necessary. Secondly, the analytical 

mathematical model must then be provided with physical parameters accurately 

representing a real helicopter model. This analytical mathematical model of 

helicopter is important for the design of an autopilot system that provides 

artificial stability to improve flying qualities of helicopter model. Lastly, a good 

waypoint navigation planning method that fundamentally guides an on-board 

computer control mechanism must be devised. 

 

 

 

1.3 Research Objective 

 

The objective of this research study is to develop an autopilot system that 

could enable the helicopter model to perform autonomous hover maneuver using 

only on-board intelligence and computing power. 

 

 

 

1.4 Research Scope 

 

The scopes set forth for the research work as follows:  

i. Establishing scaled helicopter model dynamic characteristics for the 

control system design of autopilot system 

ii. Developing an electronic control system that enables the helicopter 

model to perform its mission goal.  

iii. Fabricating and testing the electronic control system (autopilot) 

performance on helicopter model in autonomous hovering.  
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1.5 Research Design and Implementation 

 

In order to design an autopilot system for scaled model helicopter, a 

performance and stability analysis will be conducted using several physical 

measurements, experimental testing and similarity analysis. The helicopter model is 

derived from a general full-sized helicopter with the augmentation of servo rotor 

dynamics. The nonlinear model derived from general full-sized helicopter model will 

be simplified through linearization in order to obtain a linear model controller design. 

The helicopter platform was then integrated with navigation sensors and onboard 

flight computer. Linearized control theory will be applied for helicopter stabilization 

using the model obtained. After the design of low-level vehicle stabilization 

controller, vehicle guidance logic will be developed. The vehicle guidance logic can 

be used as a user interface part on the ground station and sequencer on the UAV side. 

The complete autopilot system integration with the helicopter had been done after all 

the electronics were built and installed considering several factors such as power 

requirement, mounting, electromagnetic and radio interference. The implementation 

of the project research is shown in Figure 1.1 
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Figure 1.1 The research project implementation flow chart 
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1.6 Project Contribution 

 

The project contributions are as follows: 

i. Simulation models for controller design, stability and performance 

analysis of a UAV helicopter model had been developed.  

ii. The low level stabilization controller had been designed based on the 

control theory developed from the simulation model.  

iii. The prototype of autopilot system integration with the helicopter was 

developed taking into consideration the power requirement, mounting, 

electromagnetic and radio interference. 

iv. A prototype of UAV helicopter capable of hovering autonomously 

had been developed. This is the major break through in the effort of 

developing a completely autonomous UAV helicopter.     

 

 

 

1.7 Thesis Organization 

 

 This thesis is organized into seven chapters. The first chapter introduced the 

motivation, research objective, scopes of work and contribution of this project. 
 

 Chapter 2 reviews the UAV development history, principle of rotary wing 

aircraft, helicopter dynamic modeling, control and autonomous system design are 

also explained in this chapter. 
 

 Chapter 3 presents the helicopter dynamic modeling procedures and 

simulation results while Chapter 4, Hardware, Software and Vehicle Integration, 

described the hardware and software development of the system and system 

integration into the helicopter model.  
 

 Chapter 5 presents the control design methodology and result for each 

controller for the autopilot system. 
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 Chapter 6 presents the flight test conducted in order to test the functionality 

of the autopilot system. The preliminary tests were also conducted to ensure that the 

system developed works properly. 

 

 In the final chapter, Chapter 7, the research work is summarized and the 

potential future works are outlined. 

 




