## THE DEVELOPMENT OF AUTOPILOT SYSTEM FOR AN UNMANNED AERIAL VEHICLE (UAV) HELICOPTER MODEL

SYARIFUL SYAFIQ BIN SHAMSUDIN

UNIVERSITI TEKNOLOGI MALAYSIA

# Dedication

*This thesis is dedicated to:* 

My family for their patience and support during my study, My friends for brightening my life with their friendship and showing me that life has no greater reward to offer than a true friend.

#### ACKNOWLEDGEMENTS

I believe that I am truly privileged to participate in this fascinating and challenging project as a research member since 2004. I would like to give my deepest gratitude to my supervisor Professor Ir. Dr. Hj. Abas Ab. Wahab, who has guided and encouraged my work with such passion and sincerity for knowledge, teaching and care. I would like also to thank Associate Professor Dr. Rosbi Mamat for his guidance, insight and vision on this project.

I am pleased to acknowledge the financial support of Ministry of Higher Education Malaysia (MOHE) via Research Management Centre (RMC), Universiti Teknologi Malaysia under fundamental research grant vot 75124 and Tabung Pembangunan Industri-UTM for scholarship awarded.

I would like to thank my research fellows Mohamad Hafiz Ismail, Nik Ahmad Ridhwan and Mohd Syukri Ali for their help, advice and cooperation for many years. I would like to thank Mohamed Yusof Radzak, Mohd Daniel Zakaria, Mohd Anuar Adip and Nor Mohd Al Ariff Zakaria for encouraging and supporting my research efforts in PIC programming, Control Theories, RC helicopter system and hardware intergration.

I would like to thank all the technicians in Aeronautic and Robotic Laboratories of Universiti Teknologi Malaysia for all the help given during the development of test rig and autopilot system for UTM autonomous helicopter project.

My speacial thanks go to my family. I would like to thank my parents, who taught me to take chances for better things in my life. Also my gratitude to my grandmother, who has offered me unconditional love and care. I thank my sisters for their care and encouragement during my study and I would like to wish them all the best in their studies and careers.

In retrospect, this project did start humble but has grown to be a success as now. There are many happy times and many dispointing moments, but now I am very happy because all the hardship I had to go through mostly alone finally paid off.

#### ABSTRACT

The aim of this research project is to develop an autopilot system that enables the helicopter model to carry out autonomous hover maneuver using on-board intelligence computer. The main goal of this project is to provide a comprehensive design methodology, implementation and testing of an autopilot system developed for a rotorcraft-based unmanned aerial vehicles (UAV). The autopilot system was designed to demonstrate autonomous maneuvers such as take-off and hovering flight capabilities. For the controller design, the nonlinear dynamic model of the Remote Control (RC) helicopter was built by employing Lumped Parameter approach comprising of four different subsystems such as actuator dynamics, rotary wing dynamics, force and moment generation process and rigid body dynamics. The nonlinear helicopter mathematical model was then linearized using small perturbation theory for stability analysis and linear feedback control system design. The linear state feedback for the stabilization of the helicopter was derived using Pole Placement method. The overall system consists of the helicopter with an onboard computer and a second computer serving as a ground station. While flight control is done on-board, mission planning and human user interaction take place on ground. Sensors used for autonomous operation include acceleration, magnetic field, and rotation sensors (Attitude and Heading Reference System) and ultrasonic transducers. The hardware, software and system architecture used to autonomously pilot the helicopter were described in detailed in this thesis. Series of test flights were conducted to verify autopilot system performance. The proposed hovering controller has shown capable of stabilizing the helicopter attitude angles. The work done for this project gives solid bases and chances for fast evolution of Universiti Teknologi Malaysia autonomous helicopter research.

#### ABSTRAK

Hasrat utama projek penyelidikan ini adalah untuk membangunkan satu sistem pemanduan automatik bagi membolehkan model helikopter menjalankan misi berautonomi dengan hanya menggunakan keupayaan pengkomputeran pintar. Tesis ini disediakan adalah untuk menerangkan dengan terperinci kaedah rekabentuk, pelaksanaan dan pengujian sistem pemanduan automatik yang dibangunkan pada pesawat rotor tanpa juruterbang. Sistem pemanduan automatik direka bagi melakukan misi berautonomi seperti penerbangan berlepas dan apungan. Bagi rekabentuk pengawal, model dinamik tidak linear bagi helikopter kawalan jauh telah dibina menggunakan kaedah Pengumpulan Parameter melibatkan empat subsistem yang berbeza yang terdiri daripada dinamik badan tegar, aktuator, sayap berputar dan proses penghasilan daya dan momen. Model matematik helikopter tidak linear yang diperolehi akan dilinearkan menggunakan teori perubahan kecil untuk kegunaan analisis kestabilan dan rekabentuk suapbalik linear. Suapbalik keadaan linear untuk penstabilan helikopter dapat diperolehi menggunakan kaedah Penetapan Kutub. Sistem keseluruhan terdiri daripada sebuah komputer pada helikopter dan komputer kedua sebagai pengkalan bumi. Pengawalan helikopter dijalankan oleh komputer helikopter manakala operasi perancangan misi dan interaksi pengguna dilakukan di pengkalan bumi. Penderia yang digunakan untuk operasi berautonomi termasuklah penderia pecutan, medan magnet dan putaran serta penderia ultrasonik. Sistem perkakasan dan perisian yang digunakan untuk pemanduan berautonomi helikopter telah dibincangkan dengan lebih lanjut dalam tesis ini. Beberapa siri ujikaji penerbangan telah dijalankan bertujuan untuk mengesahkan prestasi sistem pemanduan automatik. Pengawal apungan yang direka didapati mampu untuk menstabilkan sudut gayalaku penerbangan helikopter. Kerja-kerja yang dijalankan untuk projek ini diharap dapat dijadikan asas dan peluang yang baik untuk memangkin penyelidikan helikopter berautonomi Universiti Teknologi Malaysia.

### TABLE OF CONTENTS

### CHAPTER

1

2

TITLE

### PAGE

| TITLE              | i     |
|--------------------|-------|
| DECLARATION        | ii    |
| DEDICATION         | iii   |
| ACKNOWLEDGEMENT    | iv    |
| ABSTRACT           | vi    |
| ABSTRAK            | vii   |
| TABLE OF CONTENTS  | viii  |
| LIST OF TABLES     | xi    |
| LIST OF FIGURES    | xiii  |
| LIST OF SYMBOLS    | xix   |
| LIST OF APPENDICES | xxiii |

| INTI | RODUCTION                          | 1 |
|------|------------------------------------|---|
| 1.1  | Background of the Research         | 1 |
| 1.2  | Research Problem Description       | 3 |
| 1.3  | Research Objective                 | 4 |
| 1.4  | Research Scope                     | 4 |
| 1.5  | Research Design and Implementation | 5 |
| 1.6  | Project Contribution               | 7 |
| 1.7  | Thesis Organization                | 7 |
|      |                                    |   |

| ]        | LITEF | RATURE REVIEW                                | 9  |
|----------|-------|----------------------------------------------|----|
| 2        | 2.1   | Introduction                                 | 9  |
| <u>_</u> | 2.2   | Principle of Rotary Wing Aircraft            | 11 |
|          |       | 2.2.1 The Different of Model Scaled and Full | 18 |
|          |       | Scaled Helicopter                            |    |
| 4        | 2.3   | Helicopter Dynamics Modeling and System      | 21 |
|          |       | Identification                               |    |
| 4        | 2.4   | Helicopter Control                           | 24 |
|          |       | 2.4.1 Model Based Control                    | 24 |
|          |       | 2.4.2 Model-Free Helicopter Control          | 27 |
| 4        | 2.5   | Related Work                                 | 29 |
| 4        | 2.6   | Summary                                      | 31 |
|          |       |                                              |    |

| HELI | COPTE        | R DYNAMIC MODELING                    | 33 |
|------|--------------|---------------------------------------|----|
| 3.1  | Introduction |                                       |    |
| 3.2  | Helicop      | pter Parameters                       | 36 |
|      | 3.2.1        | Physical Measurement                  | 36 |
|      | 3.2.2        | Moment Inertia                        | 38 |
|      | 3.2.3        | Rotor Flapping Moment                 | 40 |
|      | 3.2.4        | Aerodynamic Input                     | 40 |
|      | 3.2.5        | Control Rigging Curve                 | 42 |
| 3.3  | Helicop      | pter Model                            | 45 |
| 3.4  | Lineari      | zed Model                             | 49 |
| 3.5  | Main R       | Rotor Forces and Moments              | 51 |
|      | 3.5.1        | Quasi Steady State equations for Main | 69 |
|      |              | Rotor Dynamics                        |    |
|      | 3.5.2        | Control Rotor Model                   | 72 |
| 3.6  | Tail Ro      | otor                                  | 78 |
| 3.7  | Fuselag      | ge                                    | 79 |
| 3.8  | Stabiliz     | zer Fins                              | 81 |
| 3.9  | Eigenv       | alues and Dynamic Mode                | 86 |
| 3.10 | Conclu       | sion                                  | 93 |
|      |              |                                       |    |

| CONTROL SYSTEM ANALYSIS |         |                            | 95  |  |
|-------------------------|---------|----------------------------|-----|--|
| 4.1                     | Introdu | 95                         |     |  |
| 4.2                     | Regula  | Regulation Layer           |     |  |
| 4.3                     | State S | Space Controller Design    | 98  |  |
|                         | 4.3.1   | Attitude Controller Design | 99  |  |
|                         | 4.3.2   | Velocity Control           | 103 |  |
|                         | 4.3.3   | Heave and Yaw Control      | 104 |  |
|                         | 4.3.4   | Position Control           | 107 |  |
| 4.4                     | Conclu  | usion                      | 109 |  |
|                         |         |                            |     |  |

| SYST | TEM INTEGRATION                                   | 110 |  |
|------|---------------------------------------------------|-----|--|
| 5.1  | Introduction                                      |     |  |
| 5.2  | Air Vehicle Descriptions                          | 110 |  |
| 5.3  | System Overview                                   | 118 |  |
| 5.4  | Computers                                         | 119 |  |
|      | 5.4.1 PIC Microcontroller Programming<br>Overview | 121 |  |
| 5.5  | Sensors                                           | 128 |  |
| 5.6  | Communications                                    | 132 |  |
| 5.7  | On-Board Computer Circuit                         | 135 |  |
| 5.8  | System Integration                                | 138 |  |
|      | 5.8.1 Power Systems                               | 139 |  |

| 139        |
|------------|
| 141        |
| uency 144  |
|            |
| ontrol 144 |
|            |
| 147        |
|            |

|   | SYST | EM EVALU     | ATION                            | 148 |
|---|------|--------------|----------------------------------|-----|
| ( | 6.1  | Introduction | L                                | 148 |
| ( | 6.2  | Helicopter S | Support Structure                | 150 |
| ( | 6.3  | Preliminary  | Testing                          | 151 |
|   |      | 6.3.1 AH     | RS Reading Test                  | 152 |
|   |      | 6.3.2 Ser    | vo Routine Testing               | 155 |
|   |      | 6.3.3 Ma     | nual to Automatic Switch Testing | 155 |
| ( | 6.4  | Flight Test  |                                  | 156 |
|   |      | 6.4.1 Ma     | nual Flight                      | 156 |
|   |      | 6.4.2 Init   | ial Flight Test                  | 164 |
|   |      | 6.4.3 Par    | tial Computer Controlled Flight  | 165 |
| ( | 6.5  | Conclusion   |                                  | 168 |

6

7

| CON | 169                           |     |
|-----|-------------------------------|-----|
| 7.1 | Concluding Remarks            | 169 |
| 7.2 | Recommendation of Future Work | 171 |

| 172 |
|-----|
| 182 |
| 185 |
| 189 |
| 205 |
| 211 |
|     |

### LIST OF TABLES

| TABLE NO. | TITLE                                                                                     | PAGE |
|-----------|-------------------------------------------------------------------------------------------|------|
| 2.1       | Level of rotor mathematical modeling                                                      | 23   |
| 3.1       | Parameters of Raptor .90 helicopter for simulation model                                  | 37   |
| 3.2       | Listing of variables used to determine the moments of inertia for the Raptor .90          | 39   |
| 3.3       | Average value of moment of inertia used in simulation models                              | 39   |
| 3.4       | Analytically obtained $F$ matrix in hover with no control rotor                           | 86   |
| 3.5       | Analytically obtained <i>G</i> matrix in hover with no control rotor                      | 86   |
| 3.6       | Eigenvalues and modes for six DOF model in hovering flight condition                      | 87   |
| 3.7       | Analytically obtained $F$ matrix in hover with control rotor                              | 89   |
| 3.8       | Analytically obtained $G$ matrix in hover with no control rotor                           | 89   |
| 3.9       | Eigenvalues and modes for eight DOF model in hovering flight condition.                   | 90   |
| 4.1       | Maximum values for height response parameters-hover<br>and low speed according to ADS-33C | 105  |
| 5.1       | Helicopter PWM receiver output channels                                                   | 115  |
| 5.2       | The PIC18F2420/2520/4420/4520 family device overview                                      | 120  |
| 5.3       | Rotomotion AHRS3050AA specifications                                                      | 130  |

| 5.4 | EasyRadio ER400TRS transceiver pinout diagram | 133 |
|-----|-----------------------------------------------|-----|
| 5.5 | Weight and balance log                        | 143 |
| 6.1 | SANWA RD8000 transmitter setup                | 160 |

### LIST OF FIGURES

| FIGURE NO. | TITLE                                                                                           | PAGE |
|------------|-------------------------------------------------------------------------------------------------|------|
| 1.1        | The research project implementation flow chart                                                  | 6    |
| 2.1        | The total lift-thrust force acts perpendicular to the rotor disc or tip-path plane              | 13   |
| 2.2        | Forces acting on helicopter in hover and vertical flight                                        | 13   |
| 2.3        | Forces acting on the helicopter during forward, sideward and rearward flight                    | 14   |
| 2.4        | Tail rotor thrust compensates for the effect of the main rotor                                  | 15   |
| 2.5        | Effect of blade flapping on lift distribution at advancing and retreating blade                 | 17   |
| 2.6        | Cyclic pitch variation in cyclic stick full forward position                                    | 17   |
| 2.7        | Typical model scaled helicopter rotor head with hingeless Bell-Hiller stabilizer systems        | 19   |
| 2.8        | The stabilizing effect of the Bell-Hiller stabilizer bar                                        | 21   |
| 2.9        | SISO representations of helicopter dynamics                                                     | 25   |
| 3.1        | Raptor Aircraft's 0.90 cu in (15 cc) aircraft manufactured by Thunder Tiger Corporation, Taiwan | 34   |
| 3.2        | X-Cell .60 rotor head designs showing the main blade attachment                                 | 35   |
| 3.3        | The stabilizer bar mechanical system operation in RC helicopter                                 | 36   |
| 3.4        | Raptor Precision Pitch Gauge manufactured by Thunder Tiger Corporation                          | 42   |

| 3.5  | The longitudinal cyclic rigging curve                                                                                                                    | 43 |
|------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3.6  | The collective rigging curve                                                                                                                             | 43 |
| 3.7  | The lateral cyclic rigging curve                                                                                                                         | 44 |
| 3.8  | The directional control rigging curve                                                                                                                    | 44 |
| 3.9  | Typical arrangement of component forces and moments generation in helicopter simulation model                                                            | 45 |
| 3.10 | Free body diagram of scaled model helicopter in body coordinate system                                                                                   | 48 |
| 3.11 | Wind axes of helicopter in forward flight                                                                                                                | 49 |
| 3.12 | Rotor flow states in axial motion. (a) Hover condition<br>(b) Climb condition and (c) Descent condition                                                  | 52 |
| 3.13 | Induced velocity variation as a function of climb and descent velocities based on the simple momentum theory for Raptor .90                              | 55 |
| 3.14 | Inflow solutions for Raptor .90 from momentum theory                                                                                                     | 59 |
| 3.15 | Rotor thrust or wing lift for Raptor .90 calculated from momentum theory                                                                                 | 60 |
| 3.16 | Azimuth angle reference point for clockwise rotor<br>rotation viewed from above used mainly in most<br>remote control helicopter manufactured outside US | 62 |
| 3.17 | Rotor swashplate and flapping angles relationship                                                                                                        | 62 |
| 3.18 | Cross coupling due to the $\delta_3$ angle                                                                                                               | 64 |
| 3.19 | Hub plane, tip path plane and body axes notations                                                                                                        | 67 |
| 3.20 | Control rotor of the Raptor .90 helicopter                                                                                                               | 75 |
| 3.21 | Force and moment generated from tail rotor sub-system                                                                                                    | 79 |
| 3.22 | The horizontal and vertical stabilizer of Raptor .90                                                                                                     | 82 |
| 3.23 | Poles of coupled longitudinal and lateral motion for six<br>DOF model with no control rotor                                                              | 88 |
| 3.24 | Poles of coupled longitudinal and lateral motion for<br>eight DOF model with control rotor                                                               | 90 |

| 3.25(a) | Roll (top) and pitch (below) rate frequency responses<br>to lateral cyclic for Raptor .90 and X-Cell .60 in hover<br>condition                                                                  | 92  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 3.25(b) | Roll (top) and pitch (below) rate frequency responses<br>to longitudinal cyclic for Raptor .90 and X-Cell .60 in<br>hover condition                                                             | 93  |
| 4.1     | Hierarchical vehicle control system                                                                                                                                                             | 96  |
| 4.2     | A State Space representation of a plant                                                                                                                                                         | 98  |
| 4.3     | Plant with state feedback                                                                                                                                                                       | 99  |
| 4.4     | Limits on pitch (roll) oscillations – hover and low speed according to Aeronautical Design Standard for military helicopter (ADS-33C)                                                           | 100 |
| 4.5(a)  | Attitude compensator design for pitch axis response<br>due to 0.007 rad longitudinal cyclic step command.                                                                                       | 101 |
| 4.5(b)  | Attitude compensator design for roll axis response due to 0.0291 rad lateral cyclic step command                                                                                                | 102 |
| 4.6     | Compliance with small-amplitude pitch (roll) attitude<br>changes in hover and low speed requirement specified<br>in Section 3.3.2.1 of the Military Handling Qualities<br>Specification ADS-33C | 102 |
| 4.7(a)  | Velocity compensator design for longitudinal velocity<br>mode due to longitudinal cyclic step command                                                                                           | 103 |
| 4.7(b)  | Velocity compensator design for lateral velocity mode<br>due to lateral cyclic step command                                                                                                     | 104 |
| 4.8     | Procedure for obtaining equivalent time domain<br>parameters for height response to collective controller<br>according to Aeronautical Design Standard for military<br>helicopter (ADS-33C)     | 105 |
| 4.9     | Heave dynamics compensator design due to collective pitch step command                                                                                                                          | 106 |
| 4.10    | Yaw dynamics compensator design due to tail rotor collective pitch step command.                                                                                                                | 106 |
| 4.11    | Compliance with small-amplitude heading changes in<br>hover and low speed requirement specified in Section<br>3.3.5.1 of the Military Handling Qualities Specification                          | 107 |

ADS-33C

| 4.12(a) | Helicopter responses due to 6m longitudinal position step command                                                      | 108 |
|---------|------------------------------------------------------------------------------------------------------------------------|-----|
| 4.12(b) | Helicopter responses due to 6m lateral position step command                                                           | 108 |
| 5.1     | Thunder Tiger Raptor .90 class helicopter equipped<br>with two stroke nitromethane engine with 14.9 cc<br>displacement | 111 |
| 5.2     | Side frame system and engine mounting in Raptor .90 main structure                                                     | 112 |
| 5.3     | Swashplate mechanism                                                                                                   | 113 |
| 5.4     | SANWA RX-611 receiver and actuator (servo) connections                                                                 | 116 |
| 5.5     | The gyro automatically corrects changes in the helicopter tail trim by crosswind                                       | 117 |
| 5.6     | SANWA RD8000 PPM/FM/PCM1/PCM2 hand held                                                                                | 118 |
| 5.7     | transmitter<br>Overview of autopilot system developed                                                                  | 119 |
| 5.8     | The pinout diagram of PIC18F4520 microcontroller                                                                       | 120 |
| 5.9     | Screen shot of PICBasic Pro Compiler IDE                                                                               | 121 |
| 5.10    | PicBasic Pro programming flowchart in roll attitude stabilization                                                      | 123 |
| 5.11    | Attitude stabilization operations in roll attitude stabilization                                                       | 124 |
| 5.12    | Code fragment used in the initiate stage                                                                               | 125 |
| 5.13    | Code fragment used in the switching stage                                                                              | 126 |
| 5.14    | Code fragment used in the execution stage                                                                              | 127 |
| 5.15    | The low dynamic AHRS (AHRS3050AA) from Rotomotion, LLC                                                                 | 129 |
| 5.16    | The Polaroid 6500 Ranging module from SensComp                                                                         | 131 |
| 5.17    | The RF04 and CM02 modules used in the research project                                                                 | 132 |

| 5.18 | Easy Radio transceiver block diagram                                          | 133 |
|------|-------------------------------------------------------------------------------|-----|
| 5.19 | MAX232 application circuit                                                    | 134 |
| 5.20 | Typical system block diagram                                                  | 134 |
| 5.21 | The minimum circuit required by the PIC16F877A in order to operate            | 135 |
| 5.22 | The flight computer circuit board                                             | 136 |
| 5.23 | Schematic design of on-board computer drawn in EAGLE version 4.13 by CadSoft  | 137 |
| 5.24 | Generated board from schematic circuit drawn in EAGLE version 4.13 by CadSoft | 138 |
| 5.25 | The avionic box integration with UAV helicopter platform                      | 140 |
| 5.26 | The avionic box design and the mounting points to helicopter frames           | 141 |
| 5.27 | Component placements on the avionic box                                       | 142 |
| 5.28 | AHRS mounting design                                                          | 142 |
| 5.29 | The autopilot system integration into radio control system                    | 145 |
| 5.30 | Manual to automatic switch connections                                        | 146 |
| 5.31 | Automatic-manual switch locations on the SANWA RD8000 transmitter             | 146 |
| 6.1  | Six degree of freedom (DOF) testbed                                           | 149 |
| 6.2  | The helicopter testbed geometry                                               | 149 |
| 6.3  | Helicopter support structure mounting point                                   | 150 |
| 6.4  | The spherical plain bearing                                                   | 150 |
| 6.5  | Testbed two DOF joint                                                         | 151 |
| 6.6  | AHRS output data format                                                       | 153 |
| 6.7  | LED connections to PIC18F4520 Port B                                          | 154 |

| 6.8  | AHRS reading testing on protoboard                                          | 154 |
|------|-----------------------------------------------------------------------------|-----|
| 6.9  | Manual to automatic switch operation testing                                | 155 |
| 6.10 | Carburetor adjustment chart                                                 | 158 |
| 6.11 | Throttle servo installations                                                | 160 |
| 6.12 | Blade pitch and collective travel setting                                   | 161 |
| 6.13 | Blade tracking adjustment                                                   | 162 |
| 6.14 | Flybar/Stabilizer bar paddles setup                                         | 162 |
| 6.15 | Tail rotor blade pitch setting                                              | 163 |
| 6.16 | Tail centering adjustment setting                                           | 164 |
| 6.17 | The Initial flight test                                                     | 165 |
| 6.18 | Partially computer control flight test                                      | 166 |
| 6.19 | Experiment results of attitude (roll angle) regulation by autopilot system  | 166 |
| 6.20 | Experiment results of attitude (pitch angle) regulation by autopilot system | 167 |
| 6.21 | Experiment results of attitude (yaw angle) regulation by autopilot system   | 167 |

### LIST OF SYMBOLS

| $a_M$                          | Main rotor blade lift curve slope                                   |
|--------------------------------|---------------------------------------------------------------------|
| $a_o$                          | Lift curve slope                                                    |
| $a_0$                          | Rotor blade coning angle                                            |
| $a_{1s}$                       | Longitudinal flapping with respect to a plane perpendicular to      |
|                                | the shaft                                                           |
| $b_{1s}$                       | Lateral flapping                                                    |
| $c_M$                          | Main rotor chord                                                    |
| $h_M$                          | Main rotor hub height above CG                                      |
| $h_T$                          | Tail rotor height above CG                                          |
| $l_H$                          | Stabilizer location behind CG                                       |
| $l_T$                          | Tail rotor hub location behind CG                                   |
| т                              | Mass flow rate                                                      |
| n <sub>es</sub>                | Gear ratio of engine shaft to main rotor                            |
| $n_T$                          | Gear ratio of tail rotor to main rotor                              |
| <i>p</i> , <i>q</i> , <i>r</i> | Angular velocities about the x-, y- and z- axes                     |
| rpm                            | Rotation per minute                                                 |
| <i>u</i> , <i>v</i> , <i>w</i> | Translational velocities along the three orthogonal directions      |
|                                | of the fuselage fixed axes system                                   |
| $u_a, v_a, w_a$                | Fuselage center of pressure velocities along $x$ , $y$ and $z$ axis |
| $u_w, v_w, w_w$                | Airmass (gust) velocity along $x$ , $y$ and $z$ axis                |
| ν                              | Velocity at various stations in the stream tube                     |
| <i>V</i> <sub>i</sub>          | Inflow at the disc                                                  |
| $v_a^V$                        | Vertical stabilizer local v-velocity                                |
| $W_a^F$                        | Fuselage local w-velocity                                           |

| $W_a^H$                                               | Local horizontal stabilizer w-velocity           |
|-------------------------------------------------------|--------------------------------------------------|
| x                                                     | State vector                                     |
| $x_c$                                                 | Control actuation sub-system state vector        |
| $x_{f}$                                               | Fuselage sub-system state vector                 |
| $x_p$                                                 | Engine sub-system state vector                   |
| $x_r$                                                 | Rotor sub-system state vector                    |
| $A_{\mathrm{l}}$                                      | Lateral cyclic pitch                             |
| $A_d$                                                 | Rotor disc area                                  |
| $AR_{e}$                                              | Effective aspect ratio                           |
| $B_1$                                                 | Longitudinal cyclic pitch                        |
| $C_{Llpha}$                                           | Lift curve slope from airfoil data               |
| $C^{H}_{Llpha}$                                       | Horizontal tail lift curve slope                 |
| $C^{\scriptscriptstyle V}_{\scriptscriptstyle Llpha}$ | Vertical fin lift curve slope                    |
| $C_{D_0}$                                             | Profile drag coefficient of the main rotor blade |
| $C_D^F$                                               | Fuselage drag coefficient                        |
| $C^M_{Do}$                                            | Main rotor blade zero lift drag coefficient      |
| $C^M_{T\mathrm{max}}$                                 | Main rotor max thrust coefficient                |
| $C_{Do}^{T}$                                          | Tail rotor blade zero lift drag coefficient      |
| $C_{T\max}^T$                                         | Tail rotor max thrust coefficient                |
| $C_{\mathcal{Q}}$                                     | Torque coefficient                               |
| CG                                                    | Center gravity                                   |
| $I_{xx}$                                              | Rolling moment of inertia                        |
| $I_{yy}$                                              | Pitching moment of inertia                       |
| $I_{zz}$                                              | Yawing moment of inertia                         |
| $I_{eta}$                                             | Main rotor blade flapping inertia                |
| $K_{eta}$                                             | Hub torsional stiffness                          |
| l                                                     | Distance from the pivot to the body CG           |
| $I_o$                                                 | Moment contribution of the supporting structure  |
| $P_{M+S}$                                             | Oscillating period                               |

| PWM                                                                                                                               | Pulse width modulation                                           |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| $Q_e$                                                                                                                             | Engine torque                                                    |
| <i>R, M, N</i>                                                                                                                    | Moment terms in roll, pitch and yaw directions                   |
| $R_M$                                                                                                                             | Main rotor radius                                                |
| $R_T$                                                                                                                             | Tail rotor radius                                                |
| $S_{H}$                                                                                                                           | Effective horizontal fin area                                    |
| $S_V$                                                                                                                             | Effective vertical fin area                                      |
| $S_x^F$                                                                                                                           | Frontal fuselage drag area                                       |
| $S_y^F$                                                                                                                           | Side fuselage drag area                                          |
| $S_z^F$                                                                                                                           | Vertical fuselage drag area                                      |
| $S_{ ho}$                                                                                                                         | Stiffness number                                                 |
| Т                                                                                                                                 | Rotor thrust                                                     |
| $V_c$                                                                                                                             | Climb velocity                                                   |
| $V_{d}$                                                                                                                           | Rotor descent velocity                                           |
| W                                                                                                                                 | Weight of the UAV's model                                        |
| X, Y, Z                                                                                                                           | Forces term in x, y, z directions                                |
| $X^F_{uu}$ , $Y^F_{vv}$ , $X^F_{ww}$                                                                                              | Fuselage effective flat plat drag in the $x$ , $y$ and $z$ axis  |
| $Y_{uu}^V$                                                                                                                        | Vertical stabilizer's aerodynamic chamber effect                 |
| $Y_{uv}^V$                                                                                                                        | Vertical stabilizer's parameter for lift slope effect            |
| $Z_{\min}^{H}$                                                                                                                    | Horizontal stabilizer's parameter for stall effect               |
| $Z_{uu}^H$                                                                                                                        | Horizontal stabilizer's aerodynamic chamber effect               |
| $Z^{H}_{uw}$                                                                                                                      | Horizontal stabilizer's parameters for lift slope effect         |
| ${\delta}_r^{{\scriptscriptstyle trim}}$                                                                                          | Tail rotor pitch trim offset                                     |
| $\lambda_0$ , $\lambda_{1c}$ , $\lambda_{1s}$                                                                                     | Rotor uniform and first harmonic inflow velocities in            |
|                                                                                                                                   | hub/shaft axes                                                   |
| $\lambda_{i}$                                                                                                                     | Inflow ratio at rotor disc                                       |
| $\lambda_{eta}$                                                                                                                   | Flapping frequency ratio                                         |
| $\delta_{\scriptscriptstyle col},\delta_{\scriptscriptstyle lon},\delta_{\scriptscriptstyle lat},\delta_{\scriptscriptstyle ped}$ | Main rotor collective pitch, longitudinal cyclic, lateral cyclic |
|                                                                                                                                   | and tail rotor collective                                        |

| γ <sub>fb</sub>          | Stabilizer bar Lock number                                      |
|--------------------------|-----------------------------------------------------------------|
| ρ                        | Atmosphere density                                              |
| μ                        | Advance ratio                                                   |
| θ, φ, Ψ                  | Euler angles defining the orientation of the body axes relative |
|                          | to the earth                                                    |
|                          |                                                                 |
| 0                        | T 1 h l - d (d - h                                              |
| $	heta_0$                | Local blade pitch                                               |
| $\Theta_0$<br>$\Theta_1$ | Blade twist angle                                               |
|                          |                                                                 |
| $\theta_1$               | Blade twist angle                                               |

### Subscript

| M, T, F, H, V | Representation for main rotor, tail rotor, fuselage, horizontal |
|---------------|-----------------------------------------------------------------|
|               | stabilizer and vertical stabilizer                              |

### LIST OF APPENDICES

| Appendix | TITLE                                                         | PAGE |
|----------|---------------------------------------------------------------|------|
| А        | System and Control Matrices                                   | 182  |
| В        | Pitch Mechanism Of Stabilizer And Main Rotor Blades           | 185  |
| С        | Microcontroller Programming Code                              | 189  |
| D        | PIC18F2420/2520/4420/4520 Microcontroller Pinout Descriptions | 205  |
| Е        | List of Publications                                          | 211  |

### **CHAPTER 1**

#### **INTRODUCTION**

### 1.1 Background of the Research

Agile and precise maneuverability of helicopters makes them useful for many critical tasks ranging from rescue and law enforcement task to inspection and monitoring operations. Helicopters are indispensable air vehicles for finding and rescuing stranded individuals or transporting accident victims. Police departments use them to find and pursue criminals. Fire fighters use helicopters for precise delivery of fire extinguishing chemicals to forest fires. More and more electric power companies are using helicopters to inspect towers and transmission lines for corrosion and other defects and to subsequently make repairs. All of these applications demand dangerous close proximity flight patterns, risking human pilot safety. An unmanned autonomous helicopter will eliminate such risks and will increase the helicopter's effectiveness. The first major step in developing unmanned autonomous helicopter is the design of autopilot control system for the craft itself. The work presented in this thesis is to develop an autopilot control system for a helicopter model in autonomous hovering.

An unmanned aerial vehicle (UAV) indicates an airframe that is capable of performing given missions autonomously through the use of onboard sensors and manipulation systems. Any type of aircraft may serve as the base airframe for a UAV application. Traditionally, the fixed-wing aircrafts have been favored as the platforms simply because their simple structures, efficient and easy to build and maintain. The autopilot design is easier for fixed-wing aircrafts than for rotary-wing aircrafts because the fixed-wing aircrafts have relatively simple, symmetric, and decoupled dynamics.

However, rotorcraft-based UAVs have been desirable for certain applications where the unique flight capability of the rotorcraft is required. The rotorcraft can take off and land within limited space and they can also hover, and cruise at very low speed. The agile maneuverability of model scaled helicopter or remote control (RC) helicopter sold in commercial market can be useful for an unmanned surveillance helicopter in a hard to reach or inaccessible environment such as city and mountain valley. Unmanned surveillance helicopter offers a lot benefits in search and rescue operations, remote inspections, aerial mapping and offer an alternative option for saving human pilot from dangerous flight conditions (Amidi, 1996).

Beside these advantages, helicopters are well known to be unstable and have a faster and responsive dynamics due to their small size. Model scaled helicopter can reach pitch and roll rates up to 200 deg/s with stabilizer bar, yaw rates up to 1000 deg/s and produces thrust as high as two or three times the vehicle weight (Mettler *et al.*, 2002a). The helicopter dynamics are inherently unstable and require velocity feedback as well as attitude feedback to stabilize and control. Velocity feedback needs the accurate velocity estimates, which can be obtained by the use of an inertial navigation system. The inertial navigation system in turn requires external aids so that the velocity and position estimates do not diverge with the uncompensated bias and drift of the inertial instruments, i.e., accelerometers and rate gyroscopes. Another irony is that, even though UAVs are typically smaller than the full-size manned vehicles, they usually require more accurate sensors because the demanded sensor accuracy is higher when the vehicle is smaller.

An autopilot system is a mechanical, electrical, or hydraulic system used to guide a vehicle without assistance from a human being. In the early days of transport aircraft, aircraft required the continuous attention of a pilot in order to fly in a safe manner and results to a very high fatigue. The autopilot is designed to perform some of the tasks of the pilot. The first successful aircraft autopilot was developed by Sperry brothers in 1914 where the autopilot developed was capable of maintaining pitch, roll and heading angles. Lawrence Sperry has demonstrated the effectiveness of the design by flying his aircraft with his hands up (Nelson, 1998). Modern autopilots use computer software to control the aircraft. The software reads the aircraft's current position and controls a flight control system to guide the aircraft.

As an unmanned vehicle, issues such as remote sensing, terrain and obstacle recognition, radio link and data acquisition must be solved for absolute reliability. The design must be proven to work given the constraints of the environment especially due to lack of immediate and flexible human intervention available on board. An autonomous control mechanism should be able to accommodate and manage all of the issues mentioned above in real-time. It also must be able to plan its flight and mission goals without continuous human guidance. As general remarks, the autonomous helicopter is built basically by putting together state-of-the-art navigation sensors and high performance onboard computer system with real-time software control on commercially available remote-control helicopter model (Shim, 2000). The autonomous unmanned helicopter system design problem alone encompasses many challenging research topics such as system identification, control system architecture and design, navigation sensor design and implementation, hybrid systems, signal processing, real-time control software design, and component-level mechanical-electronic integration. The vehicle communicates with other agents and the ground posts through the broadband wireless communication device, which will be capable of dynamic network internet protocol (IP) forwarding. The vehicle will be truly autonomous when it is capable of self-start and automatic recovery with a single click of a button on the screen of the vehicle-monitoring computer.

#### **1.2** Research Problem Description

Among many issues that must be addressed in the important area of autonomous helicopter, this thesis will cover three important issues only, i.e. the helicopter mathematical modeling and identification, hardware, software and system integration and control system design. To begin with, in order to determine the most effective control strategy that governs the overall architecture of a model scaled helicopter, a detailed knowledge of the structure and functions of the helicopter in the form of a mathematical model is necessary. Secondly, the analytical mathematical model must then be provided with physical parameters accurately representing a real helicopter model. This analytical mathematical model of helicopter is important for the design of an autopilot system that provides artificial stability to improve flying qualities of helicopter model. Lastly, a good waypoint navigation planning method that fundamentally guides an on-board computer control mechanism must be devised.

### **1.3** Research Objective

The objective of this research study is to develop an autopilot system that could enable the helicopter model to perform autonomous hover maneuver using only on-board intelligence and computing power.

#### **1.4** Research Scope

The scopes set forth for the research work as follows:

- i. Establishing scaled helicopter model dynamic characteristics for the control system design of autopilot system
- ii. Developing an electronic control system that enables the helicopter model to perform its mission goal.
- iii. Fabricating and testing the electronic control system (autopilot) performance on helicopter model in autonomous hovering.

### **1.5** Research Design and Implementation

In order to design an autopilot system for scaled model helicopter, a performance and stability analysis will be conducted using several physical measurements, experimental testing and similarity analysis. The helicopter model is derived from a general full-sized helicopter with the augmentation of servo rotor dynamics. The nonlinear model derived from general full-sized helicopter model will be simplified through linearization in order to obtain a linear model controller design. The helicopter platform was then integrated with navigation sensors and onboard flight computer. Linearized control theory will be applied for helicopter stabilization using the model obtained. After the design of low-level vehicle stabilization controller, vehicle guidance logic will be developed. The vehicle guidance logic can be used as a user interface part on the ground station and sequencer on the UAV side. The complete autopilot system integration with the helicopter had been done after all the electronics were built and installed considering several factors such as power requirement, mounting, electromagnetic and radio interference. The implementation of the project research is shown in Figure 1.1

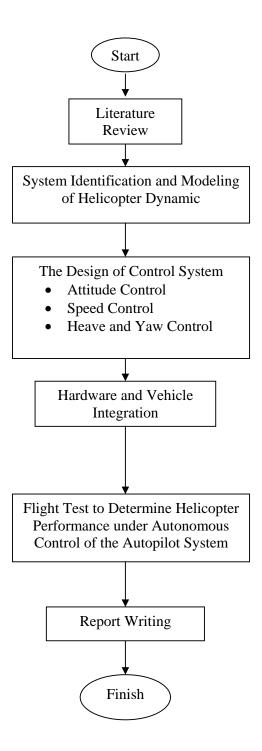



Figure 1.1 The research project implementation flow chart

#### **1.6 Project Contribution**

The project contributions are as follows:

- i. Simulation models for controller design, stability and performance analysis of a UAV helicopter model had been developed.
- ii. The low level stabilization controller had been designed based on the control theory developed from the simulation model.
- iii. The prototype of autopilot system integration with the helicopter was developed taking into consideration the power requirement, mounting, electromagnetic and radio interference.
- A prototype of UAV helicopter capable of hovering autonomously had been developed. This is the major break through in the effort of developing a completely autonomous UAV helicopter.

### 1.7 Thesis Organization

This thesis is organized into seven chapters. The first chapter introduced the motivation, research objective, scopes of work and contribution of this project.

Chapter 2 reviews the UAV development history, principle of rotary wing aircraft, helicopter dynamic modeling, control and autonomous system design are also explained in this chapter.

Chapter 3 presents the helicopter dynamic modeling procedures and simulation results while Chapter 4, Hardware, Software and Vehicle Integration, described the hardware and software development of the system and system integration into the helicopter model.

Chapter 5 presents the control design methodology and result for each controller for the autopilot system.

Chapter 6 presents the flight test conducted in order to test the functionality of the autopilot system. The preliminary tests were also conducted to ensure that the system developed works properly.

In the final chapter, Chapter 7, the research work is summarized and the potential future works are outlined.