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Abstract-- This paper presents the development artificial 
neural network (ANN) models for three steady state chemical 
engineering systems, which are 1) a crude oil distillation 
column for use in real time optimisation, 2) physical 
properties of palm oil components, and 3) pore size 
determination for membrane characterization.  Although 
studies on ANN applications in chemical engineering in the 
literature are more concentrated on utilising dynamic models, 
there has been an increasing trend for diverse application of 
ANN to model steady state systems.   For the crude oil 
distillation column standard radial basis function (RBF) gave 
sufficiently accurate predictions.  For the physical properties 
of  palm oil components, a multi layer perceptron (MLP) 
network model was able to give a much better prediction of 
the density of trilaurin than a thermodynamic correlation that 
is based on group contribution method.  For pore size 
determination of  an asymmetric membrane, stacked network 
gave slightly better prediction than the more commonly used 
single MLP network.  On the whole, this study shows that 
there is high potential for various applications of ANN models 
in chemical engineering. 

I.   INTRODUCTION 
Artificial neural networks (ANN) have been designed on 
the premises of mimicking the complexities of the brain 
functions in an effort to capture (or at least partially 
capture) the amazing learning capabilities of the brain.  
ANN is a sort of parallel computer/processor designed to 
imitate the way the brain accomplishes a certain task 
[Willis, et al, 1991].  The smallest processing element of 
ANN is a neuron (also called node), which performs simple 
calculations.  Using the nodes collectively with massive 
connections among them results in a network that is able to 
process and store information for mapping the network 
inputs to its outputs.   With this capability, there are 
widespread interests due to on-going and potential 
applications in solving complex problems particularly in 
the fields of pattern recognition (especially in speech and 
image processing), classification, control, forecasting, 
systems identification and optimisation.  
 
ANN had generated much interest in the chemical 
engineering community since the late eighties.  While there 
have been numerous successful applications of neural 
networks in the chemical industry, [Zhao, et al., 1997;; 

Baratti, et al., 1995; Cheung, et al., 1992; Thibault and 
Gradjean, 1991], there are also those who claim neural 
networks to be nothing more than a class of nonlinear 
parameter estimation techniques.  While the criticisms were 
sometimes well founded, there is a need to remember that 
drawbacks, extreme expectations and negative reactions are 
the norm in the exploration of an emerging field 
[Venkatasubramanian and McAvoy, 1992].  Hence, there is 
a need to find suitable roles that can best exploit the 
capabilities of neural networks in the chemical engineering 
field.   
 
Currently, research in chemical engineering on ANN are 
mostly in process fault diagnosis, dynamic process 
modelling and process control.  Compared to the large 
number of literature found on dynamic modelling, there are 
fewer papers on steady-state ANN process models.  
Nevertheless, there has been lately an increasing trend for 
diverse application of ANN to model steady-state 
processes.  Among them are: 
• Pollock and Eldridge [2000] and Whaley, et al. [1999] 

fitted ANN models to experimental data for prediction 
of height equivalent of a theoretical plate (HETP) and 
pressure drop for columns with structured packing.  
Compared to a traditional semi-empirical method, the 
ANN models were found to give more accurate 
predictions of experimentally determined HETP 
values.  

• Elkamel, et al. [1999] developed an ANN model for a 
hydrocracking unit in an oil refinery using plant data.   
The model was used for prediction of product flow and 
quality. 

• Mandlischer, et al. [1999] fitted ANN to experimental 
data to predict the enthalpy of vaporisation.  The model 
was found to be just as accurate as two physical 
models, and was slightly more accurate at critical 
temperatures. 

• Sharma, et al. [1998], and Ganguly [2003] fitted ANN 
to vapour-liquid equilibrium (VLE) data.  They found 
that ANN was able to model the VLE phase envelope 
better than existing equations-of -state, especially for 
highly polar mixtures. 

• Altissimi, et al. [1998] developed ANN models for a 
hydrocracker outlet gas separation unit, which 
consisted of four distillation columns in series, for use 
in RTO. 
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• Sabharwal [1997] estimated contaminant composition 
in a xylene distillation column in a refinery in Japan 
using ANN models trained by both plant and simulated 
data, and then used in off-line process optimisation.   

 
This paper presents brief descriptions on the development 
of steady-state ANN models for three chemical engineering 
applications.  The ANN models were developed for: 1) a 
crude oil distillation column, 2) physical properties of palm 
oil components, and 3) pore size determination for 
membrane characterisation. 
 

II. CRUDE OIL DISTILLATION COLUMN 

A. Background 
The ANN models developed for the industrial crude oil 
distillation column is for use in real-time optimisation 
(RTO).  RTO, which is the continuous evaluation and 
adjustment of a process operating conditions to optimise the 
economic productivity subject to constraints, traditionally 
uses steady state first principles (FP) models.  Developing 
FP models require in-depth knowledge of material, energy 
and momentum conservation, as well as thermodynamics 
and kinetics, of the processes.  As a result, the model is 
complex and requires a high level of expertise to develop 
and maintain.  Model development is also time-consuming 
and expensive.   The crude tower is a practical candidate 
for RTO due to variations in operating conditions and its 
complex, multivariable nature.   

 
Figure 5.  Schematic diagram of the crude oil distillation 
column. 
 
 

 B. Model Development 
The ANN models developed are steady-state, multivariable 
models for the complete process. This is different than 
ANN models developed for process control or other off-
line applications, which are dynamic models used to predict 
one or two variables.  RTO requires steady-state models 
that can yield all output variables required by the optimiser.  
For large, multivariable processes, there can be more than 
100 input and output variables.  In addition, since the 
application is on-line, the models must also have short 
computation times.   

The model for the crude tower is divided into the following 
sections: 1) top (T), 2) heavy naphtha stripper (HN), 3) 
kerosene stripper (K), 4) diesel stripper (D), 5) AGO 
stripper (AG), and 6) bottom (B).  Only variables 
associated with the particular section are included in the 
network model.  Product from the side draws must meet 
certain specifications.  Operators obtain these specifications 
from the production planning section and adjust the tower 
operating conditions (ie. set points) to ensure on-spec 
products.  The quality specifications are sampled and tested 
off-line once during each shift - twice a day - at 06:00 and 
18:00, in the quality control laboratory.  Therefore, the 
ability to predict these cold properties would be an added 
advantage.  Table 1 lists the specifications and the 
corresponding products and manipulated variables.  Since 
the results of the different sections are similar, only the 
results obtained on the top and heavy naphtha (HN) stripper 
are shown in this paper.   

 
Figure 5 shows a schematic diagram of the crude 
distillation column,.  The column has four pumparounds 
(p/a), four side strippers and six product streams, which are 
the distillate, heavy naphtha, kerosene, diesel, atmospheric 
gas oil (AGO) and low sulphur waxy residue (LSWR) 
streams.  In actual operation, the product draw-off 
flowrates are adjusted to ensure on-specification products 
and to achieve the targeted production rate.  The feed flow 
rate is adjusted according to the production target.  Feed 
going into the column consists of a mixture of two different 
feed streams: a condensate stream, of which the light 
components were first flashed off, and a sweet crude oil 
stream.  The feed composition depends on the mixture of 
the oil being fed to the column.   

 
To develop the ANN model, data were first generated for 
the purpose of training and testing.  A reconciled steady 
state simulation of the crude tower was developed in a 
process simulation package, Aspen Plus, using the 
PETROFRAC model, a rigorous tray by tray equilibrium 
based distillation column model designed specifically for 
petroleum applications.  The main column, side strippers, 
pumparounds and condenser were all modelled as part of 
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the column with PETROFRAC.  The feed stream 
compositions were approximated with seven conventional 
components ranging from C2 to C5, and about 50 pseudo-
components.  The Peng-Robinson equation of state, which 
is recommended for refinery applications [Aspen 
Technologies, 1995], was used to calculate all 
thermodynamic properties.  
 
 
Table 1.  Product specifications and manipulated variables. 
  

 Specifications/ 
Properties 

Manipulated Variables 

Heavy 
Naphtha 

IBP 
FBP 

Top temperature or Q 
HN draw 

Kerosene 
 

Flash Point / IBP 
 
Freeze Point / FBP 

HN draw  
SS 
Kerosene draw 

Diesel 
 

Pour Point / Colour 
IBP 
FBP 

Diesel draw 
Kerosene draw 
Diesel draw 

AGO 
 

Pour Point / Colour 
IBP 
FBP 

AGO draw 
Diesel draw 
AGO draw 

LSWR Pour Point AGO draw 
Note:  IBP is initial boiling point 

  FBP is final boiling point 
  Q is reboiler duty 
  SS is stripping steam rate 
 
 
The sensitivity analysis feature in Aspen Plus was used to 
generate training and testing data for the crude tower.  Input 
variables for the ANN models include the feed flow rates 
for the two feed streams, and the specified variables of a 
particular section for the tower operation.  The output 
variables are the dependant variables that were needed by 
the optimiser and were calculated due to changes in the 
input variables.  Ranges for the variables were within the 
operating region of the column.  Within this region, the 
variables in each section of the column have negligible 
influence on other sections in the column, except the 
sections that are immediately above and below it.  This 
allowed data to be generated one section at a time.  
 
For the top and heavy naphtha (HN) sections, the input 
variables are the feed flow-rates of the condensate and 
crude oil, heavy naphtha draw rate and kerosene draw rate.  
The output variables are the top temperature (TTOP), reflux 
ratio (RR), condensate duty (QCOND), top pump-around 
(PAT), HN pump-around (PAH), top and bottom 
temperatures of the HN stripper (TTOPH and TBOTH 
respectively), initial and final boiling points of HN product 
(IBPH and FBPH respectively), and HN density (RHOH).  
IBPH, FBPH and RHOH are cold properties used to gauge 
the quality of the heavy naphtha product.   
 
In this work, all ANN models were developed in MATLAB 
environment and utilizes MATLAB neural network 
toolbox.  The type of ANN chosen was the radial basis 

function networks (RBFN), a feed forward network that has 
a single hidden layer of nodes with Gaussian density 
function.  MATLAB uses the orthogonal least squares 
(OLS) algorithm by Chen et al. [1991] to solve for the RBF 
centers and weights for the connections between the nodes 
in the hidden and output layers.  To develop the RBFN 
models, other than specifying an error goal, the spread 
constant, σ, which determines the width of the receptive 
fields must also be specified.  σ should be large enough for 
the receptive fields to overlap one another to amply cover 
the whole input range.  Nevertheless, it should not be too 
large that there is no distinction between the output of 
different nodes in the same area of the input space.  For the 
RBFN models, the OLS algorithm calculated the number of 
hidden nodes.   
 
Evaluations of the models are based on root mean squared 
(RMS) error from each model prediction.  Error is defined 
as the difference between desired (or actual value provided 
by the testing data) output value and the predicted output 
value.  Training time was also taken into consideration, 
mainly because of the convenience in developing models 
with short training times.  Nevertheless, this is not as 
important as RMS error because once a connectionist 
model is trained, the execution of the model is very fast.  
The training time will only be a major concern when the 
model is periodically updated on-line.  For all the models, 
the results presented in this paper are the best ones obtained 
after numerous trials of different training error tolerance 
and spread constant.  
 
The crude tower model was not developed as a single 
lumped system.  Since changes within the operating range 
for a section in the crude distillation tower affects only the 
sections that are immediately above and below the section, 
this allows the crude tower model to be divided into 
sections where the variables that are related are grouped 
together, and thus make the model more manageable.   
 

C. Results and Discussions 
 
Several techniques may be used to predict all the output 
variables.  One way would be to predict all the variables in 
the crude tower using a single RBFN model, which would 
result in a single, large model.  On the other hand, the 
variables may also be predicted individually (ie. one at a 
time), which would result in many RBFN models, each 
with a single output.  The variables may also be grouped 
either randomly or according to the respective sections.   
 
To determine if the grouping of output variables had a 
strong influence on the prediction, the variables in the first 
two sections at the top of the column were predicted 
individually and in different groups.  The results are shown 
in Table 2, where the first 11 output variables (from Ttop to 
RhoH) were predicted individually.   
Table 2 lists the prediction error for the top section and the 
HN section of the column.  From Table 2, it can be seen 



Invited paper for Malaysia-Japan Seminar on Artificial Intelligence Applications in Industry, 24-25 June 2003, Kuala Lumpur. 

that for almost all the variables, the RMS errors are smaller 
when the variables are grouped together in a suitable 
combination.  For example, the RMS errors for variables at 
the top of the column, Ttop, Ovhd, RR, Qcond and PAT are 
0.0048, 0.0029, 0.0046, 0.0033 and 0.0140 respectively 
when predicted individually, compared to 0.0014, 0.0015, 
0.0025, 0.0017 and 0.0075 respectively when predicted 
together.  This is also true with the variables in the HN 
section. 
 
Table 2: RMS errors of variables of top and HN sections of 
the crude tower. 
Outputs Overall RMS 

Error 
 

Individual RMS Error 
Ttop 0.0048  
PAT 0.0140  
RR 0.0046  
Ovhd 0.0029  
Qcond 0.0033  
TtopH 0.0039  
TbotH 0.0039  
PAH 0.0099  
IBPH 0.0046  
FBPH 0.0046  
RhoH 0.0076  
IBPH, RR, Qcond 0.0134 0.0051, 0.0042, 0.0041 
Ttop,RR,Qcond 0.0067 0.0023, 0.0035, 0.0009 
Ttop, Ovhd, RR, 
Qcond, PAT 

0.0146 0.0014, 0.0015, 0.0025, 
0.0017,0.0075 

TtopH, TbotH, 
PAH, IBPH, 
FBPH, RhoH 

 0.0021, 0.0028, 
0.0121, 0.0029, 
0.0019, 0.0074 

 
 
The results also show that it is not advisable to combine 
unrelated variables.  For example, comparing the two 
variable combinations that are highlighted in bold letters in 
Table 2, the combination with IBPH, which is in a different 
section than RR and Qcond, the RMS error for RR and 
Qcond are higher than when the variables were combined 
with Ttop. 

III. PHYSICAL PROPERTIES OF PALM OIL COMPONENTS 

A. Background 
Physical properties are essential in the design of chemical 
processes.  The design of processes in the palm oil industry 
is of no exception.  Since palm oil is very significant in the 
Malaysian economy, determination of its properties are 
important. 
 
Palm oil, like other vegetable oils, are made up of mostly 
glyceridic components with some non-glyceridic 
components in small or trace quantities.  The chemical 
composition determines the chemical and physical 
characteristics of palm oil. 
 
Triglycerides, which are esters formed from glycerol and 
fatty acids, are the major component of the glyceridic 

material in palm oil.  The chain lengths of the fatty acids 
present in the triglycerides fall within a range from twelve 
to twenty carbons.  Palm oil triglycerides consist of 
myristic acid, stearic acid, linoleic acid, palmitic acid and 
oleic acid.  
 
The design and optimisation of processes can only be 
achieved with the availability of physical properties.  
Examples of these physical properties are density, 
viscosity, specific heat and vapour pressure.  These 
properties are not constants, but vary with temperature.   
 
The determination of physical properties of chemical 
components is found through experiments.  However, it is 
expensive and impossible to perform experiments for all 
variations of the independent variable.  The common 
practice is to fit these experimental data to suitable 
thermodynamic correlations.  For palm oil, there is a lack 
physical properties data and inadequate correlation methods 
for proper prediction [Morad 1995], which is definitely a 
setback in the development of local technology. 
 
In this research, instead of using the traditional 
thermodynamic correlations, ANN models were developed 
to calculate the values of the physical properties of palm oil 
components.  Models were developed for physical 
properties like density, specific heat and viscosity for 
several palm oil components.  This section describes the 
development of an ANN model for predicting the density of 
trilaurin. 

B. Model Development 
Experimental data of trilaurin for training and testing the 
network model were obtained from Morad [1995].  There 
are a total of 14 data points (ranging from 60oC to 190oC), 
of which 8 were used for training and 6 for testing.  These 
data were scaled between 0 to 1 to give better results. 
 
The ANN model chosen was the multi-layer perceptron 
(MLP) feed forward network that was trained using the 
Levenberg-Marquadt algorithm.  The network model has 
one hidden layer with five nodes and sigmoid activation 
function.  Similar to the crude tower models, the RMSE of 
the network prediction was calculated to find the best 
model. 
  
The density of trilaurin was also calculated using a group 
contribution method for calculating density, GCVOL 
[Morad 1995], for the purpose of comparison with the 
ANN model. 

C. Results and Discussion 
Table 3 gives the density prediction of the ANN model and 
the values calculated from the GCVOL correlation for the 
test data.  The scaled test data are plotted in Figure 2.  The 
RMSE calculated for the ANN model and the GCVOL 
correlation are 0.0081 and 0.2126 respectively.   
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Comparing the results obtained, the ANN model is better 
than the GCVOL method in representing the density of 
trilaurin.  Because of good prediction, the values for the test 
data from the ANN model is very difficult to distinguish 
from the experimental values in the graph shown in Figure 
2. 
 
From the results obtained, the ANN model was able to 
predict density very well, and therefore has potential for 
prediction of other properties for palm oil components. 
 
Table 3: Scaled and actual testing results for the density of 
trilaurin 

Experimental 

Data ANN Model 

GCVOL 

Correlation 

Tem

p 

(°C) Scaled g/ml Scaled g/ml Scaled g/ml 

70 0.7180 0.87978 0.7093 0.878881 1 0.908696

90 0.6168 0.8694 0.6132 0.869034 0.8193 0.890166

110 0.4809 0.85546 0.4830 0.855675 0.636 0.871413

130 0.3126 0.83819 0.3055 0.837469 0.4524 0.852538

150 0.1680 0.82337 0.1574 0.822282 0.2679 0.833617

170 0.0021 0.80635 0 0.806132 0.0835 0.8147 
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Figure 2: Comparison of ANN model prediction and 
GCVOL correlation with experimental data used for 
testing. 
 
 

IV. MEMBRANE CHARACTERISATION 

A. Background 
Various methods have been used to characterize the pore 
size and pore size distribution of hollow fiber membranes. 
The 3 general methods generally used are the i) microscopy 
observation method, ii) thermoporometry method and iii) 
permeation experiments. In cases of asymmetric hollow 
fiber membranes, due to the very small pore sizes, 
microfiltration characterization techniques such as 

microscopy observation method cannot be used for 
asymmetric membranes [Mulder , 1981]. Generally, the last 
method is used, based on permeation and rejection 
performance using reference molecules and particles. In 
order to characterize the pore size and pore size distribution 
from permeation experiments, quantitative transport model 
and the so-called “pore model” or hydrodynamic model has 
been used. In recent years the surface force pore flow 
model has been developed to correctly characterize the pore 
size and pore size distribution [Ani et al, 2002 and Tam et. 
al.1993]. It contained the interfacial force parameters and 
friction force parameters and the effect of concentration 
polarization and operating conditions. However, the 
mathematical solutions involved in the determining the pore 
size and pore size distribution involved complex equations, 
with trial and error calculations that is complicated and 
tedious. Thus, in this study, artificial neural network (ANN) 
is applied as an alternative method to estimate the pore size 
of the asymmetric hollow fibre membranes.  
 
In reviewing literature on membrane characterization, so far 
there has not been any work found that uses ANN for 
modeling. A hindering factor is the small number of data 
points available for training from permeation experiments. 
In an effort to overcome the obstacle, in addition to the 
multi-layer perceptron network (MLP), stacked network is 
also investigated.  This section describes an on-going 
project to develop an ANN model to predict the pore size 
asymmetric membrane.  The results shown are from the 
initial work on this study. 

B. Stacked Neural Network 
Using a single basic neural network with few experiment 
data points, it is difficult to guarantee that a good predictive 
model will be obtained in the complete experimental 
domain [Lanouette et al, 1999]. To improve the accuracy of 
a model when only a limited number of experimental data 
points in the training data set is available, stacked neural 
network is recommended [Wolpert, 1992]. Stacked neural 
network is a concept where several different neural network 
models are combined in order to improve model 
performance. Since each neural network representation can 
behave differently in different regions of the input space, 
representational accuracy over the entire input-output space 
can be improved by combining several neural network 
models [Zhang et al, 1997]. A sample architecture for a 
stacked neural network is shown in Figure 1. 

 
Starting from the identical training data set, a large number 
of different neural network models can be obtained, using 
each time a different set of initial weights or using a 
different subset of the training data set.  The outputs of 
these networks, called the level-0 models outputs, along 
with the original input data, are then used as inputs to other 
models, at a higher level in the stacking structure. The 
second level of model, called the level-1 model, is 
developed using the results of level-0 model. 
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A set of training data set is needed in order to develop the 
stacked neural network. Firstly, let us denote level-0 and 
level-1 data set as DL0 and DL1 respectively. For level-0, a 
few networks models have to be developed using data set 
DL0. Next, one experimental data point is removed from 
DL0. This subset is known as D1. By using the same 
method, more different subset of data Di can be obtained by 
removing different data points. Each of these subsets is 
then used as training data for the candidate ANN models 
that has been developed earlier. The output predicted by 
these models is combined with the actual output to develop 
level-1 models.  

 
In this study, we restricted our ANN models only to 
feedforward backpropagation function with one hidden 
layer. Two main methods have been used in this study to 
combine the individual neural network models; average 
output and stacked generalization. There exist numerous 
methods that can be used to average the output neural 
network models. A simple approach is to take equal 
weights for the individual networks [Zhang et al, 1997]. A 
second way is to obtain a weighted sum of each prediction, 
the weight corresponding to inverse of the contribution of 
each level to the sum of squares of the errors calculated 
which is known as weighted output [Lanouette et al, 1999].  
The third way is to combine the models is by using 
principal component analysis (PCA). 

 
Wolpert [1992] has studied another method, stacked 
generalization, where models are combined. Basically, the 
main concept of this method is stacking different models 
and a single ANN model represents the final result. The 
training data set is divided into a few subsets. These subsets 
are used to develop ANN models for level-0 models. The 
outputs from level-0 models is denoted as yi and true output 
as y. yi and y are used as training data to train the new ANN 
model, which is known as level-1 model. The output from 
this model is the final output for the entire stacked network.  
 

C. Model Development 
Raw experimental data used to develop the ANN models 
are shown in Table 4.   Single MLP network models were 
first investigated to predict the pore size with varying 
numbers of data points for training and testing.  Since the 
number of data points is small, a stacked ANN model was 
developed to investigate if there can be further 
improvement on the model. 
 
Table 4 : Raw data 
 Permeate Rate,  

PR X 1010kg/hr 

Solute 
Separation, f 

Membrane pore 

size, R X 1010m 

1 69.45 0.978 6.9 
2 69.63 0.965 8.2 
3 90.19 0.885 12.7 
4 112.13 0.857 13.2 
5 133.67 0.827 13.7 
6 156.94 0.679 18.2 

 
For the stacked network, ten individual MLP neural 
network models have been developed to estimate pore size 
with different subset of training data and network 
architecture. These are the level-0 models.  Data number 5 
are used for the overall model testing. To create the 1st 
training subset for ANN 1, data number 1 is taken out and 
assigned as the testing datum for ANN1. ANN1 is trained 
until the weights and biases have been optimized to give an 
acceptable training error. ANN1 was then tested with the 
test data in the generalization phase. ANN2 to ANN10 
were similarly formulated, except different training subsets 
and hidden nodes were used.  

D. Results and Discussion 
Table 5 gives the root mean square error (RMSE) for single 
network prediction.  The MLP model used had 5 nodes in 
the hidden layer.  As expected, as the number of training 
data increased from 3 to 5, the prediction error decreased.  
However, since the available number of experimental data 
is small, the RMSE is unsatisfactory.  
 
RMSE for stacked network with different methods of 
combination are shown in Table 6. This result shows that 
utilising an ANN as the level-1 model gave the best 
performance. Comparing the Tables 5 and 6, the stacked 
model gave a slight improvement over the single network 
models, except for the last combination technique.   
 
The results show that ANN has the potential to be used for 
membrane characterisation.  Nevertheless, further work is 
needed to improve the model to yield better and more 
reliable predictions, especially with the typically small 
number of data points available from experimental data. 
 
Table 5: Single network prediction. 

Training 
data set 

Testing data 
set 

RMSE 

2,4,6 1,3,5 0.3208 
1,2,4,6 3,5 0.2563 

1,2,3,4,6 5 0.1469 
 
 
Table 6: Stacked network prediction with different level-1 
models. 

Method RMSE 
ANN 0.1111 
Average 0.1314 
Weighted average 0.3261 
 

V. CONCLUSION 
Research done on the three cases described revealed further 
potential for the use of ANN in chemical engineering.  
From the results obtained, the ANN models were found to 
give at least satisfactory, if not excellent predictions.  
Although there are undoubtedly problems and setbacks to 
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be overcome, they only serve as challenges and motivating 
factors that fuels further interest in the area. 
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