ANALYSES OF MATERIAL FLOW IN TWO AND THREE-PLATE MOLDS FOR MOLD DESIGN SELECTION

SHAYFULL ZAMREE BIN ABD. RAHIM

A thesis submitted in partial fulfillment of the requirements for the award of the degree of Master's of Mechanical Engineering (Advance Manufacturing Technology)

Faculty of Mechanical Engineering
Universiti Teknologi Malaysia

Syukur Alhamdullillah to Allah S.W.T for giving me the spirit to complete this project. Deepest thanks to my beloved wife Azzurawaty, my family and all of my friends.

"You will win if you want"

ACKNOWLEDGEMENTS

My deepest appreciation goes towards my supervisor, Dr Ariffin Bin Haji

Abdul Razak for his superb guidance and encouragement throughout the progress of

this project. Without his constructive critiques, this project would not be successfully

accomplished.

Special thanks must go to En. Ruzaimi Md Saad and Infinite Zest Technology

Sdn. Bhd. especially to Mr. Sim Kha Poh, for their truly support, co-operation and

assistance. Thanks are also goes to my friends Azizone, Syukor, Rashidi, Tang,

Mustapa, Abd. Shukur, Basri, Wan, Din, Boy, Zamrud, Bani, Zack, Pian, Saiful,

Cikgu Man, Pak Long and especially to Muge who had helped me directly or

indirectly towards the project completion.

Finally, my very special, sincere and heartfelt gratitude goes to my beloved

wife for giving me tremendous courage while I was struggling with this project. Her

assistance and support was invaluable.

Shayfull Zamree Bin Abd. Rahim

June, 2006

iv

ABSTRAK

Kajian ini dijalankan dengan membuat perbandingan ke atas aliran bahan plastik ke dalam 2 dan 3-plat acuan untuk pemilihan rekabentuk acuan yang terbaik bagi proses suntikan plastik. Pengecas bateri bagi kamera video telah dipilih sebagai bahan kajian. Kajian dilakukan dengan mempertimbangkan semua jenis get (titik masukan aliran plastic ke dalam rongga acuan) yang bersesuaian bagi produk yang dipilih untuk direkabentuk di dalam 2 dan 3-plat acuan. Perisian Moldflow Mold Adviser kemudiannya digunakan untuk mengkaji permasalahan aliran bahan plastik terhadap sistem spru, pelari dan get bagi acuan 2 dan 3-plat. Di akhir kajian ini, di dapati perisian Moldflow Mold Adviser amat membantu di dalam menentukan kedudukan get, memberi panduan mengenai masa suntikan dan suhu nozel yang sesuai semasa proses suntikan plastik, meramalkan kadalaman permukaan berlekuk, kedudukan garis bahan plastik bercantum, kedudukan udara yang terperangkap dan corak aliran bahan berdasarkan kedudukan get, rekabentuk produk dan jenis bahan plastik yang digunakan. Selain itu, perisian ini juga akan memberikan gambaran sejauh mana ledingan dan kualiti penyejukan acuan berdasarkan produk dan rekabentuk saluran penyejuk. Berdasarkan keputusan-keputusan yang diperolehi daripada kajian didapati bahawa acuan 3-plat adalah paling sesuai bagi produk ini. Ini menunjukkan perisian Moldflow Mold Adviser amat berguna bagi membantu pereka bentuk produk dan jurutera pembuatan di dalam mereka bentuk produk, menentukan kedudukan get dan memilih jenis bahan plastik yang bersesuaian bagi produk yang direkabentuk.

ABSTRACT

This study was conducted to compare the flow of plastic material in two and three-plate mold in order to select the best mold design for plastic injection molding process. Battery Charger for Video Camera has been selected as a product to be studied. The study done by considering the suitable gate to locate for the selected part in designing two and three-plate injection molds. Then, the Moldflow Mold Adviser is used to analyze the effect of the material flow to sprue, runner and gate for two and three-plate molds. In the end of this research, Moldflow Mold Adviser helps in order to advise the best position of gate location, equivalent injection time and melting temperature during plastic injection molding process, to show the sink mark, weld line, air trap estimated and skin orientation based on gate location, part design and material used. Besides that, it also advises the warping and cooling quality estimated based on part and cooling channel designed. From the analysis result, three-plate mold is more suitable for this product. So, the Moldflow Mold Adviser is useful to help the designer and manufacturing engineer in designing product, to decide the best gate position and to choose the suitable types of plastic material for the part designed.

TABLE OF CONTENTS

TITLE

	DEC	CLARATION	ii
	DED	DICATION	iii
	ACK	KNOWLEDGEMENTS	iv
	ABS	TRAK	V
	ABS	TRACT	vi
	TAB	BLE OF CONTENTS	vii
	LIST	Γ OF TABLES	xiv
	LIST	Γ OF FIGURES	XV
	LIST	Γ OF APPENDICES	XXV
CHAPTER	INT	TITLE	PAGE
1	1.1	Introduction to the problem	1
	1.2	Objective of project	3
	1.3	Scope of the study	3
	1.4	Methodology of study	3
	1.5	Significance of finding	4
	1.6	Report structure	6
	1.7	Summary	6

i

2 LITERATURE REVIEWS ON PLASTIC INJECTION AND MOLDS

2.1	Introd	Introduction 7				
2.2	Type	Type of plastic materials				
	2.2.1	Thermoplastic	8			
	2.2.2	Thermoset	10			
2.3	Injecti	ion molding machine	12			
	2.3.1	The hopper	13			
	2.3.2	The barrel	13			
	2.3.3	The reciprocating screw	13			
		2.3.3.1 Plasticizing	14			
		2.3.3.2 Feed section	14			
		2.3.3.3 Transition section	14			
		2.3.3.4 Metering section	15			
	2.3.4	The nozzle	15			
	2.3.5	Hydraulic system	16			
	2.3.6	Control system	16			
	2.3.7	Clamping system	17			
2.4	Type	of injection molds	17			
	2.4.1	Cold runner injection molds	17			
	2.4.2	Hot runner injection molds	18			
	2.4.3	Three-plate injection molds	18			
	2.4.4	Cavity set (soft tool)	18			
2.5	Two a	and three-plate molds	19			
	2.5.1	Two-plate molds	19			
		2.5.1.1 Advantages of two-plate molds	20			
		2.5.1.2 Disadvantages of two-plate molds	21			
	2.5.2	Three-plates molds	21			
		2.5.2.1 Advantages of three-plate molds	22			
		2.5.2.2 Disadvantages of three-plate molds	22			
2.6	Molde	ed system	23			
2.7	Mold	making process flow	24			
	2.7.1	Machining process	26			
2.8	Mold	Mold design process 32				

	2.8.1	Function o	f molds base component	33
2.9	Mold r	naterials		38
2.10	Type o	f gates		39
	2.10.1	Direct or s	prue gate	40
	2.10.2	Pin point g	rates	41
	2.10.3	Sub-marin	e gate	41
	2.10.4	Ring or dia	aphragm gate	42
	2.10.5	Edge gate		43
	2.10.6	Fan gate		43
	2.10.7	Tab gate		44
	2.10.8	Flash gate		45
2.11	Design	of gates		46
	2.11.1	Gate locati	on	46
	2.11.2	Vent locati	ion	47
2.12	Mold t	emperature	control	48
2.13	Part de	sign guidel	ine for injection molding	50
	2.13.1	Wall thick	ness	51
	2.13.2	Parting line	e and ejection	52
	2.13.3	Ribs design	n	55
2.14	Machin	ne paramete	ers affected the material flow	57
	2.14.1	Molding pa	arameters	57
	2.14.2	Molding de	efinitions	58
	2.14.3	Critical par	rameters	59
2.15	Plastic	defects in i	njection molding	60
2.16	Theory	on materia	l flow into cavities	62
	2.16.1	Filling pha	ase	62
	2.16.2	Packing pl	hase	63
	2.16.3	Cooling pl	hase	64
2.17	Moldfl	ow analysis	S	65
	2.17.1	Type of M	Ioldflow analysis	66
		2.17.1.1	Moldflow Plastic Advisor (MPA)	67
		2.17.1.2	Moldflow Plastic Insight (MPI)	68
		2.17.1.2	Moldflow Plastic Xpert (MPX)	70
	2.17.2	Moldflow	Mold Adviser	72

		2.17.2.1	Analysis c	apabilities	73
			2.17.2.1.1	Plastic filling analysis	73
			2.17.2.1.2	Runner balanced analysis	73
			2.17.2.1.3	Sink mark analysis	74
			2.17.2.1.4	Cooling quality analysis	74
			2.17.2.1.5	Gate location analysis	74
			2.17.2.2.6	Molding window analysis	74
		2.17.3 Advantag	ges of mold	flow analysis	75
	2.18	Summary			76
2	DA DE				
3		Γ SELECTION			77
	3.1	Introduction			77
	3.2	Part design			82
	3.3	Part modification	1		83
	3.4	Summary			86
4	MOL	D DESIGN FOR	TWO-PLA	TE MOLDS	
	4.1	Introduction			87
	4.2	Type of gate cho	sen		88
	4.3	Gate position			89
	4.4	Estimated gate la	yout		90
	4.5	Distance between	n parts		90
	4.6	Estimated insert	size		90
	4.7	Guide to determi	ne mold bas	e size	91
	4.8	Runner size			92
	4.9	Gate size			94
	4.10	Gating system fo	r two-plate	mold	95
	4.11	Designs for unde	rcuts area		97
	4.12	Complete design	of two-plate	e mold	101
	4.13	Summary			105
5	MOL	D DESIGN FOR	THREE-PI	LATE MOLDS	
	5.1	Introduction			106
	5.2	Type of gate cho	sen		107
		-			

	5.3	Gate p	position	108			
	5.4	Estim	ated gate layout	108			
	5.5	Distar	nce between parts	108			
	5.6	Estim	ated insert size	109			
	5.7	Guide	to determine mold base size	109			
	5.8	Runne	er size	110			
	5.9	Gate s	size	111			
	5.10	Gating	g system for three-plate mold	112			
	5.11	Desig	ns for undercuts area	113			
	5.12	Comp	elete design of three-plate mold	118			
	5.13	Sumn	nary	122			
6	COM	IPARIS	ON OF MOLDS DESIGNS				
	6.1	Introd	luction	123			
	6.2	Comp	parison of two and three-plate molds	123			
		6.2.1	Sprue bushing	124			
		6.2.2	Sprue puller	125			
		6.2.3	Additional four nylon bushing at				
			three-plate mold	127			
		6.2.4	Additional four pull pins	128			
		6.2.5	Stripper plate	128			
	6.3	Sumn	nary	130			
7	ANA	LYSIS	OF MATERIAL FLOW IN				
	TWO	TWO-PLATE MOLD					
	7.1	Introd	luction	131			
	7.2	Analy	rsis of gate location	131			
	7.3	Moldi	ing window analysis	134			
	7.4	Sink r	nark analysis	135			
	7.5	Runne	er balanced analysis	139			
	7.6	Plasti	c filling analysis	142			
		7.6.1	Confidence of fill	142			
		7.6.2	Flow front temperature	145			
		7.6.3	Skin orientation	147			

		7.6.4	Weld line prediction	149		
		7.6.5	Air trap estimated	150		
	7.7	Cooli	ng analysis	152		
	7.8	Warpa	age indicator	155		
	7.9	Sumn	nary	158		
8	ANA	LYSIS	OF MATERIAL FLOW IN			
	THR	EE-PL	ATE MOLD			
	8.1	Introd	luction	159		
	8.2	Analy	rsis of gate location	159		
	8.3	Moldi	ing window analysis	162		
	8.4	Sink r	nark analysis	163		
	8.5	Runne	er balanced analysis	165		
	8.6	Plasti	c filling analysis	168		
		8.6.1	Confidence of fill	168		
		8.6.2	Flow front temperature	171		
		8.6.3	Skin orientation	173		
		8.6.4	Weld line prediction	175		
		8.6.5	Air trap estimated	176		
	8.7	Cooli	ng analysis	178		
	8.8	Warpa	age indicator	181		
	8.9	Sumn	nary	183		
9	DISC	DISCUSSION				
	9.1	Introd	luction	184		
	9.2	Discu	ssion	184		
		9.2.1	Analysis of gate location	185		
		9.2.2	Molding window analysis	188		
		9.2.3	Sink mark analysis	190		
		9.2.4	Runner balanced analysis	193		
		9.2.5	Plastic filling analysis	194		
			9.2.5.1 Confidence of fill	194		
			9.2.5.2 Flow front temperature	196		
			9.2.5.3 Skin orientation	199		

		9.2.5.4 Weld line prediction	200
		9.2.5.5 Air trap estimated	203
		9.2.6 Cooling analysis	205
		9.2.7 Warpage indicator	206
	9.3	Summary	210
10	CON	CLUSIONS	
	10.1	Introduction	211
	10.2	Conclusions	211
	10.3	Future work recommendations	216
REFEREN	CES		217
A DDENINI	CEC		219-230
APPENDIO	CES		Z19-Z3U

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Plastic defects in injection molding process	61
4.1	Types of gates chosen for two-plate mold	88
4.2	Customary dimension of gates	94
5.1	Types of gates chosen for three-plate mold	107
6.1	Advantages and disadvantages of two	
	and three-plate molds	129
7.1	The changes advised by the Moldflow Mold Adviser	141
7.2	Risk of the part filling base on color	142
7.3	Color or assessment for warpage indicator	155
8.1	The changes advised by the Moldflow Mold Adviser	167
8.2	The risk of the part filling base on color	168
8.3	Color or assessment for warpage indicator	181

LIST OF FIGURES

FIGURE NO	. TITLE	PAGE
1.1	Project flow chart	5
2.1	Injection molding machine	12
2.2	A single screw injection molding machine for thermoplastics	12
2.3	A reciprocating screw	13
2.4	(a) Nozzle with barrel in processing position	
	(b) Nozzle with barrel backed out for purging.	16
2.5	A two-plate mold	20
2.6	A three-plate mold	21
2.7	The molded system includes a delivery system	
	and molded parts	23
2.8	Mold making process flow	25
2.9	CNC Machine	26
2.10	Control panel of CNC Machine	26
2.11	CNC Machine machining the copper to EDM core	
	and cavity insert	26
2.12	Manual polishing for final finishing	26
2.13	EDM-Wirecut Machine used to wirecut	
	sub-insert and ejector pin hole	27
2.14	Sub-insert produced by EDM-Wirecuting process	27
2.15	EDM-Die Sinking Machine	28
2.16	EDM the locating ring of the mold	28
2.17	Grinding Machine	29
2.18	Grinding Wheels	29
2.19	Milling Machine	30

FIGURE N	O. TITLE	PAGE
2.20	Drilling Machine	30
2.21	Mold with complete assembly	31
2.22	Explode view of mold base	36
2.23	Section view of mold base	37
2.24	Direct or Sprue gate	40
2.25	Pin gate	41
2.26	Sub-marine gate	42
2.27	Ring or diaphragm gate	42
2.28	Edge gate	43
2.29	Fan gate	44
2.30	Tab gate	44
2.31	Flash gate	45
2.32	Recommended depth and pitch of mold cooling channel	49
2.33	Solid and coring	51
2.34	Wall thickness transition	52
2.35	Draft angle design	53
2.36	Draft angle design	53
2.37	Example of parting line mismatches design	54
2.38	Design to avoid undercut	54
2.39	Design with knockout consideration	55
2.40	Ribs design guideline	56
2.41	Material flow into cavities	62
2.42	The end of filling image packing phase	64

FIGURE	NO. TITLE	PAGE
3.1	Position of m-PPE among the major resins	78
3.2	Battery Charger Nikon (top view)	78
3.3	Battery Charger Nikon (Front View)	78
3.4	Battery Charger Nikon (Bottom View)	79
3.5	Current mold for top case (2-cavities)	79
3.6	Current mold for bottom case (2-cavities)	80
3.7	Material specification for m-PPE resin	81
3.8	Original design of top case	82
3.9	Original design of top case	82
3.10	Original design of bottom case	83
3.11	Improvement design of top case	84
3.12	Improvement design of top case	85
4.1	Gate position for two-plate molds	89
4.2	Gate position covered with connector	
	after complete assembly	89
4.3	Estimated insert size	90
4.4	Runner design	93
4.5	Sub-marine gate for two-plate mold	95
4.6	Sub-marine gate for two-plate mold	95
4.7	Sub-marine gate for two-plate mold	96
4.8	Undercut at top case	97
4.9	Undercut at top case	97
4.10	Undercut at bottom case	98
4.11	Undercut at bottom case	98

FIGURE	NO. TITLE	PAGE
4.12	Slider concept	99
4.13	Angular pin concept	100
4.14	Complete set of two-plate mold	101
4.15	Cavity side view of two-plate mold	102
4.16	Core side view of two-plate mold	103
4.17	Core side view of two-plate mold	104
5.1	Gate position placed on the center of the parts	108
5.2	Estimated Insert Size	119
5.3	Pin point gate for three-plate mold	112
5.4	Pin point gate for three-plate mold	112
5.5	Pin point gate for three-plate mold	113
5.6	Undercuts at top case	114
5.7	Undercut at top case	114
5.8	Undercut at bottom case	114
5.9	Undercuts at bottom case	115
5.10	Slider concept	116
5.11	Angular pin concept	117
5.12	Complete set of three-plate mold	118
5.13	Cavity side view of three-plate mold	119
5.14	Core side view of three-plate mold	120
5.15	Cavity plate of three-plate mold	121
6.1	Types of sprue bushing usually used in	
	two and three-plate molds	124
6.2	Sprue puller for three-plate molds	125

FIGURE NO	. TITLE	PAGE
6.3	Sprue puller for two-plate molds	126
6.4	Nylon Bushing screwed into the core plate	127
6.5	Pull Pins pull the cavity plate	128
7.1	Analysis of the best gate locations for the top case	132
7.2	Analysis of the best gate locations for the top case	132
7.3	Analysis of the best gate locations for the bottom case	133
7.4	Analysis of the best gate locations for the bottom case	133
7.5	Equivalent injection time and melting temperature	
	based on the part design, gate location and types of	
	material used for two-plate mold	134
7.6	Sink Mark estimated for the top case by using	
	sub-marine gate	135
7.7	Sink Mark estimated for the bottom case by using	
	sub-marine gate	136
7.8	The modification need to do at the top case to improve	
	sink mark by using sub-marine gate (add thickness 0.5mm)	136
7.9	Sink mark at the top case by using sub-marine gate after	
	add rib thickness 0.5mm	137
7.10	Sink mark at the top case by using sub-marine gate after	
	add rib thickness 0.5mm	137
7.11	Sink mark at the top case by using sub-marine gate after	
	add rib thickness 0.5mm	138
7.12	Gating system for two-plate mold	139
7.13	Fill time by using the original design of sub-marine gate	140

FIGURE NO	. TITLE	PAGE
7.14	Sub-marine gate which using in two-plate mold	140
7.15	Fill time by changes the dimension of original sub-marine	
	gate as per moldflow advised	141
7.16	Confidence of filling by using sub-marine gate	143
7.17	Confidence of filling by using sub-marine gate	143
7.18	Short shot happen in bottom case by using sub-marine gate	144
7.19	Short shot happen in bottom case by using sub-marine gate	144
7.20	Flow front temperature by using sub-marine gate	145
7.21	Flow front temperature by using sub-marine gate	146
7.22	Skin orientation on the top case by using sub-marine gate	147
7.23	Skin orientation on the bottom case by using sub-marine gate	148
7.24	Weld line prediction by using sub-marine gate	149
7.25	Air trap estimated by using sub-marine gate	
	in two-plate mold	150
7.26	Air trap estimated by using sub-marine gate	
	in two-plate mold	151
7.27	Surface temperature variance by using sub-marine gate	152
7.28	Surface temperature variance by using sub-marine gate	153
7.29	Freeze time variance by using sub-marine gate	153
7.30	Freeze time variance by using sub-marine gate	154
7.31	Cooling quality result by using sub-marine gate	154
7.32	Warpage indicator by using sub-marine gate	
	(NMD = 0.1mm)	156

FIGURE NO	. TITLE	PAGE
7.33	Warpage indicator by using sub-marine gate	
	(NMD = 0.2mm)	156
7.34	Warpage indicator by using sub-marine gate	
	(NMD = 0.25mm)	157
8.1	Analysis of the best gate locations for the top case	160
8.2	Analysis of the best gate locations for the top case	160
8.3	Analysis of the best gate locations for the bottom case	161
8.4	Analysis of the best gate locations for the bottom case	161
8.5	Equivalent injection time and melting temperature	
	based on the part design, gate location and types of material	
	used for three-plate mold	162
8.6	Sink Mark estimated for the top case by using	
	pin point gate	163
8.7	Sink Mark estimated for the bottom case by using	
	pin point gate	164
8.8	Gating system for three-plate mold	165
8.9	Filling time by using the original design of pin point gate	166
8.10	Pin point gate which using in three-plate mold	166
8.11	The Fill time by changes the dimension of original pin point	
	gate as per moldflow advised	167
8.12	Confidence of filling by using pin point gate	169
8.13	Confidence of filling by using pin point gate	169
8.14	Short shot happen in bottom case by using pin point gate	170
8.15	Flow front temperature by using pin point gate	171

FIGURE NO.	. TITLE	PAGE
8.16	Flow front temperature by using pin point gate	172
8.17	Skin orientation on the top case by using pin point gate	173
8.18	Skin orientation on the bottom case by using pin point gate	174
8.19	Weld line prediction by using pin point gate	175
8.20	Air trap estimated by using pin point gate in three-plate mold	176
8.21	Air trap estimated by using pin point gate in three-plate mold	177
8.22	Surface temperature variance by using pin point gate	178
8.23	Surface temperature variance by using pin point gate	179
8.24	Freeze time variance by using pin point gate	179
8.25	Freeze time variance by using pin point gate	180
8.26	The cooling quality result by using pin point gate	180
8.27	Warpage indicator by using pin point gate	
	(NMD = 0.2mm)	182
8.28	Warpage indicator by using pin point gate	
	(NMD = 0.1mm)	182
9.1	Analysis of the best gate locations for the bottom case	
	by using sub-marine gate in two-plate mold	186
9.2	Analysis of the best gate locations for the top case	
	by using sub-marine gate in two-plate mold	186
9.3	Analysis of the best gate locations for the top case	
	by using pin point gate in three-plate mold	187
9.4	Analysis of the best gate locations for the bottom case	
	by using pin point gate in three-plate mold	187

FIGURE NO	O. TITLE	PAGE
9.5	Equivalent injection time and melting temperature	
	based on the part design, gate location and types of	
	material used for two-plate mold	189
9.6	Equivalent injection time and melting temperature	
	based on the part design, gate location and types of	
	material used for three-plate mold	189
9.7	Sink Mark estimated for the top case by using	
	sub-marine gate	191
9.8	The modification need to do at the top case to improve	
	sink mark by using sub-marine gate (add thickness 0.5mm)	191
9.9	Sink mark at the top case by using sub-marine gate after	
	add rib thickness 0.5mm	192
9.10	Confidence of fill result displays	194
9.11	Flow front temperature result displays	196
9.12	Flow front temperature by using sub-marine gate	197
9.13	Flow front temperature by using pin point gate	198
9.14	Flow front temperature by using sub-marine gate	200
9.15	Weld line prediction by using sub-marine gate	201
9.16	Flow front temperature by using pin point gate	201
9.17	Weld line prediction by using pin point gate	202
9.18	Air trap estimation by using pin point gate in three-plate mold	203
9.19	Air trap estimation by using sub-marine gate in two-plate mole	1 204
9.20	Cooling quality result by using pin point gate	
	and sub-marine gate	205
9.21	Warpage because of orientation of molecule	206

FIGURE	ZNO. TITLE	PAGE
0.22	Warraga hasaya of differential applies	207
9.22	Warpage because of differential cooling	207
9.23	Warpage because of differential shrinkage	208
9.24	Warpage indicator by using sub-marine gate	
	(NMD = 0.25mm)	209
9.25	Warpage indicator by using pin point gate	
	(NMD = 0.2mm)	209

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
A1	Gantt chart for first semester	219
A2	Gantt chart for second semester	220
B1	Drawing of two-plate mold (core side view)	221
B2	Drawing of two-plate mold (section DD)	222
В3	Drawing of two-plate mold (section EE)	223
B4	Drawing of two-plate mold (section FF)	224
B5	Complete assembly drawing of two-plate mold	225
C1	Drawing of three-plate mold (Core side view)	226
C2	Drawing of three-plate mold (section LL)	227
C3	Drawing of three-plate mold (section MM)	228
C4	Drawing of three-plate mold (section NN)	229
C5	Complete assembly drawing of three-plate mold	230

CHAPTER 1

INTRODUCTION

1.1 Introduction to the Problem

Plastics industry is one of the fastest growing major industries in the world. Every year, the amounts of the plastic products used are increasing. A good example can be seen is in the increase in percentage of plastics used in automobiles today's compared to 15 years ago.

The continuous rate of growth in the industry hinges on the development of improvement and invention of new thermoplastics with greater physical properties. This has opened the door to applications which is never thought possible before. These are emerging both as product innovations and as existing products converted from materials such as metal, glass, wood or paper to plastics for competitive and economic advantages.

The advantages of plastic injection molding are:

- High production rates
- High tolerances are repeatable
- Wide range of materials can be used

- Low labor costs
- Minimal scrap losses
- Little need to finish parts after molding

Meanwhile the disadvantages of plastic injection molding are:

- Expensive equipment investment
- Running costs may be high
- Parts must be designed with molding consideration

The injection mold will directly influence the stress level of the molded product and this has a significant effect on the plastic part properties and how they will ultimately perform when in use.

Injection molds are precise tools that are extremely rugged and can withstand hundred of thousands of continues cycle runs. When an injection molds is properly designed and precisely built, it allows the molds to economically produce plastic parts that will allow the plastic material to perform to its full capabilities. The maximum benefits are achieved with any plastic material and molded product on a well designed and builds molds.

Mold making is a science and not an art. If the mold making not a science then the molder would not be able to reproduce the same part, time and time again with negligible variations and close tolerance, especially when duplicate molds are builds with several cavities of the same part.

Mold designing is the beginning of the manufacturing (production) process and it marks the end of the product development process. The mold design cannot be started until the complete product design and the development have been accepted, followed by the model of actual product have been approved.

So, here the material flow into two and three-plate molds will be analyzed by using mold flow adviser. The capabilities of this software can help to built or design a good mold for injection molding.

1.2 Objective of Project

The objective of this project is to do the analysis by comparing the material flow in two and three-plate molds for injection molding process.

1.3 Scope of the Project

The scope of the study for this project consists:

- Two and three-plate molds
- Factors defected the flow of material to avoid plastic defect
- Moldflow Mold Adviser software for material flow analysis

1.4 Methodology of Study

This research is divided into two parts. Part one is done in first semester and part two is done in the second semester. The activities of part one consists of literature review on plastic injection molding process, analyzing the molds design including the consideration on tooling structure, tooling types, types of gates, air vent, cooling channel and others. Then one product is selected to be used in the study. Based on that product, the molds two and three-plate molds will be designed by using Unigraphics software. Then it is further continued with the study of plastic defect and the machine parameter which affects the material flow into two and three-plate molds. Part two of this project starts with the analysis of the two-plate molds which has been designed in part one of project by using "Mold Flow Adviser". Three-plate molds are also analyzed. Then the material flow into both of these types of molds will be compared.

1.5 Significance of Finding

The research will produce the new molds design (two and three-plate molds) for the selected product. Hopefully at the end of this project, the research will be:

- Able to understand the mold structure for injection molding process
- Able to design two and three-plate molds for the part selected and any parts in the future
- Able to use Mold Flow Adviser software to do analysis of the material flow into two and three-plate mold designed for part selected and others parts in the future

Figure 1.1 shows the flow chart of the activities done for this project.

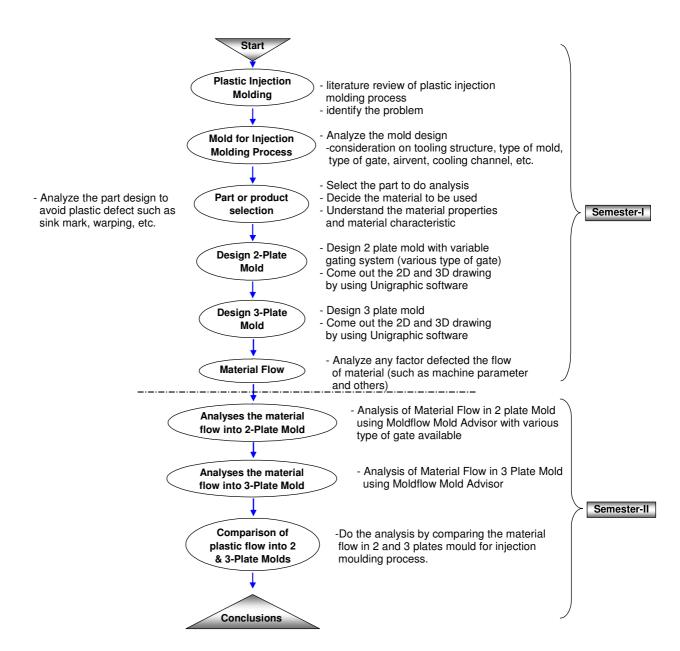


Figure 1.1: Project flow chart

1.6 Report Structure

This report consists of ten chapters.

- Chapter 1: Introduction, introduction of the research problem in the plastic injection molding process.
- Chapter 2: Literature reviews and overview of the plastic injection and molds.
- Chapter 3: Part selection, presented the part which are chosen to do the analysis.
- Chapter 4: Mold design for two-plate mold, explain how the two-plate molds designed for the part selected.
- Chapter 5: Mold design for three-plate mold, explain how the three-plate molds designed for the part selected.
- Chapter 6: Comparison of mold designs, the comparison of two and three-plate mold for the part selected.
- Chapter 7: Analysis of material flow in two-plate mold, the analysis of material flow in two-plate mold by using Moldflow Mold Adviser software.
- Chapter 8: Analysis of material flow in three-plate mold, the analysis of material flow in three-plate mold by using Moldflow Mold Adviser software.
- Chapter 9: Discussion on the analysis of material flow results.
- Chapter 10: Conclusions, the conclusion and the future recommendation from this project.

1.7 Summary

In this chapter, the overview of the study such as, introduction to the research area, objective of the study, scope of the study and methodology of the study and also significance of findings is presented. The next chapter will discuss the literature reviews on plastic injection and molds.

REFERENCE

- 1) AC Technology, 1996. C-MOLD Design Guide. New York, USA.
- 2) Amstead, B.H., Ostwald, P.F. & Begeman, M.L. 1987. Manufacturing Processes, 8th Edition. John Wiley & Sons.
- A. Whelan. Injection Moulding Machines. Elsevier Applied Science Publishers Ltd, Essex, England; 1984
- 4) British Polymer Training Association, Injection Moulding Condition Setting.
- 5) British Polymer Training Association, Introduction to Injection Moulding.
- 6) British Polymer Training Association, Introduction to Mould Design.
- 7) Charles A. Harper. Modern plastics handbook, Penerbitan Mc Graw Hill; 2000
- 8) Cracknell, P.S. & Dyson, R.W. Handbook of Thermoplastic Injection Mould Design. Blackie Academic & Professional; 1993
- 9) Glanvill, A.B. & Denton, E.N. Injection Mould Design Fundamentals; 1965
- 10) Kalpakjian, S. Manufacturing Engineering and Technology, 3rd
 Edition.Addison Wesley Publishing Company; 1995

- 11) L.Sors and I.Balazs, Design of Plastic Moulds and Dies, Elsevier Science Publishers, Amsterdam; 1989
- 12) Menges, G.Mohren ,P. How To Make Injection Molds ,2nd Edition; 1993
- 13) R.G.W Pye: Injection mold design. Penerbitan Longman; 4th 1993
- 14) www.geplastic.com
- 15) www.moldflow.com