friried applied
b sciences

Article

End-to-End Deep Reinforcement Learning for Decentralized
Task Allocation and Navigation for a Multi-Robot System *

Ahmed Elfakharany *+

check for

updates
Citation: Elfakharany, A.; Ismail, Z.
H. End-to-End Deep Reinforcement
Learning for Decentralized Task
Allocation and Navigation for a
Multi-Robot System. Appl. Sci. 2021,
11, 2895. https://dx.doi.org/
10.3390/app11072895

Academic Editor: Oscar Reinoso

Garcia

Received: 31 December 2020
Accepted: 15 March 2021
Published: 24 March 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

and Zool Hilmi Ismail **

Center for Artificial Intelligence & Robotics, Malaysia Japan International Institute of Technology,

Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia

*  Correspondence: efahmed@graduate.utm.my (A.E.); zool@utm.my (Z.H.I.)

1t This paper is an extended version of our paper published in The Fourth International Conference on
Advanced Technology and Applied Sciences (ICaTAS 2019), Cairo, Egypt, 10-12 September 2019.

f These authors contributed equally to this work.

Abstract: In this paper, we present a novel deep reinforcement learning (DRL) based method that is
used to perform multi-robot task allocation (MRTA) and navigation in an end-to-end fashion. The
policy operates in a decentralized manner mapping raw sensor measurements to the robot’s steering
commands without the need to construct a map of the environment. We also present a new metric
called the Task Allocation Index (TAI), which measures the performance of a method that performs
MRTA and navigation from end-to-end in performing MRTA. The policy was trained on a simulated
gazebo environment. The centralized learning and decentralized execution paradigm was used for
training the policy. The policy was evaluated quantitatively and visually. The simulation results
showed the effectiveness of the proposed method deployed on multiple Turtlebot3 robots.

Keywords: deep reinforcement learning; task allocation; navigation; multi-robot systems

1. Introduction

Classical multi-robot systems (MRS) usually have two main steps: task allocation
and task execution. In the context of multiple homogeneous mobile robots in which the
tasks being executed are reaching multiple goal positions, the two main MRS steps become
multi-robot task allocation (MRTA) and navigation. The MRTA algorithm’s role is to assign
tasks to robots in order to decrease the total cost exerted by all of the robots [1]. On the
other hand, the navigation part usually includes multi-robot path planning algorithms
(MPPs) [2], which plan paths for multiple robots to avoid any collisions between the robots
or other obstacles. The problem arising due to the decoupling of both algorithms is that
most MRTA algorithms do not adjust for any cost changes in the paths of the robots [3]
due to multiple reasons, for example: dynamic obstacles or partial observability.

Reinforcement learning (RL) is a branch of machine learning in which an agent is
interacting with the environment by receiving a state from the environment, then taking an
action. There is a reward signal that signals the quality of the action. The goal of an RL
algorithm is to learn through a heuristic approach how to maximize not only the immediate
reward, but also the subsequent rewards [4]. One of the drawbacks of RL algorithms is their
lack of scalability in terms of the dimensionality of the state of the environment; thus, their
use is limited to solving low-dimensional problems [5]. The rise of deep neural networks
as a powerful tool that can learn to find compact features of high-dimensional data has led
to the introduction of the field of deep reinforcement learning (DRL) [5].

Researchers in the field of multi-robot systems (MRS) became attracted to DRL due to
its ability to handle high-dimensional data [6] and the fact that RL algorithms are model
free and have the ability to handle nonlinear, stochastic dynamics and non-quadratic
reward functions [7]. As for the MRTA problem, researchers have used DRL to solve the
MRTA problem, especially the fairness of the allocation problem [8] and the dynamic task
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allocation problem [9]. On the other hand, the use of DRL to solve the navigation problem
has been given more attention by researchers due to DRL's ability to learn decentralized
policies that can drive an MRS towards its goal positions [10-13]. As far as we know, there
is a gap in the literature where there have not been any proposed methods that combine
both MRTA and navigation.

In this paper, we propose a novel method that combines both MRTA and navigation
for a homogeneous multi-robot system. The method is a decentralized deep reinforcement
learning policy whose inputs are the raw sensor measurements and whose outputs are
the robot’s steering commands. The output of the policy should drive the robot from its
initial position to a unique goal position without colliding with other robots or obstacles.
We demonstrate that our method learned to perform both MRTA and navigation from
end-to-end effectively, and we compare our method to two methods from the literature that
only perform decentralized navigation for a multi-robot system. Thus, this paper is a first
step to address performing MRTA and navigation from end-to-end and shows promising
results that can be built on to enhance the current state of multi-robot systems.

The main contributions of this paper are:

* Anintroduction of a novel method that performs MRTA and navigation for a homo-
geneous multi-robot system from end-to-end using deep reinforcement learning.

. An introduction of a new metric called the Task Allocation Index (TAI), which mea-
sures the performance of navigation in MRTA.

2. Related Works

Recently, Zhu et al. [8] attempted to solve the fairness of allocation problem for a
team of heterogeneous robots with different capabilities to perform the tasks. The problem
they attempted to solve is an ST-MR-IAMRTA problem. They modeled the capability of a
robot as a resource used to accomplish the task. When for a group of tasks, each of them
requests a group of resources, the problem of the fairness of allocation arises. In order to
solve the fairness problem, each resource requester (task) should be allocated the resources
optimally to maximize the satisfaction of resource requesters. Zhu et al. [8] developed
a decentralized two-phase algorithm. The first phase is the resource requester selection,
which was modeled as a coordination game and solved using a deep Q-network (DQN) [14],
which was used to learn the optimal strategies. The second phase is a consensus based
algorithm for forming a team of robots to solve the task, thus only solving the MRTA
problem without addressing the navigation problem.

Chen et al. [10] used a DRL algorithm that performs decentralized multi-agent
collision avoidance. The DRL algorithm they used is a value network that uses the agent’s
joint configuration (positions and velocities) and the joint configurations of the other agents
to encode the estimated time to the given goal position. The advantage of using the value
network is its ability to run in real time and consider the uncertainty in the other agent’s
motion to predict a collision-free velocity vector. Chen et al. [10] designed their algorithm
to work in cases of unreliable communication between the agents, which requires the
value network to inherently predict the other agents’ intents. Hence, the other agents’
states are calculated using the agent’s sensor measurements. They modeled static obstacles
as stationary agents. They formulated the problem as a partially observable sequential
decision making problem. The value network was first trained by using supervised learning
(back-propagation) on a training dataset consisting of 500 trajectories generated using the
optimal reciprocal collision avoidance (ORCA) algorithm [15], then the trained weights
were used as the initialization to the DRL training. The value network was trained using a
modified Q-learning update [4]. A major drawback of the paper is that by treating obstacles
as stationary agents, the input size to the neural network increases with the increase of
the number of obstacles, leading to the network being impractical in environments with a
large number of obstacles. It is obvious from the paper that the value network effectively
performs navigation with both decentralized MPP and path tracking, but does not address
the MRTA problem.



Appl. Sci. 2021, 11, 2895

30f19

On the other hand, Lin et al. [11] developed a novel DRL method to navigate a team
of robots through an unknown environment. The aim of the method is drive a robot
team such that their geometric centroid reaches a goal position while avoiding collisions
and maintaining connectivity between the robots. The robots need to be within a certain
distance from each other to maintain the connectivity between them. The centralized
learning and decentralized execution were the mechanisms used to train the policy neural
network in which each robot has a copy of the policy network controlling it. The policy
network takes the raw readings of a 2D laser scanner, the goals’ relative position, and other
robots’ relative positions as the inputs and outputs continuous velocity controls. They
designed the reward function to be reaching the goal position, maintaining connectivity,
and achieving smooth motion, while it penalizes collisions. They trained their policy
network using proximal policy optimization (PPO) [16]. The paper only addressed the
issue of making the geometric centroid of the robot team reach the goal position and did
not address each robot’s terminal goal position.

Long et al. [12] developed a decentralized sensor level collision avoidance algorithm
for an MRS. The policy is a deep neural network (DNN) that maps directly between raw
sensor measurements to a differential robot’s linear and rotational velocities in order to
drive the robot towards its goal position. The policy network is decentralized in a way that
each robot has a copy of the network. At each time step, the policy network receives an
observation that consists of the readings of a 2D laser scanner, the goal’s position relative
to the robot, and the robot’s current linear and rotational velocities. The action space
from which the policy network samples the output is a continuous space in which the
linear velocity is in the range between [0.0,1.0] and the rotational velocity is in the range
between [—1.0,1.0]. Hence, the problem is formulated as a partially observable Markov
decision process (POMDP) [17]. They trained their neural network using proximal policy
optimization (PPO) [16]. They adapted the centralized learning, decentralized execution
paradigm in which each robot collects its own experiences (observations, actions, rewards)
and the policy is trained on the collective experiences gathered by all the robots. It is
obvious from the paper that it is similar to the approach used by Chen et al. [10] in which
the policy network effectively preforms navigation with both decentralized MPP and path
tracking when the goal positions are set for each robot, but the paper did not address the
MRTA problem.

Fan et al. [13] published subsequent work to Long et al.’s [12] work, in which they
validated Long et al.’s policy in real-world setups. They made two observations. The first
is that Long et al.’s policy does not perform optimally in some trivial situations in which
there are no obstacles or other agents nearby or when a robot is near its goal position. The
second is that although Long et al.’s policy has shown a very high success rate, it is still
prone to collisions even though these collision events are rare. Thus, Fan et al. proposed
integrating Long et al.’s policy into a hybrid control framework to further improve the
policy’s robustness and effectiveness. The hybrid control system is composed of three
separate sub-policies. The first policy is a PID policy that is used in cases where there are
no obstacles or other agents nearby or the goal position is very close to the robot’s current
position. The PID policy provides an almost optimal solution to move the robot towards
the goal position. The second policy is called the conservative safe policy, which is used in
cases when the robot is very close to other agents or obstacles. The conservative safe policy
uses Long et al.’s policy, but scales down the laser scanner input and sets a maximum
velocity to the policy’s output. The third policy is the same as Long et al.’s policy and is
used in cases that are different from that of the other two sub-policies. The results show
that the hybrid policy managed to navigate an MRS in a warehouse-like environment with
human workers around. The policy also managed to navigate a single robot safely in a
dense human crowd. Yet, it did not address the MRTA problem.

In summary, a review of some works from the literature that used DRL methods either
to solve the MRTA problem or the navigation problem is given. Table 1 shows a summary
of which works from the literature performed MRTA and which performed navigation
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and compares them with our proposed method. As far as we know, there has not been an
attempt to combine both MRTA and navigation in a single algorithm.

Table 1. The summary of the presented works from the literature that either perform multi-robot
task allocation (MRTA) or navigation using DRL.

Paper MRTA Navigation

Zhu et al. [8]

Chen et al. [10]

Lin etal. [11]

Long et al. [12]

Fan et al. [13]

Our proposed method

WX X X X«
CANNA X

3. Problem Formulation

The problem of multi-robot task allocation and navigation is defined in the context
of a differential drive mobile robot moving in a 2D plane with both static and dynamic
obstacles and other moving robots (all robots are homogeneous). The map is unknown;
thus, each robot has a 360° laser scanner mounted on it. The goal locations are laid out
in the environment. The number of goal locations equals the number of robots denoted
by N. We use the term ego-robot to describe the current robot whose perspective is used
to perform the measurements and the robot whose perspective is used by the policy to
compute actions.

Each robot i—where (1 <i < N)—at time step ¢ receives an observation O! and
calculates the output command af, which drives the robot from the start position P; towards

the goal position G;. The observation is drawn from a probability distribution p (Of |st, af) ,
which depends on the underlying system state and previous action. The observation
for each robot is composed of four parts: Of = [oé ,05, 0%, ofmx} , where 0! is the relative

positions of all the goals in the ego-robot’s local polar coordinates, o], is the relative positions
of all the goals in the other moving robots’ local polar coordinates, o} is the 2D laser scanner
measurements, while o}, is a vector containing the current time of the robot starting from
the beginning of the robot’s motion and the robot’s previous actions af ~1. The observation
only provides partial information about the robot’s state and the other robots’ states, which
leads the robot to predict the other robots” intent.

Given the observations, each robot calculates its own action independently. The action
is composed of two parts: at = [0} ,v!], where v} is the robot’s linear velocity and v!. is the
robot’s rotational velocity. The actions are sampled from two distributions produced by a
policy (7t), which is copied across all the robots:

al ~ 1q(at|O}) )

where 6 denotes the parameters of the policy. The output action guides the robot closer
towards the goal that the policy selected while avoiding collisions on the way to the goal
within the time limit between two observations. The target allocation is done in a way that
the policy does not explicitly select one of the goals, but outputs the actions that drive the
robot towards the selected goal position.

The problem is formulated as a partially observable Markov decision process
(POMDP) [17], in which a sequence of observations and actions is done by each robot
forming a trajectory 7; from its start position P! till the goal position chosen by the policy
gi, Where t? is the traveled time. The POMDP is episodic, and each episode ends either
by one of the robots having a collision, all the robots successfully reaching the unique
goals’ positions, or the maximum episode duration T, being exhausted.
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The main objective is to find an optimal policy that minimizes the expectation of the
total arrival time of all robots to their goals successfully, defined as:

argmin | E largmax (tlg | 7'(9) ‘| (2)
i

7Tg

4. Methodology
4.1. Deep Reinforcement Learning Setup

Within the deep reinforcement learning setup, the focus is on learning a policy that is
capable of controlling a robot in a decentralized manner within a multi-robot system. The
policy selects one goal position within multiple ones and produces a series of actions that
gets the robot to the goal position while avoiding collisions. Inherently, the policy should
learn the intents of other robots and which goal position each of the other robots is going
towards and aim for a different goal position. The policy learns by going through episodes
of collecting data.

4.1.1. Observation Description
The observation space—as mentioned in Section 3—consists of four components:

Of = [oﬁ, ,05,0f, ofmx} . o} is the relative goals’ positions in the ego-robot’s polar coordinates.

0! is a 3D tensor <0£€RWWN ) The first dimension g represents the values of the past
consecutive number of frames of this observation. The second dimension b represents
the goal’s distance and heading from the ego-robot in the ego-robot’s polar coordinates.
Thus, b = 2. The third dimension N is the number of goals in the environment. Since o}
encompasses the information of all the goals relative to the ego-robot, it enables the robot
to choose which goal position to aim towards. of, is the relative goals’ positions in the other
robots polar coordinates. of is a 4D tensor (OEERN —IxgxexN ) . The first dimension is the
number of the other robots N — 1, while the third dimension ¢ represents the goal’s distance
and heading from each of the other robots in its polar coordinates. Since o, encompasses
the information of all the goals relative to the other robots, it enables the ego-robot to
predict the intents of other robots and which robot is aiming towards which goal; this aids
the ego-robot to choose a unique goal position to aim towards. of is the 360° laser scanner
data of the ego-robot, and it is a 2D tensor (of eR1 X%O) . The second dimension represents
all 360 distance values. o} enables the robot to detect both static and dynamic obstacles
and helps the robot to navigate without collisions. Finally, o, is a 1D vector (ofw xeR3)
representing the time spent since the ego-robot started to move and the previous action,
which consists of: the linear velocity Uf ~! and rotational velocity v.~! of the ego-robot at
the last time step. Since the policy is required to train to minimize the expectation of the
total arrival time of all robots to their goals successfully, the policy for each robot requires
an input that informs it of the time it is spending while moving. Having the previous
action as an input informs the robot about its intent in the last time step.

4.1.2. Actions’ Description

The action space <af GRZ) consists of two parts: the robot’s linear velocity v} and the
robot’s rotational velocity v where a! = {vf , vﬁ} . The policy network has two output heads
(hv§ , hvﬁ ) , and each of them is a softmax distribution [4] that represents (vf , v£> , respec-

tively. Each softmax distribution is a K-dimensional categorical distribution (hv; oy eRK )

that makes the range of (argmax (hv;) ) and (argmax (hv£ )) between [0,k — 1] each. The
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category with the highest probability is converted to a continuous value within the range
[—1, 1] for each action. Equations (3) and (4) are used for the conversion.

v} = % (2 argmax (hvlt> + 1) -1 3)

ol = % (2 argmax (hv;) + 1) -1 4)

4.1.3. Reward Function

The reward function is designed to incentivize each robot to choose and move towards
a unique goal position while minimizing the time consumed to reach the goal position.
It penalizes collisions with obstacles or other robots and multiple robots reaching the same
goal position. Equation (5) shows the reward r received by robot i at time step ¢.

= ()4 () 0 (), ®

1 1

t
where (rd>. is used to incentivize the ego-robot to go towards a goal position. It is
1

calculated in Equation (7) using the matrix (GGRZXN ), which contains the positions

of all of the goals. The first row of G describes the x position of each goal, while the
second row describes the y position. The number of columns is the number of the goal

positions N. The robot position vector at time step t is described as (PiteRz). The ego-
robot receives a positive reward value 7y, if it reaches the goal position; otherwise,
it is either rewarded or penalized if it moves towards or away from the nearest goal
position { min (H G—Phj ||> ) . q" in Equation (6) is an intermediate variable that is used
in Equation (7) to simplify it.

: : -1
min (||G - Pif1;,\|) — min <||G .y 1;,||)

t 1

q = T (6)

(rd)t _ S Tiemina if min (]G = PAL ) <02 .

i weq' , otherwise

t
Equation (10) describes (r“’l ) , which is the reward function that penalizes the ego-

robot in case of collisions. The collisions with obstacles are detected using the 2D laser
scanner readings on the ego-robot (LteR%O) . The collisions with other robots are detected
by thresholding the distance between the ego-robot and other robots. The distance with
other robots is calculated using the matrix (Pé theRZXN ’1> , which describes the positions

of the other robots at time step f. In case a collision is detected, the ego-robot receives
a negative reward value —7;ping. condy in Equation (8) and cond; in Equation (9) are
intermediate variables that are used in Equation (10) to simplify it.

cond; = min (Lt) < 1.1R (8)

condy = min <HP¢§th - Pfl}\,_1||) < 2R )

(rcal)t _ ~Tterminal + Lf condy or condy (10)
i 0 , otherwise
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Equation (12) describes (r")f, which rewards or penalizes the ego-robot if it is moving
towards a unique goal position or towards a goal position that another robot is moving
towards. d,, in Equation (11) is an intermediate variable that is used in Equation (12) to
simplify it.

dotn = ‘ (11)

P, -G [argmin (HG - PflIT\]H)] 15,
(7())5 = Worn 10go (min (dosn)) + Worna (12)

t
Finally, Equation (13) describes (rt) _, which penalizes the ego-robot depending on
1
the amount of time it takes to reach a goal position. The ego-robot receives a negative
reward —7omina if the maximum episode duration T,y is exhausted before reaching a
goal position.

(I’t)t _ —Vterminal 7 ift 2> Twax (13)

i Wyt , otherwise
Tmﬂx

All the constants 7y.mina1, W, Woth1, Woth2, Tmax, and wy are set during experimenta-
tion, and the constant R depends on the robot dimensions.

4.2. Training Algorithm

The deep reinforcement learning algorithm used is the proximal policy optimization
(PPO) algorithm [16] with the actor-critic setup. We adapted the centralized learning,
decentralized execution paradigm [12] in which each robot has a copy of the policy 7y
and the value Vj networks. Both the policy and the value networks have different sets of
weights 6 and ¢, respectively.

Algorithm 1 summarizes the entire data collection and training process. At each time
step, each robot receives its observation O and uses its copy of the policy 74 to generate
the action af. Each robot collects its data (Olt, at, rf) from the environment, and after the
amount of data exceeds a certain threshold T, it sends the rollouts of data over to a
centralized copy of both the policy and the value networks. Then, the gradients of the
objective function L with respect to the centralized policy network weights 6 and value
network weights ¢ are computed. Then, the Adam optimizer [18] updates the weights ¢
and ¢ using the learning rate [, for E epochs. After each update, each robot receives a copy
of the update weights 6 and ¢ to start collecting a new batch of data. Thus, the policy and
value networks are trained on the experiences collected by all the robots simultaneously.

As shown in Algorithm 1, Line 27, the objective function L is a combination of three
objective functions. The first one is the PPO clipped surrogate objective function L7
with the generalized advantage function (GAE) [19] A! as the advantage estimator. The

GAE A! uses the value estimation obtained from the value network Vj (Of) as the a
baseline and A as the decay parameter. The PPO clipped surrogate objective function P
is used to update the policy network. The second objective function L? is used to train
the value network Vj, to reduce the mean squared error between the returns R and the
value estimation Vjp (Of) . The third objective function is the entropy L° of the policy, which

is used to ensure that the policy performs sufficient environment exploration over the
training period. Gradient ascent is performed on the objective function by performing
gradient descent on its negative value —L.
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Algorithm 1 PPO with a Multi-Robot System

1: Initialize policy network 7y old policy network 71g,/; and value network Vj
2: for iteration=1,2,... do

3: # Data collection
4: Ttotal ~0
5: for episode=1,2,... do
6: # robots are running in parallel
7: forrobot=1,2,... N do
8: Run policy 7ty for T; time steps, collecting (Ot at,rt ) where te[0, T}
9 Calculate GAE Al = Y17 (yA)! (rf AR (o;))
10: Calculate returns Rf = Al + V, (Of)
11: Ttotal _ Ttotal + T
12: Break if T; > Ty or a collision happens or each robot reaches a goal
13: end for
14: Break if T**?! > T*"N, and send the data rollout to train the centralized networks
15: end for
16: # Update policy and value
17: fold + 6
18: forj=1,2... Edo
19: # Policy loss
o m(allof)
20: (ratio)) = ———~—
TCoold (ﬂf |Of)
21: Lelir = tTmOtul min ((mtio)tAf , clip ((ratio)tAf, 1—¢1+ 6) )) / Ttotal
22: # Value loss
total 2
2 yre < ~V, (of)) JTretal
24: # Entropy loss
05, _ <2Ttota’ t (llt)) /Ttotul
: 1
26: # Total Loss
27 L=— (LC“P oLt + c2L€)
28: Update 6, ¢ with [, by the Adam optimizer w.r.t. L
29: end for
30: end for

4.3. Network Architecture

The policy network 7y takes the observation O! as the input and outputs the action
at. Figure 1 shows the architecture of the policy network. There are four inputs to the
policy network, and each one corresponds to one of the observation components Of =

ok ,0b,0f, ofwx} , while each input has its branch of hidden layers through which it passes.

The input o goes through the first branch, and it passes through a convolutional layer [20]
that consists of 32 one-dimensional filters with a kernel size of 5 and a stride of 2, the
second hidden layer in the branch is a another convolutional layer similar to the first one,
except it has a kernel size of 3. The third hidden layer is a flatten layer followed by a

128 neuron fully-connected layer [20]. The second branch that takes input o}, passes it

through a reshape layer that reshapes it into the shape RN "1~ (9xbxN ), then it is passed

through a 32 neuron fully-connected layer applied on the last dimension of the reshape
layer output, and then, the output of the fully connected layer is flattened. The observation
o} goes through the third branch, which is just one flatten layer. The fourth branch has
no hidden layers; it passes the of,,, input through to the next stage. The outputs of all the
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branches are then concatenated, then passed through a 256 neuron fully-connected layer.
All the layers until now have ReLU activations [21]. The final layers are the two output

layers, each corresponding to an action component a! = [Uf , vﬁ} , and each layer has K

neurons with softmax activations [22]. The components of the action a! are then sampled
from the two softmax distributions, as explained in Section 4.1.2.

.—>| ConvlD }—b{ ConvlD }—b{ Flatten

q % 360 32,5,5=2 32,3,5=2 256

||
N-1xgxbxN N-1x(gxbxN) N—-1x32 S
Sampling
@
qgxbxN
1

Sampling

Concat

Figure 1. Policy network architecture.

The value network Vj, shown in Figure 2 shares the same architecture as the policy
network except for the outputs. The output layer of the value network outputs the net-
work’s prediction of the value estimation, and it is a single neuron fully-connected layer
with no activations. The value network has a separate set of weights with respect to the
policy network.

q % 360 32,5,5=2 32,3,5=2 256

||
N-1xgxbxN N-=1x(gxbxN) N-1x32

Concat
H

Figure 2. Value network architecture.

5. Experiments and Results
5.1. Simulation Environment

We developed a simulation environment to train and test our deep reinforcement
learning method. The robots used were the Turtlebot3 Waffle PI robots [23]. We adapted the
simulation environment built by the Turtlebot3 robot team and modified the environment
to support multiple robots and goal positions. The simulation environment was built
using the Gazebo simulator [24], as shown in Figure 3. The simulation environment was a
4 m x 4 m square environment surrounded by a fence. The robots and the goal positions
were spawned inside the environment. The robots had fixed starting positions, while the
goals” positions were chosen randomly from a set of predefined positions. In the case
of training, the set of predefined goals positions held 33 positions, while during testing,
it held the same goal positions with 10 extra positions to test for generality. The goal
positions were changed when each robot reached a unique goal successfully or when a
certain amount of episodes E¢ had passed since the last goal positions changed.

During training, ten simulation environments were launched in parallel. Each of them
contained two robots N = 2 with a total of 20 robots. Each of the robots had a copy of the
policy and value networks and used them for data collection. After the data were collected,
the data were sent to a centralized copy of the policy and value networks to be updated.
Then, the updated weights were sent back to each copy.



Appl. Sci. 2021, 11,2895

10 of 19

Figure 3. The simulation environment. The size of the environment is 4 m X 4 m, and it is shown

holding two robots with two goal positions.

5.2. Training Configuration

The algorithm was implemented using TensorFlow [25] on an NVIDIA DGX-1 station.
The training took 94 h (about 8 k iterations). The frequency of computing the actions on
which the policy was operating was set to 5 Hz. Table 2 shows the hyperparameters used
during training. The evolution of the reward over training is shown in Figure 4.

Table 2. The hyperparameters and constants used for training. GAE, generalized advantage function.

Parameter = Description Value
q Number of consecutive frames used in each observation 5

Tt Data collection threshold 1100
A GAE decay factor 0.92
0% Discount factor 0.98
Tiax Max. episode time 120s
E Number of epochs 10

€ Used in the surrogate objective function 0.2

1 The value loss factor 5.0

c2 The entropy loss factor 0.01

Iy Learning rate 5x107°
Eg Number of episodes to change the goal positions 50
Tinax Max. episode time 120 s
Tterminal Terminal reward 15

Wwg Goal’s distance factor 200
Worn1 Occupied goal reward Factor 1 35
Wotn2 Occupied goal reward Factor 2 3.409
w; Time reward factor -5

R Robot radius 0.2m




Appl. Sci. 2021, 11, 2895 11 of 19

12
10

Reward
o [ = [=)] [=+]

0 20 40 60 80
Time (h)

Figure 4. Average of the rewards gained per episode averaged over all the robots in the training
wall time.

5.3. Evaluation and Testing

The overall performance of the policy can be evaluated using the same quantitative
metrics used by Long et al. [12]:

®  Success rate: The ratio of the number of robots that reach unique goals successfully
during the episode over the total number of robots (the higher the better).

e  Extra time: The difference between the actual travel time of a robot to reach a goal
position and the time it takes the robot to go to the same goal position in a straight
line with maximum speed (the lower the better).

e Extra distance: The difference between the actual distance a robot traveled to reach a
goal position and the Euclidean distance between the robot’s start position and the
goal position (the lower the better).

*  Average speed: The average of the ratio of the speed of the robot team relative to the
maximum speed of a robot during the episode.

The metrics were measured over all the robots and all episodes during the evaluation
to remove any effects of the variance in the goals’ positions.

We categorized the robot collisions into three categories. Category A is a collision
with an obstacle; Category B is one robot colliding with another robot that reached a goal
position; and finally, Category C is two robots colliding together while moving in free
space. These three categories cover 100% of the collision events that might happen in our
setting. This categorization can be used to analyze the policy’s performance when it fails
and what kinds of collisions tend to happen. Such an analysis can give us insight into the
behavior that the policy was trained to perform.

As our method combines MRTA and navigation, the categorization of collisions
enabled us to develop a new metric that can measure the performance of our method and
future methods that will be similar to it in performing MRTA. This metric can measure the
MRTA performance by measuring the policy’s failure in performing MRTA. We call this
new metric the Task Allocation Index TAI. It depends on the ratio of episodes ending with
Category B collisions relative to the total number of episodes because Category B collisions
are a clear failure of MRTA when two robots reach the same goal. TAI also depends on the
ratio of goals whose information is input to the policy relative to the total number of goals
in the environment, as this gives a higher score for the policies that perform task allocation
on a bigger ratio of goals that are available in the environment. Equation (14) shows the
formula for TAI (the higher the TAI value the better). For the policies that only perform
navigation and do not perform MRTA at all, the TAI value will be zero.

N;—1 N
TAI = o= x (1 - 7}\;{:{1@@3 ) (14)
s Episodes
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where:

¢ N;: number of goals whose information is input to the policy.

* N total number of goals.

*  Ncategoryp: number of episodes ended by Category B collisions.
®  NEpisodes: total number of episodes.

We compared our method with the methods proposed by Long et al. [12] and
Fan et al. [13]. The reason we are comparing with these works is the similarity in the
objective of the studies in terms of performing the navigation of multi-robot systems using
deep reinforcement learning. On the other hand, the difference between our method and
the methods proposed by Long et al. [12] and Fan et al. [13] is that our policy selects
which goal position to drive the robot towards. For the methods of Long et al. [12] and
Fan et al. [13], the policy needs the goal position to be preselected per robot. Thus, our
method performs MRTA and navigation form end-to-end, while the other methods only
perform navigation from end-to-end. The second reason these methods were chosen is
because the performance metrics were reported by both papers. Long et al [12] reported bet-
ter performance than the NH-ORCAmethod over most test cases. We trained the method
proposed by Long et al [12] on our simulation setup with the same robot kind we are
using. Their method was implemented using the same setup, network architecture, and
hyperparameters that they proposed in their paper. The training process took around 22 h.
For the method proposed by Fan et al. [13], we used the same policy that we trained for
Long et al.’s [12] method as part of the hybrid control system similar to what Fan et al. [13]
did in their paper.

To test and evaluate each method, we repeated the evaluations for 2 h. The goals’
positions were changed every time each robot reached a unique goal or five episodes
passed by since the last goal position change Eg = 5. The results are shown in Figure 5.
It shows that both methods are on par with each other with a slight advantage of the
method proposed by Long et al. [12] over both of the other methods in terms of the success
rate. In terms of extra tie and extra distance, the method proposed by Fan et al. [13] has
an advantage over the other two methods. This advantage is attributed to the PID policy
of the hybrid control system, which drives the robot directly toward the goal position
if there is no obstacle nearby or the goal position is closer to the robot than the nearest
obstacle. On the other hand, the TAI metric highlights the advantages of our method over
the other two methods since our method is the only one that performs both MRTA and
navigation from end-to-end. Our method takes input information about all the goals in
the environment (N; = N, in Equation (14)); thus, the only factor affecting the value of
the TAI metric in this case is the percentage of episodes ending with Category B collisions
Ncategorys, as shown in Table 3. On the other hand, the TAI metric for both Long et al.’s [12]
and Fan et al.’s [13] methods is zero since both methods do not perform MRTA, and they
only have input information about the preassigned goal position for each robot (N; = 1).

Table 3 shows the statistics related to the number of episodes and the way they ended
for each method. Both methods have a very low percentage of episodes ending with
collisions, yet Fan et al.’s [13] method has a slight advantage. We attribute our method’s
performance to our method’s tendency to move the robots with an average speed that is
higher than the average speed produced by the other methods—as shown in Figure 5—
which can lead to the robots in our method having more collisions.

Table 3. Performance metrics for both methods during a 2 h test.

Metric Our Method Long et al. Fan et al.
Number of episodes 268 402 425

% of episodes ending by collision 8.955% 2.239% 2.118%
% of episodes ending by Category A collision 1.522% 1.254% 2.118%
% of episodes ending by Category B collision 7.433% 0.985% 0.0%

% of episodes ending by Category C collision 0.0% 0.0% 0.0%

% of episodes ending by exhausting episode time 0.746% 0.0% 0.0%
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Figure 5. The performance results of each method during a 2 h test.

Table 3 also shows the percentage of the occurrence of each collision category during
testing. It shows that all methods managed to avoid any collisions of Category C. Our
method tends to have collisions of Category B about five times more than that of Category
A, which indicates that the policies on both robots chose the same goal position to move
towards. Samples of both categories of collisions are visualized in Figure 6.
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Figure 6. The trajectories of the robots over three different episodes that ended by collisions during
testing performed by each method. The trajectory of Robot 0 is shown in red, while the trajectory
of Robot 1 is shown in green. The more opaque the color of the trajectory is, the more advanced in
time it is. The environment spans the interval [ -2, 2] for both the x and y axes. The black squares
represent the starting positions of the robots; the blue circles represent the goal positions, and the “x”
shape represents the collisions’ locations.
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On the other hand, Long et al.’s [12] method tends to have slightly more collisions
of Category A than that of Category B. Most of the Category A collisions occur when the
goal position is near the obstacle wall, which means that the policy drives the robot to
approach such goals at an angle that exposes it to collision. Alternatively, the Category B
collisions occur when the other robot reaches a goal position that is in the middle between
the ego-robot and its assigned goal position, as shown in Figure 6, which indicates that the
policy failed to avoid a stationary robot in front of it. As for Fan et al.’s [13] method, the
only instance when a collision occurred was when a certain goal configuration appeared
during testing. This collision instance is Category A, as shown in Figure 6. This collision
happens when a goal position is spawned behind Robot 1 and the conservative safe policy
of Fan et al.’s [13] hybrid control system is the policy controlling the robot.

Figure 7 shows the distribution of collisions within the environment. The figure
reinforces the analysis of both Table 3 and Figure 6 as it shows that for our method,
the collisions are concentrated in the middle of the environment and such collisions are
Category B. On the other hand, for Long et al.’s [12] method, most collisions are near the
edges of the environment, and such collisions are Category A. For Fan et al.’s [13] method,
the collisions only occur for Robot 1 at the same position, and this collision is Category A.
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Figure 7. The distribution of collisions in the environment done by each robot controlled by each
method during testing. The environment spans the interval [—2, 2] for both the x and y axes.
The black squares represent the starting positions of the robots.

In Figure 8, we visualize three different successful episodes from testing for each
method. the visualization shows the trajectory of each robot color coded. It is clear form
the graph that the methods of Long et al. [12] and Fan et al. [13] tend to move the robots in
more straight trajectories, while our method tends to move in trajectories that are more
irregular and sometimes overshoots the goal positions.
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Figure 9 shows the distribution of goals reached by each robot throughout the envi-
ronment during testing for our method. It shows that Robot 0, which is spawned near
the upper right corner of the environment, tends to reach the goals positioned in the
environment’s upper half, while Robot 1, which is spawned in the lower left corner, tends
to reach the goals positioned in the environment’s lower half. The past two observations
indicate that the task allocation strategy learned during training is to split the environment
into two halves, and each robot attempts to reach the goals available in its half.

To analyze the reward function for our method that was introduced in Section 4.1.3
and to evaluate the effects of the values of the constants for the reward function that are
shown in Table 2, Figures 10 and 11 visualize the reward function during a successful
episode and an episode that ended with a collision, both episodes by our method. For the
successful episode in Figure 10, the reward r?—described in Equation (7)—which is used
to incentivize the ego-robot to go towards a goal position, has a positive value for both
robots as each of them goes towards the goal position and has a large terminal value
once each robot reaches a unique goal position. An exception to that happened at the
beginning of the episode for Robot 1 since the policy moved it away from the goal position
for the first 10 time steps. As for the other reward functions, since there were no collisions,
therefore the reward r°?'—described in Equation (10)—had a zero value for both robots.
Since no robot went towards the same goal position as the other robot, the reward function
r°—described in Equation (12)—had a positive value for both robots. As for the reward
function r'—described in Equation (13)-it had a very small negative value for Robot 0 as it
took the robot 2.22 s to reach its goal position. On the other hand, Robot 1 had a slightly

lower rf reward as it took 16.93 s to reach its goal position.
Our method Long et al.’s method Fan et al.’s method
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Figure 8. The trajectories of the robots over three different episodes that ended successfully during
testing performed by both methods. The trajectory of Robot 0 is shown in red, while the trajectory
of Robot 1 is shown in green. The more opaque the color of the trajectory is, the more advanced in
time it is. The environment spans the interval [ -2, 2] for both the x and y axes. The black squares
represent the starting positions of the robots, and the blue circles represent the goal positions.
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Figure 9. The distribution of the reached goal positions in the environment done by each robot
controlled by our method during testing. The environment spans the interval [—2, 2] for both the x
and y axes. The black squares represent the starting positions of the robots.

On the other hand, the episode that ended in a collision is shown in Figure 11. The
collision that occurred in this episode is Category B. Since Robot 0 reached a goal position
successfully, therefore its aggregate reward function showed positive values across its
movement, and when the robot reached the goal position, a large terminal reward value
was given to the robot. On the other hand, Robot 1 moved towards the same goal position
as Robot 0 and collided with it. This behavior is reflected in the reward function as the
reward function r’—described in Equation (12)—took on a negative value once Robot 1
started to move towards the same goal position as Robot 0. Once the collision occurred,
Robot 1 received a large negative terminal reward according to the reward r°'—described
in Equation (10). The combination of all of the rewards led to the aggregate reward received
by Robot 1 having a negative value for most of the time steps.

The motion of the robots

y (m)
o

x (m)

Each reward value collected by Robot 0 The aggregate of the reward value by Robot 0

Reward

1 2 3 4 5 6 7 8 1 2 3 a4 5 6 7 8
Step Step

Each reward value collected by Robot 1 = The aggregate of the reward value by Robot 1

Reward

Reward
«

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
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Figure 10. Visualizing the rewards collected by each robot using our method in an episode that
ended successfully. The trajectory of Robot 0 is shown in red, while the trajectory of Robot 1 is shown
in green.
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The motion of the robots
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Figure 11. Visualizing the rewards collected by each robot using our method in an episode that
ended with a collision. The trajectory of Robot 0 is shown in red, while the trajectory of Robot 1 is
shown in green.

6. Conclusions

In this paper, we present a novel decentralized sensor level policy that performs
multi-robot task allocation and navigation from end-to-end. We train and test it in a
simulation environment using a simulation of a real robotic platform. We also propose a
new metric called the Task Allocation Index (TAI), which measures the performance of a
method that performs MRTA and navigation from end-to-end in performing MRTA. Our
method is compared with two other DRL based methods that only perform navigation
for a multi-robot system. Our method shows on par results compared to these methods
with a slight advantage for the other methods in terms of the success rate, extra time, and
extra distance. On the other hand, our method outperforms the other two methods in
terms of the Task Allocation Index (TAI) as the two other methods do not perform MRTA.
Our work serves as a starting point towards building a robust system that performs task
allocation and navigation from end-to-end. Future works include training our method on
more complex environments and experimental setups to validate our method. We also plan
in the future to use some more advanced network architectures to increase the performance
and to adapt some of the methods used in natural language processing to allow the neural
network architecture to accept observations with a variable number of robots in the system.
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