

EFFECTIVENESS OF STRUCTURED QUERY LANGUAGE INJECTION

ATTACKS DETECTION MECHANISMS

NURUL ZAWIYAH BINTI MOHAMAD

A project report submitted in fulfilment of the

requirements for the award of the degree of

Master of Science (Computer Science)

Faculty of Computer Science and Information Systems

Universiti Teknologi Malaysia

OCTOBER 2008

 v

ABSTRACT

 Database security is one of the most essential factors in keeping stored

information safe. These days, web applications are used widely as a meddler between

computer users. Web applications are also used mostly by e-commerce companies, and

these types of applications need a secured database in order to keep sensitive and

confidential information. Since SQL injection attacks occurred as a new way of

accessing database through the application rather than directly through the database

itself, they have become popular among hackers and malicious users. Many prevention

and detection mechanisms are developed to handle this problem but these mechanisms

have their limitations. In this study, two mechanisms, AMNESIA and SQL Guard are

adopted for a practical evaluation to search for the better technique in detecting SQL

injection attacks. These techniques will be called Technique A and Technique B

respectively and will be evaluated on their effectiveness and efficiency using precision

and recall measure against two web applications, Mekar and myMarket. The study will

show that Technique B is a better approach on detecting SQL injection attacks.

 vi

ABSTRAK

 Keselamatan pangkalan data adalah salah satu faktor yang amat penting dalam

penyimpanan maklumat. Aplikasi yang berasaskan web digunakan oleh kebanyakan

syarikat – syarikat e-dagang dan aplikasi seperti ini memerlukan pangkalan data yang

selamat kerana melibatkan maklumat peribadi dan juga maklumat sensitif para

pengguna lain. Serangan suntikan SQL adalah salah satu cara untuk mencerobohi

pangkalan data melalui laman web, dan cara ini telah terkenal di kalangan penggodam

untuk mendapatkan maklumat peribadi pengguna lain, dan digunakan untuk

kepentingan diri. Pelbagai teknik telah diperkenalkan untuk mengesan serangan

suntikan SQL ini, namun teknik-teknik ini masih mempunyai pembatasan tersendiri. Di

dalam laporan ini, dua teknik, iaitu AMNESIA dan SQL Guard telah dipilih untuk

diujikaji dari segi keberkesanan dan kecekapan dalam mengesan serangan suntikan

SQL. Teknik yang terpilih, dinamakan teknik A dan teknik B akan diujikaji ke atas dua

aplikasi web, iaitu Mekar dan myMarket. Kajian ini menunjukkan bahawa teknik B

adalah teknik yang lebih berkesan dalam mengecam serangan suntikan SQL.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xii

 LIST OF SYMBOLS xiii

 LIST OF ABBREVIATIONS xiv

 LIST OF APPENDICES xv

1 PROJECT OVERVIEW 1

1.1 Introduction 1

1.2 Problem Background 2

1.3 Problem Statement 4

1.4 Project Aim 5

1.5 Objectives 5

1.6 Project Scope 6

1.7 Significance of the project 6

 viii

1.8 Report Organization 7

2 LITERATURE REVIEW 8

2.1 Introduction 8

2.2 SQL Injection 8

2.2.1 SQL Injection Vulnerabilities 9

2.2.2 SQL Injection Attacks 9

 2.2.2.1 SQL Injection Attacks: Types and

Goals 10

 2.2.2.2 Examples of SQL Injection

Attacks 13

2.3 Prevention and Detection of SQL Injection

Attacks 20

2.4 Evaluation using Precision and Recall 27

2.5 Effectiveness and Efficiency 29

 2.5 Discussion and Summary 30

3 METHODOLOGY 31

 3.1 Introduction 31

 3.2 Operational Framework 31

3.2.1 Phase I: Project Planning 33

3.2.2 Phase II: Comparison Experiment 33

 3.2.2.1 Web applications as test bed and a set

 of inputs 34

 3.2.2.2 Mechanisms selection and algorithm

 implementation 35

 3.2.2.3 Technique embedment into PHP web

 applications 43

 3.2.3 Phase III: Evaluation and Reporting 44

 3.3 Hardware and Software Requirements 45

CHAPTER 1

PROJECT OVERVIEW

1.1 Introduction

 Database security is the degree to which all data is fully protected from

tampering or unauthorized acts. Security vulnerability, security threat and security risk

are the menaces to database. In security threat, individuals are one of its types of threat,

where individuals intentionally or unintentionally inflict damage, violation, or

destruction to all or any of the database environment components. These individuals

include hackers, terrorists, organized criminals, and employees.

In this 21st century, web applications are extensively used for generating

information, distributing information from an organization to the users over a network,

and also as a platform to run e-Commerce websites. These web applications usually

have a back-end database to keep the customers’ information and all relevant

information about the customers, including credit card details, and private data. As

these web applications usually accept data from users and bring these data to access the

 2

back-end database, these types of applications carry the possibility of being exposed to

the SQL injection attacks.

An SQL injection attack (SQLIA) is a subset of the un-sanitized input

vulnerability and occurs when an attacker attempts to change the logic, semantics or

syntax of a legitimate SQL statement by inserting new SQL keywords or operators into

the statement. (Muthuprasanna et al., 2006). It is also known as a technique that abuses

the security vulnerability occurring in the database layer of an application. The attack

happens when an attacker is able to insert a series of SQL statements into a query by

manipulating input data into the application. Once the attacker successfully injects the

attack into the database, the database will be susceptible of being altered, extracted or

even dropped. SQL injection happens on web application (ASP, PHP, JSP etc.) itself

rather than on the web server or services running in the operating system. According to

Muthuprasanna et al. (2006), very little emphasis is laid on securing these applications.

1.2 Problem Background

 SQL injection attacks have been a serious problem since 2002. Studies by

Thomas and William (2007) showed that since 2002, 10% of total cyber vulnerabilities

were SQL injection vulnerabilities. The percentage keeps on increasing as developers

discover ways to prevent and detect the SQL injection attacks, resulting to attackers

developing a wide array of attack techniques that can be used to exploit SQL injection

vulnerabilities. The main problem in preventing and detecting any type of SQL

injection attacks is the development of a defense mechanism which guarantee no false

positives in detecting the attacks (high precision) while ensuring the actual attacks

injected are detected (high recall).

 3

There are seven main types of SQL injection attacks (Halfond and Orso, 2008).

They are tautologies, union queries, piggybacked queries, malformed queries, inference,

alternate encodings and leveraging stored procedures. Each of these types has different

techniques to launch an SQL injection attack. They also have their goal; which is the

intention of the attacker, whether to add or modify data, or to extract data for personal

use and many more.

According to Muthuprasanna et al., (2006) there is no known fool-proof defense

against the SQLIAs. The researchers in this field have built several mechanisms, or

framework to handle SQLIAs. These mechanisms have been proven effective and

efficient when tested, but they do have their own limitations. Some of these

mechanisms are for the use during static analysis (McClure and Kruger (2005); Halfond

et al. (2006); Fu et al. (2007)), where the analysis are carried out during coding of the

application to identify any vulnerabilities of the application.

Besides static analysis, a number of mechanisms have been developed to be

used during both static and dynamic analysis (Halfond and Orso (2005), Muthuprasanna

et al (2006), Wei et al. (2006) and Kosuga et al. (2007)). These mechanisms analyze

codes during the static analysis, and validate the coding during dynamic analysis, which

is the execution of attacks towards the analyzed codes.

Halfond et al. (2006) mentioned that the cause of SQL injection vulnerabilities

is relatively simple and well understood; which is insufficient validation of user input.

Alfantookh (2004) and Lin and Chen (2006) have developed a mechanism that does the

input validation before it is being sent to the web server.

 4

From the works of Halfond et al. (2006), an analytical comparison and

countermeasures have been carried out to compare existing techniques or mechanisms

that exist. The techniques are divided into detection-focused, techniques that detect

attacks during runtime, and prevention-focused, techniques that statically identify

vulnerabilities in the code. It is found that a combination of static and dynamic analysis

detects more attack types instead of other techniques. For the purpose of this study, two

mechanisms (AMNESIA by Halfond and Orso (2005), and SQLGuard by Buehrer et al.

(2005)) have been selected to be analyzed and implemented in a new environment.

However, Halfond et al. (2006) stated that they did not take precision into account in

this evaluation. Many of the techniques considered are based on some conservative

analysis or assumptions that can result in false positives.

According to Halfond et al. (2006), future evaluation work should focus on

evaluating the techniques’ precision and effectiveness in practice. There has not been an

effectiveness and efficiency evaluation carried out to ensure the techniques are fully

effective and efficient in practice, although some are claimed to be 100% effective in

their experimental result. Empirical evaluations would allow for comparing the

performance of the different techniques when they are subjected to real-world attacks

and legitimate inputs.

1.3 Problem Statement

 The purpose of this thesis is to provide an experimental analysis and

comprehensive comparison of defense mechanisms based on the selected mechanisms.

The key factors to be evaluated in the comparison are the correctness, effectiveness and

the efficiency of the mechanisms. The main problem in preventing and detecting any

 5

type of SQL injection attacks is the development of a defense mechanism which

guarantee no false positives in detecting the attacks (high precision) while ensuring the

actual attacks injected are detected (high recall). The problem statements emphasizing

the goal of this study are: which SQL injection attack detection approaches is effective

and efficient to successfully detect SQL injection attacks?

1.4 Project Aim

The aim of this project is to determine the effective and efficient detection

technique that is able to detect the SQL injection attacks.

1.5 Objectives

In order to accomplish the hypothesis of the study, three objectives have been

identified as stated below:

1. To investigate and classify SQL injection attacks by types of attacks.

2. To study the techniques of both mechanisms and create the algorithms.

3. To investigate the effectiveness and efficiency of both the SQL injection attacks

detection techniques.

 6

1.6 Project Scope

The scopes of this project are defined as follows:

1. The techniques are developed in a PHP language.

2. The mechanisms that will be compared in this study are AMNESIA and SQL

Guard.

3. The web applications involved for experiment are mekar and myMarket.

4. The SQL query keyword that will be affected in this study is SELECT

statements only.

1.7 Significance of the Project

This project will investigate the effectiveness and efficiency of detection

approaches in order to spot an incoming of injected attacks through web applications.

The analysis will be carried out and to compare which technique works better and more

effective. The result of this study can be used to verify the effectiveness and efficiency

of the tested approaches and will contribute in future works for future improvements.

 7

1.8 Report Organization

 This thesis is divided into five chapters. Chapter 1 will introduce the basic

information of SQL injection attacks, problem background, problem statement,

objectives and scope. Chapter 2 is a literature review and will explain in-depth on SQL

injection attacks and their prevention or detection approaches. Chapter 3 will explain

the way this project is conducted, and the methodology that is used to handle the

evaluation and the testing. Chapter 4 will show the experiment results from what has

been done, and Chapter 5 will summarize and conclude on the thesis.

REFERENCES

Alfantookh A. A., (2004). An Automated Universal Server Level Solution for Sql

Injection Security Flaw 2004. IEEE, pg 131- 135

Anley C., (2002). Advanced SQL Injection In SQL Server Applications. White paper,

Next Generation Security Software Ltd., 2002.

Bertino E., Kamra A., and Early P. J., (2007). Profiling Database Applications to

Detects SQL Injection Attacks. ISBN 1-4244-1338-6/07.IEEE

Buehrer G. T., Weide B. W., and Sivilotti P. A. G., (2005). Using Parse Tree Validation

to SQL Injection Attacks. In International Workshop on Software Engineering

and Middleware (SEM), 2005.

Fu X., Lu X., Petsverger B., Chen S., Qian K., and Tao L. (2007). A Static Analysis

Framework for Detecting SQL Injection Vulnerabilities. 31st Annual

International Computer Software and Applications Conference (COMPSAC

2007). IEEE

Halfond W. G., and Orso A., (2005). AMNESIA: Analysis and Monitoring for

NEutralizing SQL-Injection Attacks. In Proceedings of the IEEE and ACM

International Conference on Automated Software Engineering (ASE 2005).

Long Beach, CA, USA, Nov 2005.

Halfond W.G., Viegas J., and Orso A., (2006). A Classification of SQL Injection

Attacks and Countermeasures. In Proceedings of IEEE International Symposium

Secure Software Engineering, Mar. 2006.

Halfond William G. and Orso A., (2008). WASP: Protecting Web Applications Using

Positive Tainting and Syntax-Aware Evaluation, IEEE Transactions On

Software Engineering, Vol. 34, No. 1, January/February ,2008 pg 65-81

 59

Howard M. and LeBlanc D., (2003). Writing Secure Code. Microsoft Press, Redmond,

Washington, second edition, 2003.

Huang Y., Yu F., Hang C., Tsai C. H., Lee D. T., and Kuo S. Y., (2004). Securing Web

Application Code by Static Analysis and Runtime Protection. In Proceedings of

the 12th International World Wide Web Conference (WWW 04), May 2004.

Kosuga Y., Kono K., Hanaoka M., Hishiyama M., and Takahama Y., (2007). Sania:

Syntactic and Semantic Analysis for Automated Testing against SQL Injection,

23rd Annual Computer Security Applications Conference, pg 107 - 116

S. Labs. SQL Injection. White paper, SPI Dynamics, Inc., (2002).

http://www.spidynamics.com/assets/documents/WhitepaperSQLInjection.pdf.

Lin J., and Chen J., (2006). An Automatic Revised Tool for Anti-malicious Injection

In Proceedings of The Sixth IEEE International Conference on Computer and

Information Technology (CIT'06)

Livshits V. B. and Lam M. S., (2005). Finding Security Errors in Java Programs with

Static Analysis. In Proceedings of the 14th Usenix Security Symposium, pages

271–286, Aug. 2005.

Mackay C. A., (2005). SQL Injection Attacks and Some Tips on How to Prevent Them.

Technical report, The Code Project, January 2005.

http://www.codeproject.com/cs/ database/SqlInjectionAttacks.asp.

McClure R., and Kruger I., (2005). SQL DOM: Compile Time Checking of Dynamic

SQL Statements. In Proceedings of the 27th International Conference on

Software Engineering (ICSE 05), pages 88–96, 2005.

Muthuprasanna M., Wei K., Kothari S. (2006). Eliminating SQL Injection Attacks - A

Transparent Defense Mechanism. Eighth IEEE International Symposium on

Web Site Evolution (WSE'06).IEEE

Spett K., (2003). Blind sql injection. White paper, SPI Dynamics, Inc., 2003.

http://www.spidynamics.com/whitepapers/ Blind SQLInjection.pdf.

Su Z., and Wassermann G. (2006). The Essence of Command Injection Attacks in Web

Applications. In The 33rd Annual Symposium on Principles of Programming

Languages (POPL 2006), Jan. 2006.

 60

Thomas S., and Williams L. (2007). Using Automated Fix Generation to Secure SQL

Statements. Third International Workshop on Software Engineering for Secure

Systems (SESS'07)

Ullrich J. B., Lam J., (2008). Defacing websites via SQL injection. Network Security

Magazine, pg 9-10

Valeur F., Mutz D., and Vigna G. (2005). A Learning-Based Approach to the Detection

of SQL Attacks. In Proceedings of the Conference on Detection of Intrusions

and Malware and Vulnerability Assessment (DIMVA), Vienna, Austria, July

2005.

Wei K., Muthuprasanna M., Kothari S. (2006). Preventing SQL Injection Attacks in

Stored Procedures. In Proceedings of the 2006 Australian Software Engineering

Conference (ASWEC’06). IEEE

