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ABSTRACT 

 

 

 

 

 Database security is one of the most essential factors in keeping stored 

information safe. These days, web applications are used widely as a meddler between 

computer users. Web applications are also used mostly by e-commerce companies, and 

these types of applications need a secured database in order to keep sensitive and 

confidential information. Since SQL injection attacks occurred as a new way of 

accessing database through the application rather than directly through the database 

itself, they have become popular among hackers and malicious users. Many prevention 

and detection mechanisms are developed to handle this problem but these mechanisms 

have their limitations. In this study, two mechanisms, AMNESIA and SQL Guard are 

adopted for a practical evaluation to search for the better technique in detecting SQL 

injection attacks. These techniques will be called Technique A and Technique B 

respectively and will be evaluated on their effectiveness and efficiency using precision 

and recall measure against two web applications, Mekar and myMarket. The study will 

show that Technique B is a better approach on detecting SQL injection attacks. 
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ABSTRAK 

 

 

 

 

 Keselamatan pangkalan data adalah salah satu faktor yang amat penting dalam 

penyimpanan maklumat. Aplikasi yang berasaskan web digunakan oleh kebanyakan 

syarikat – syarikat e-dagang dan aplikasi seperti ini memerlukan pangkalan data yang 

selamat kerana melibatkan maklumat peribadi dan juga maklumat sensitif para 

pengguna lain. Serangan suntikan SQL adalah salah satu cara untuk mencerobohi 

pangkalan data melalui laman web, dan cara ini telah terkenal di kalangan penggodam 

untuk mendapatkan maklumat peribadi pengguna lain, dan digunakan untuk 

kepentingan diri. Pelbagai teknik telah diperkenalkan untuk mengesan serangan 

suntikan SQL ini, namun teknik-teknik ini masih mempunyai pembatasan tersendiri. Di 

dalam laporan ini, dua teknik, iaitu AMNESIA dan SQL Guard telah dipilih untuk 

diujikaji dari segi keberkesanan dan kecekapan dalam mengesan serangan suntikan 

SQL. Teknik yang terpilih, dinamakan teknik A dan teknik B akan diujikaji ke atas dua 

aplikasi web, iaitu Mekar dan myMarket. Kajian ini menunjukkan bahawa teknik B 

adalah teknik yang lebih berkesan dalam mengecam serangan suntikan SQL. 
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CHAPTER 1 

 

 

 

                 

PROJECT OVERVIEW 

 

 

 

 

1.1 Introduction 

 

 

 Database security is the degree to which all data is fully protected from 

tampering or unauthorized acts. Security vulnerability, security threat and security risk 

are the menaces to database. In security threat, individuals are one of its types of threat, 

where individuals intentionally or unintentionally inflict damage, violation, or 

destruction to all or any of the database environment components. These individuals 

include hackers, terrorists, organized criminals, and employees. 

   

   

In this 21st century, web applications are extensively used for generating 

information, distributing information from an organization to the users over a network, 

and also as a platform to run e-Commerce websites. These web applications usually 

have a back-end database to keep the customers’ information and all relevant 

information about the customers, including credit card details, and private data. As 

these web applications usually accept data from users and bring these data to access the 
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back-end database, these types of applications carry the possibility of being exposed to 

the SQL injection attacks.  

 

 

An SQL injection attack (SQLIA) is a subset of the un-sanitized input 

vulnerability and occurs when an attacker attempts to change the logic, semantics or 

syntax of a legitimate SQL statement by inserting new SQL keywords or operators into 

the statement. (Muthuprasanna et al., 2006).  It is also known as a technique that abuses 

the security vulnerability occurring in the database layer of an application. The attack 

happens when an attacker is able to insert a series of SQL statements into a query by 

manipulating input data into the application. Once the attacker successfully injects the 

attack into the database, the database will be susceptible of being altered, extracted or 

even dropped. SQL injection happens on web application (ASP, PHP, JSP etc.) itself 

rather than on the web server or services running in the operating system. According to 

Muthuprasanna et al. (2006), very little emphasis is laid on securing these applications. 

 

 

 

 

1.2  Problem Background 

 

 

 SQL injection attacks have been a serious problem since 2002. Studies by 

Thomas and William (2007) showed that since 2002, 10% of total cyber vulnerabilities 

were SQL injection vulnerabilities. The percentage keeps on increasing as developers 

discover ways to prevent and detect the SQL injection attacks, resulting to attackers 

developing a wide array of attack techniques that can be used to exploit SQL injection 

vulnerabilities. The main problem in preventing and detecting any type of SQL 

injection attacks is the development of a defense mechanism which guarantee no false 

positives in detecting the attacks (high precision) while ensuring the actual attacks 

injected are detected (high recall). 
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There are seven main types of SQL injection attacks (Halfond and Orso, 2008). 

They are tautologies, union queries, piggybacked queries, malformed queries, inference, 

alternate encodings and leveraging stored procedures. Each of these types has different 

techniques to launch an SQL injection attack. They also have their goal; which is the 

intention of the attacker, whether to add or modify data, or to extract data for personal 

use and many more.  

 

 

According to Muthuprasanna et al., (2006) there is no known fool-proof defense 

against the SQLIAs. The researchers in this field have built several mechanisms, or 

framework to handle SQLIAs. These mechanisms have been proven effective and 

efficient when tested, but they do have their own limitations. Some of these 

mechanisms are for the use during static analysis (McClure and Kruger (2005); Halfond 

et al. (2006); Fu et al. (2007)), where the analysis are carried out during coding of the 

application to identify any vulnerabilities of the application.  

 

 

Besides static analysis, a number of mechanisms have been developed to be 

used during both static and dynamic analysis (Halfond and Orso (2005), Muthuprasanna 

et al (2006), Wei et al. (2006) and Kosuga et al. (2007)). These mechanisms analyze 

codes during the static analysis, and validate the coding during dynamic analysis, which 

is the execution of attacks towards the analyzed codes.  

 

 

Halfond et al. (2006) mentioned that the cause of SQL injection vulnerabilities 

is relatively simple and well understood; which is insufficient validation of user input. 

Alfantookh (2004) and Lin and Chen (2006) have developed a mechanism that does the 

input validation before it is being sent to the web server.  
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From the works of Halfond et al. (2006), an analytical comparison and 

countermeasures have been carried out to compare existing techniques or mechanisms 

that exist. The techniques are divided into detection-focused, techniques that detect 

attacks during runtime, and prevention-focused, techniques that statically identify 

vulnerabilities in the code. It is found that a combination of static and dynamic analysis 

detects more attack types instead of other techniques. For the purpose of this study, two 

mechanisms (AMNESIA by Halfond and Orso (2005), and SQLGuard by Buehrer et al. 

(2005)) have been selected to be analyzed and implemented in a new environment. 

However, Halfond et al. (2006) stated that they did not take precision into account in 

this evaluation. Many of the techniques considered are based on some conservative 

analysis or assumptions that can result in false positives.  

 

 

According to Halfond et al. (2006), future evaluation work should focus on 

evaluating the techniques’ precision and effectiveness in practice. There has not been an 

effectiveness and efficiency evaluation carried out to ensure the techniques are fully 

effective and efficient in practice, although some are claimed to be 100% effective in 

their experimental result. Empirical evaluations would allow for comparing the 

performance of the different techniques when they are subjected to real-world attacks 

and legitimate inputs. 

 

 

 

 

1.3  Problem Statement 

 

 

 The purpose of this thesis is to provide an experimental analysis and 

comprehensive comparison of defense mechanisms based on the selected mechanisms. 

The key factors to be evaluated in the comparison are the correctness, effectiveness and 

the efficiency of the mechanisms. The main problem in preventing and detecting any 
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type of SQL injection attacks is the development of a defense mechanism which 

guarantee no false positives in detecting the attacks (high precision) while ensuring the 

actual attacks injected are detected (high recall). The problem statements emphasizing 

the goal of this study are: which SQL injection attack detection approaches is effective 

and efficient to successfully detect SQL injection attacks?  

 

 

 

 

1.4  Project Aim 

 

 

The aim of this project is to determine the effective and efficient detection 

technique that is able to detect the SQL injection attacks.  

 

 

 

 

1.5  Objectives 

 

 

In order to accomplish the hypothesis of the study, three objectives have been 

identified as stated below: 

 

1. To investigate and classify SQL injection attacks by types of attacks. 

2. To study the techniques of both mechanisms and create the algorithms. 

3. To investigate the effectiveness and efficiency of both the SQL injection attacks 

detection techniques. 
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1.6  Project Scope 

 

 

The scopes of this project are defined as follows: 

 

1. The techniques are developed in a PHP language.  

2. The mechanisms that will be compared in this study are AMNESIA and SQL 

Guard. 

3. The web applications involved for experiment are mekar and myMarket. 

4. The SQL query keyword that will be affected in this study is SELECT 

statements only. 

 

 

 

 

1.7  Significance of the Project 

 

 

This project will investigate the effectiveness and efficiency of detection 

approaches in order to spot an incoming of injected attacks through web applications. 

The analysis will be carried out and to compare which technique works better and more 

effective. The result of this study can be used to verify the effectiveness and efficiency 

of the tested approaches and will contribute in future works for future improvements. 
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1.8  Report Organization 

 

 

 This thesis is divided into five chapters. Chapter 1 will introduce the basic 

information of SQL injection attacks, problem background, problem statement, 

objectives and scope. Chapter 2 is a literature review and will explain in-depth on SQL 

injection attacks and their prevention or detection approaches. Chapter 3 will explain 

the way this project is conducted, and the methodology that is used to handle the 

evaluation and the testing. Chapter 4 will show the experiment results from what has 

been done, and Chapter 5 will summarize and conclude on the thesis. 
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