

CODE CLONE DETECTION USING STRING BASED TREE MATCHING

TECHNIQUE

NORFARADILLA BINTI WAHID

UNIVERSITI TEKNOLOGI MALAYSIA

 v

ABSTRAK

Pengklonan kod telah menjadi suatu isu sejak beberapa tahun kebelakangan

ini selari dengan pertambahan jumlah aplikasi web dan perisian berdiri sendiri pada

hari ini. Pengklonan memberi kesan yang sangat besar kepada fasa penyelenggaran

sistem kerana secara tidak langsung peningkatan bilangan pengulangan kod yang

sama di dalam sesebuah sistem akan menyebabkan kompleksiti sistem turut

meningkat. Terdapat banyak teknik pengesanan klon telah dihasilkan pada hari ini

dan secara umumnya ianya boleh dikategorikan kepada pengesanan berasaskan

jujukan perkataan, token, pepohon dan semantik. Tujuan projek ini adalah untuk

mengetahui kemungkinan untuk menggunakan suatu teknik dari pemetaan ontologi

untuk menyelesaikan masalah ini, tetapi kami tidak menggunakan ontologi di dalam

pengesanan klon. Telah dibuktikan di dalam eksperimen awalan bahawa ia mampu

untuk mengesan klon. Di dalam tesis ini kami menggunakan dua aras pengesanan.

Aras pertama menggunakan ’pelombong sub-pepohon terkerap’ di mana ia mampu

mengesan sub-pepohon yang sama antara fail yang berbeza. Kemudian sub-pepohon

yang sama dinyatakan dalam bentuk ayat dan persamaan antara kedua-duanya dikira

menggunakan ‘metrik ayat’. Daripada eksperimen, kami mendapati bahawa sistem

kami adalah tidak berganting kepada sebarang bahasa dah menghasilkan keputusan

yang bagus dari segi precision tetapi tidak dari segi recall. Ia mampu mengesan klon

serupa dan yang hamper sama.

 vi

ABSTRACT

Code cloning have been an issue in these few years as the number of

available web application and stand alone software increase nowadays. The major

consequences of cloning is that it would risk the maintenance process as there are

many duplicated codes in the systems that practically increase the complexity of the

system. There are many code clone detection techniques that can be found nowadays

which generally can be group into string based, token based, tree based and semantic

based. The aim of this project is to find out the possibility of using a technique of

ontology mapping technique to solve the problem, but we are not using the real

ontology for the clone detection. It has been prove that there is the possibility as it

manages to detect clone code. In this thesis the clone detection is using two layers of

detection; i.e. structural similarity and string based similarity. The structural

similarity is by using subgraph miner where it capable to get the similar subtree

between different files. And then we extract all elements of that particular subtree

and treat the elements as a string. Two strings from different files then applied with

similarity metric to know whether it is a clone pair. From the experimental result, we

found that the system is language independent but the result is good in precision but

not so good recall. It is also capable to detect two main types of clone, i.e identical

clones and similar clones.

 vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

 DEDICATION iii

 ACKNOWLEDGEMENT iv

 ABSTRAK v

 ABSTRACT vi

 TABLE OF CONTENTS vii

 LIST OF TABLES x

 LIST OF FIGURES xi

 LIST OF ABBREVIATIONS xiii

 LIST OF SYMBOLS xiv

 LIST OF APPENDICES xv

1 INTRODUCTION

1.1 Overview 1

1.2 Background of the Problem 2

1.3 Problem Statement 5

1.4 Objectives of the Project 6

1.5 Scope of the Project 7

1.7 Thesis outline 7

2 LITERATURE REVIEW

2.1 Introduction 8

2.2 Code Cloning 9

2.2.1 Reasons of code cloning 11

 viii

2.2.2 Code cloning Consequences 14

2.2.3 Code Cloning versus Plagiarism 15

2.2.4 Code Cloning and the Software

 Copyright Infringement Detection 16

2.3 Code Cloning in web applications 17

 2.3.1 Definition of clones from web application research

 View 19

 2.3.2 Source of Clones 19

2.4 Existing Work of Code Cloning Detection 20

 2.4.1 String based 22

 2.4.2 Token based 23

 2.4.3 Tree based 24

 2.4.4 Semantic based 25

 2.4.5 Fingerprinting 25

2.4.6 Analysis on Current Approaches 26

2.5 The Semantic Web 28

2.5.1 Architecture of the Semantic Web 29

2.5.2 Web Ontology 30

2.5.3 Web Ontology Description Languages 33

2.5.4 Various Application of Ontology 34

2.5.5 Ontology Mapping 36

2.5.6 Ontology Mapping Approaches 39

2.5.7 The Ontology Mapping Technique 40

 2.5.7.1 String Metrics 45

2.5.7.2 Frequent Subgraph Mining 47

2.5.7.3 MoFa, gSpan, FFSM, and Gaston 48

 2.5.7.4 Representing Web Programming as Tree 50

2.6 Clone Detection Evaluation 52

2.7 Different with work by Jarzabek 54

2.7.1 Clone Miner by Jarzabek 55

2.7.1.1 Detection Of Simple Clones 56

2.7.1.2 Finding Structural Clone 56

 2.7.2 Comparison of existing work and our 58

proposed work.

 ix

3 RESEARCH METHODOLOGY

3.1 Introduction 61

3.2 Proposed technique of clone detection 62

 3.2.1 Structural Tree Similarity 65

 3.2.2 String based tree matching 67

3.3 Preprocessing 70

3.4 Frequent subgraph mining 71

3.5 String based matching 73

3.6 Clone Detection Algorithm 75

3.7 Clone Detection Evaluation 75

4 EXPERIMENTAL RESULT AND DISCUSSION

4.1 Introduction 77

4.2 Data representation 78

4.2.1 Original source program into XML format 79

4.2.2 Subtree mining data representation 81

 4.3 Frequent Subtree Mining 83

4.4 String metric computation 86

4.5 Experimental setup 87

4.6 Experimental results 88

4.7 Comparison of result using different parameters 96

5 CONCLUSION

5.1 Introduction 103

5.2 Future Works 104

5.3 Strength of the system 104

REFERENCES 105

Appendices A – C 112

CHAPTER 1

INTRODUCTION

1.1 Overview

As the world of computers is rapidly developing, there are tremendous needs

of software development for different purposes. And as we can see today, the

complexity of the software been developed are different between one and another.

Sometimes, developers take easier way of implementation by copying some

fragments of the existing programs and use the code in their work. This kind of work

can be called as code cloning. Somehow the attitude of cloning can lead to the other

issues of software development, for example the plagiarism and software copyright

infringement (Roy and Cordy, 2007).

In most of the cases, in order to figure out the issues and to help better

software maintenance, we need to detect the codes that have been cloned (Baker,

1995). In the web applications development, the chances of doing clones are bigger

since there are too many open source software available in the Internet (Bailey and

Burd, 2005). The applications are sometimes just a ‘cosmetic’ of another existing

system. There are quite a number of researches in software code cloning detection,

but not so particularly in the area of web based applications.

 2

1.2 Background of the Problem

 Software maintenance has been widely accepted as the most costly phase

of a software lifecycle, with figures as high as 80% of the total development cost

being reported (Baker, 1995). As cloning is one of the contributors towards this cost,

the software clone detection and resolution has got considerable attention from the

software engineering research community and many clone detection tools and

techniques have been developed (Baker, 1995). However, when-it comes to

commercialization of the software codes, most of the software house developers tend

to claim that their works are 100% done in house without using other codes copies

form various sources. This has made a difficulty for the intellectual property

copyright entities such as SIRIM and patent searching offices in finding the

genuineity of the software source codes developed by the in house company. There is

a need to identify the software source submitted for patent copyright application to

be a genuine source code without having any copyright infringements. Besides that,

the cloning is somehow raising the issue of plagiarism. The simplest example is in

the academic area where students tend to copy their friends’ works and submit the

assignments with only slight modifications.

Usually, in software development process, there is a need for components

reusability either in designing and coding. Reuse in object-oriented systems is made

possible through different mechanisms such as inheritance, shared libraries, object

composition, and so on. Still, programmers often need to reuse components which

have not been designed for reuse. This may happen during the initial of systems

development and also when the software systems go through the expansion phase

and new requirements have to be satisfied. In these situations, the programmers

usually follow the low cost copy-paste technique, instead of costly redesigning-the-

system approach, hence causing clones. This type of code cloning is the most basic

and widely used approach towards software reuse. Several studies suggest that as

much as 20-30% of large software systems consist of cloned code (Krinke,

2001). The problem with code cloning is that errors in the original must be fixed in

every copy. Other kinds of maintenance changes, for instance, extensions or

 3

adaptations, must be applied multiple times, too. Yet, it is usually not documented

where code was copied. In such cases, one needs to detect them. For large systems,

detection is feasible only by automatic techniques. Consequently, several techniques

have been proposed to detect clones automatically (Bellon et al., 2007).

There are quite a number of works that detect the similarity by representing

the code in tree or graph representation and also some using string-based detection,

and semantic-based detection. Almost all the clone detection technique had the

tendency of detecting syntactic similarity and only some detect the semantic part of

the clones. Baxter in his work (Baxter et al., 1998) proposes a technique to extract

clone pairs of statements, declarations, or sequences of them from C source files. The

tool parses source code to build an abstract syntax tree (AST) and compares its

subtrees by characterization metrics (hash functions). The parser needs a “full-

fledged” syntax analysis for C to build AST. Baxter's tool expands C macros (define,

include, etc) to compare code portions written with macros. Its computation

complexity is O(n), where n is the number of the subtree of the source files. The hash

function enables one to do parameterized matching, to detect gapped clones, and to

identify clones of code portions in which some statements are reordered. In AST

approaches, it is able to transform the source tree to a regular form as we do in the

transformation rules. However, the AST based transformation is generally expensive

since it requires full syntax analysis and transformation.

 In other work (Jiang et al, 2007) present an efficient algorithm for identifying

similar subtrees and apply it to tree representations of source code. Their algorithm is

based on a novel characterization of subtrees with numerical vectors in the Euclidean

space Rn and an efficient algorithm to cluster these vectors with respected to the

Euclidean distance metric. Subtrees with vectors in one cluster are considered

similar. They have implemented the tree similarity algorithm as a clone detection

tool called DECKARD and evaluated it on large code bases written in C and Java

including the Linux kernel and JDK. The experiments show that DECKARD is both

scalable and accurate. It is also language independent, applicable to any language

with a formally specified grammar.

 4

Figure 1.1: A sample parse tree with generated characteristic vectors[14].

In (Krinke, 2001), Krinke presents an approach to identify similar code in

programs based on finding similar subgraphs in attributed directed graphs. This

approach is used on program dependence graphs and therefore considers not only the

syntactic structure of programs but also the data flow within (as an abstraction of the

semantics). As a result, it is said that no tradeoff between precision and recall- the

approach is very good in both.

 Kamiya in one of his work in (Kamiya et al., 2002) suggest the use of suffix

tree. In the paper they have used a suffix-tree matching algorithm to compute token-

by token matching, in which the clone location information is represented as a tree

with sharing nodes for leading identical subsequences and the clone detection is

performed by searching the leading nodes on the tree. Their token-by token matching

is more expensive than line-by-line matching in terms of computing complexity since

a single line is usually composed of several tokens. They proposed several

optimization techniques especially designed for the token-by-token matching

algorithm, which enable the algorithm to be practically useful for large software.

Appendix B of this thesis, describe briefly some existing techniques of code

clone detection and plagiarism. It also discusses the strength and weaknesses of each

technique.

 5

1.3 Problem Statement

As we can see from the previous works, some of the works are scalable, can

detect more than one type of clone. But some of them face the trade off of the

computational complexity. It may be happen because most of the techniques apply

expensive syntax analysis for transformation. From the literature that have been

done, more than half of existing techniques used tree- based detection as it were

more scalable. But, most of the techniques do a single layer detection which means

after the transformation into normalized data e.g. tree, graph, and etc, the process of

finding the similarity of code, i.e. code clone, were done directly by processing each

nodes in the data. All possible clones need to be search directly without some kind of

filtering, which it can cause higher cost of computational process.

As ontology has been widely used nowadays, we cannot deny the importance

of ontology in current web technology. The major similarity of ontology and clone

detection works is that it both can be represented as tree. Beside that, there are many

works have been done to do mapping of different ontologies between each other,

which is actually to find out which concepts of the first ontology are the same with

the second one. This activity is actually almost the same with what need to be done

in detecting clone codes.

Since there are some kinds of similarity between both problems, so detecting

clone in source code may be able to be done using the same way as mapping the

ontologies. The research question of this thesis is to identify the possibility of using a

technique of ontology mapping to detect clones in a web- based application.

Obviously there will be no ontologies that going to be used in the experiments since

we are dealing with source code and not ontology. But we will use the technique of

mapping to detect clones.

 6

 In order to achieve the aim, there are a few questions that need to be solved.

What are the attributes or criteria that might be possible to be cloned in web

documents? What are the approaches that had been proposed in the previous research

in the ontology mapping area than had been used in clone detection tool? What are

the issues of the recovered approach and how to solve it?

1.4 Objectives of the Project

The aim of this research is to develop a clone detection framework by

manipulating an existing work of mapping ontology. In order to achieve this aim, the

following objectives must be fulfilled.

1. To analyze various techniques related to code clone detection that has been

proposed by previous researches.

2. To develop a clone detection program by using the ontology mapping

technique that will be proposed in the project.

3. To test the program using recall and precision measurements as the main

metrics.

