THE EFFECT OF NODULARISATION PARAMETERS ON THE QUALITY OF DUCTILE IRON

MOHD RASHIDI BIN MAAROF

A thesis submitted in partial fulfillment of The requirements for the award of the degree of Master's of Mechanical Engineering (Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > NOVEMBER, 2006

Syukur Alhamdullillah to Allah S.W.T for giving me the continuous strength and motivation for completion of this project. Deepest thanks to my family and future family. Linda, I favor you for 3rd time. And not to forget, all of my friends. I love you all.

ACKNOWLEDGEMENTS

My deepest appreciation goes towards my supervisor, Dr Mohd Hasbullah Hj Idris for his superb guidance and encouragement throughout the progress of this project. Without his constructive critiques, this project would not be successfully accomplished.

Special thanks must go to Mr.Nazri, Mr. Latif, Mr Hamid, Mr Asri, Mr Aidid etc for their truly support, co-operation and assistance during duration at foundry and production labaratory. Thanks are also goes to friends who have helped me directly or indirectly upon the project completion.

Finally, my very special, sincere and heartfelt gratitude goes to my beloved family, future family and Roslinda bte Hj Khalid for giving me the tremendous encouragement and understanding while I was striving with this project. Their assistance and support are invaluable.

Mohd Rashidi bin Maarof

November, 2006

ABSTRAK

Pada dasarnya permintaan produk plastik di negara ini sangat menggalakkan kerana produk plastik adalah setanding dengan produk yang dihasilkan dari bahan yang lain malah produk plastik juga lebih cantik dari segi rupa bentuk serta bermutu. Maka dengan itu untuk menghasilkan produk plastik yang bermutu, produk plastik yang ingin dihasilkan perlu melalui beberapa proses yang sepatutnya terutamanya yang penting sekali ialah pada proses permulaan yang melibatkan proses reka bentuk.

Di sebabkan produk plastik ini boleh dihasilkan dengan menggunakan pelbagai jenis acuan seperti acuan 2-plat, acuan 3-plat, acuan pelari panas dan acuan pelari tertebat maka produk plastik ini perlu dijalankan analisa aliran bahan terhadapnya. Ini supaya produk plastik dapat dihasilkan tanpa kecacatan dan dapat menghasilkan ciri-ciri yang menepati spesifikasi sebenar. Kajian ini menggunakan perisian Moldflow Mold Adviser untuk mengkaji permasalahan terhadap acuan 2-plat dan acuan 3-plat kepada sistem spru, pelari dan get.

ABSTRACT

Demand on plastic product in this country is very tremendous because plastic product has better in quality, design and appearance than any material product. To produce better quality of plastic product, it needs to have some processes and most important is initially in design stages.

Because of that, plastic product can be produced using any different mold such as 2-plate mold, 3-plate mold, hot runner mold and insulated runner mold. Material flow analysis should be running to the plastic product to ensure no defect and follow the characteristics from actual specification. This project is using Moldflow Mold Adviser software to analyze the problems for 2-plate mold and 3-plate mold, which are dependent on sprue, runner and gate system.

TABLE OF CONTENTS

CHAPTER TITLE

ACKNOWLEDGEMENTS ABSTRAK ABSTRACT TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES

1.0	INTR	ODUCTION	
	1.1	Background	1
	1.2	Important of the research	2
	1.3	Problem statement	3
	1.4	Objectives of the study	3
	1.5	Scopes	4
2.0	LITE	RATURE REVIEWS	
	2.0	Introduction	5
	2.1	Iron- carbon equilibrium diagram	6
	2.2	Iron carbon microstructure	7
	2.3	Effect of alloying elements on iron-carbon microstructure	9
	2.4	Inoculated cast iron- ductile iron	12
	2.5	The mechanic of the nodular or spherulitic structure of	
		graphite	14

PAGE

Castings chemical composition		
2.6.1	Iron molten metal composition	20
2.6.2	Inoculants composition	23
7 Study associated with the production of ductile iron ca		
2.7.1	Effect of graphite shape	25
2.7.2	Nodule count effect	27
2.7.3	Graphite volume effect	28
2.7.4	Carbide content effect	29
2.7.5	Matrix effect	30
2.7.6	Inoculation efficiency effect	32
The te	echnique of ductile iron casting process	34
2.8.1	Sandwich process	34
2.8.2	Cover trigger process	35
2.8.3	Tundish cover process	36
2.8.4	Porous plug process	36
2.8.5	In mould process	37
Furna	ce equipment	40
2.9.1	Induction furnace	40
Patter	rn	43
Riseri	ng system	45
Gating	g system	45
Green	sand mould	46
Lining	g refractories	48
Taguc	chi Method	49
2.15.1	Introduction of Taguchi Method	49
2.15.2	2 Contributions to Quality	50
2.15.2	2.1 Loss Function	50
2.15.2	2.2 Orthogonal Array	51
2.15.2	2.3 Robustness	52
2.15.3	Defining the Quality Characteristic	53
2.15.4	Phases in Taguchi Method	53
	2.6.1 2.6.2 Study 2.7.1 2.7.2 2.7.3 2.7.4 2.7.5 2.7.6 The te 2.8.1 2.8.2 2.8.3 2.8.4 2.8.5 Furna 2.9.1 Patter Riseri Gating Green Lining Taguc 2.15.1 2.15.2 2.15.2 2.15.2	 2.6.1 Iron molten metal composition 2.6.2 Inoculants composition Study associated with the production of ductile iron casti 2.7.1 Effect of graphite shape 2.7.2 Nodule count effect 2.7.3 Graphite volume effect 2.7.4 Carbide content effect 2.7.5 Matrix effect 2.7.6 Inoculation efficiency effect The technique of ductile iron casting process 2.8.1 Sandwich process 2.8.2 Cover trigger process 2.8.3 Tundish cover process 2.8.4 Porous plug process 2.8.5 In mould process Furnace equipment

		2.15.5 Taguchi Method Technique	54
		2.15.6 Signal to Noise (S/N) Ratio	56
3.0	EXP	ERIMENTAL METHODOLOGY	
	3.0	Introduction	60
	3.1	Preliminary experiment to determine the optimum	
		parameter combination	61
		3.1.1 Pattern	62
		3.1.2 Green sand mould	63
		3.1.3 Ladle preparation	65
		3.1.4 Charging material (pig iron) preparation	66
		3.1.5 MgFeSi inoculant preparation	67
		3.1.6 Induction furnace preparation	67
		3.1.7 Melting procedure	68
		3.1.8 Fettling	70
	3.2	Experiment to determine the control factors	71
		3.2.1 Experimental setup to determine the control factors	76
4.0	RES	ULTS AND DISCUSSIONS	
	4.0	Introduction	83
	4.1	Results and analysis of preliminary experiment	84
	4.2	Results and analysis of experiment to determine the	

4.1	Results and analysis of preliminary experiment	84
4.2	Results and analysis of experiment to determine the	
	control factors	87
	4.2.1 Tensile strength	88
	4.2.2 Magnesium concentration	94
	4.2.3 Nodule count	101
	4.2.4 Hardness test	112
4.3	Experiment to validate the control factors (Confirmation	
	Test)	118
4.4	Discussion	119
	4.4.1 Tensile strength	119

4.4.2 Magnesium concentration	120
4.4.3 Nodule count	121
4.4.4 Hardness	121

5.0 CONCLUSIONS AND FUTURE WORK

5.1	Conclusions	123
5.2	Recommendation for future work	124

REFERENCES

APPENDICES

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	Shrinkage allowance	44
2.2	Machining allowance on patterns for sand castings	44
2.3	Experimental Using an L ₈ Array	51
2.4	Comparison of Factorial Design and Taguchi Design	52
3.1	Pattern design to relative effective volume of reaction	
	chamber and pouring temperature range	63
3.2	Pig iron average chemical composition used for	
	the experiment	66
3.3	VI-270 Inoculant chemical composition	67
3.4	Rules for standard selection of orthogonal array	71
3.5	L_8 (2 ⁴) orthogonal array with 2 interactions	72
3.6	Experimental matrix	73
3.7	Experimental matrix	77
3.8	Specimen grinding steps for microstructure preparation	80
4.1	1 st preliminary experiment result	85
4.2	2 nd preliminary experiment result	86
4.3	Tensile strength experimental trial results	88
4.4	S/N ratio of experiment trial results	89
4.5	Main effects for tensile strength test	89
4.6	Analysis of variance (ANOVA) of tensile strength	91
4.7	Analysis of variance (ANOVA) of tensile strength (poole	ed) 92
4.8	Optimum condition and performance for tensile strength	
	(pooled)	92
4.9	Magnesium concentration experimental trial results	94
4.10	S/N ratio of experiment trial results	95
4.11	Main effects for magnesium concentration test	95
4.12	Analysis of variance (ANOVA)	97

4.13	Analysis of variance (ANOVA) (pooled)	98
4.14	Optimum condition and performance for magnesium	
	Concentration (pooled)	99
4.15	Nodule count experiment trial results	101
4.16	S/N ratio of experimental trial results	106
4.17	Main effects for nodule count	107
4.18	Analysis of variance (ANOVA)	109
4.19	Analysis of variance (ANOVA) (pooled)	109
4.20	Optimum condition and performance for nodule count	
	(pooled)	110
4.21	Hardness test experimental trial results	112
4.22	S/N ratio of experimental trial results	113
4.23	Main effects for hardness test	113
4.24	Analysis of variance (ANOVA)	115
4.25	Analysis of variance (ANOVA) (pooled)	116
4.26	Optimum condition and performance for hardness	
	(pooled)	116
4.27	Conformation casting trial parameters	118
4.28	Result for verification and validation experiment	119
5.1	Significant factors for effect of nodularisation parameters	
	On the quality of ductile iron	124

LIST OF FIGURES

PAGE

2.1	Microstructure comparison between (a) cast iron with	
	Flake graphite and (b) ductile iron with nodular graphite	5
2.2	Iron carbon equilibrium diagrams	6
2.3	Various stages in the manufacture of various standard	
	ferrous products	11
2.4	Spherical graphite nodules which act as crack arrester	13
2.5	Formation of graphite spherulites by nucleation on the	
	surfaces of sulphide particles and growth along their	
	interfaces, eventually developing into nodules	14
2.6	Schematic representation of the sequence of solidification	
	of normal ductile iron castings	16
2.7	Schematic representation of the sequence of solidification	
	of thin section ductile iron castings	17
2.8	Ductile iron matrix compositions	20
2.9	Range of carbon and silicon to produce sound casting of	
	ductile iron	22
2.10	Phases in Taguchi method	54
2.11	Agenda for a brainstorming session	55
2.12	Analysis flow diagrams of the Taguchi experiments	56
2.13	Major steps of Taguchi methodology	59
3.1	Flowchart of experimental methodology	61
3.2	Lost form pattern design	62
3.3	Arrangement of green sand mould before pouring	64
3.4	Lining preparation for ladle	65
3.5	Pre-heating of ladle before pouring	66
3.6	Melting of pig iron	68

3.7	Temperature measurement with V-smart Thermotech	
	thermocouple	69
3.8	Pouring of molten grey iron into ladle for treatment	69
3.9	Pouring molten metals into CO ₂ mould	70
3.10	Experimental procedure using Taguchi method application	75
3.11	Schematic pattern drawing	77
3.12	Microstructure preview at 200 magnifications for nodule	
	count	80
4.1	Defect casting during preliminary experiment	84
4.2	Undissolved MgFeSi particles in casting cavity	85
4.3	Sound casting produced during experiment to determine	
	the control factors	87
4.4	Interaction of MgFeSi particles size and casting size when	
	level of MgFeSi size control factor changes	90
4.5	Interaction of distance from reaction chamber and MgFeSi	
	size when level of distance reactive from reaction chamber	
	control factor changes	90
4.6	Interaction between MgFeSi % and MgFeSi size when	
	level of MgFeSi % control factor changes	90
4.7	Significance factor and interaction influences of	
	tensile strength	91
4.8	Significance factor and interaction influences of	
	tensile strength (pooled)	93
4.9	Interaction between MgFeSi $\%$ and distance from reaction	
	chamber when level of MgFeSi percentage changes	96
4.10	Interaction between MgFeSi % and MgFeSi particles size	
	when level of MgFeSi percentage changes	96
4.11	Significance factor and interaction influences of magnesium	n
	concentration	97
4.12	Significance factor and interaction influences of magnesium	n
	concentration (pooled)	100

4.13	400x magnification specimen	102
4.14	200x magnification specimen	102
4.15	100x magnification specimen	103
4.16	Grey iron microstructure at 400x magnification	103
4.17	Trial 1 sample 1	104
4.18	Trial 1 sample 2	104
4.19	Trial 2 sample 1	104
4.20	Trial 2 sample 2	104
4.21	Trial 3 sample 1	104
4.22	Trial 3 sample 2	104
4.23	Trial 4 sample 1	105
4.24	Trial 4 sample 2	105
4.25	Trial 5 sample 1	105
4.26	Trial 5 sample 2	105
4.27	Trial 6 sample 1	105
4.28	Trial 6 sample 2	105
4.29	Trial 7 sample 1	106
4.30	Trial 7 sample 2	106
4.31	Trial 8 sample 1	106
4.32	Trial 8 sample 2	106
4.33	Interaction between MgFeSi size and casting cavity	
	size when level of MgFeSi size control factor changes	107
4.34	Interaction between MgFeSi % and MgFeSi size when	
	level of MgFeSi percentage control factor changes	108
4.35	Significance factor and interaction influences of nodule	
	count	108
4.36	Significance factor and interaction influences of nodule	
	count (pooled)	111
4.37	Interaction between MgFeSi size and casting cavity size	
	when level of MgFeSi size control factor changes	114
4.38	Interaction between MgFeSi % and MgFeSi particles	

	size when level of MgFeSi percentage control factor	
	changes	114
4.39	Significance factor and interaction influences of hardness	
	test	115
4.40	Significance factor and interaction influences of hardness	
	test (pooled)	117

LIST OF APPENDICES

APPENDICES NO.	TITLE
APPENDIX A	SAMPLE CALCULATION OF DATA ANALYSIS
	USING TAGUCHI METHOD (SIGNAL TO NOISE
	RATIO ANALYSIS
APPENDIX B	IMPLEMENTATION STEPS UTILIZING TAGUCHI
	METHODS USING QUALITEK 4 SOFTWARE TO
	DETERMINE MAIN EFFECTS, INTERACTIONS,
	SIGNIFICANCE FACTORS AND EXPECTED
	OPTIMUM CONDITION IN SELECTED RANGE OF
	PARAMETER
APPENDIX C	RISERING AND GATING SYSTEM CALCULATION
APPENDIX D	GENERAL DATA
APPENDIX E	LIST OF TABLES

CHAPTER 1

INTRODUCTION

1.1 Background

Application of ductile iron continues to increase over the years. It is due to its ease of recycling, relatively low cost production and producing capability with a wide range of microstructure and mechanical properties.

Ductile iron is born from continuous research done towards cast iron. The characteristic for both of iron is differing much. While cast iron is simply known as brittle with graphite flake microstructure, ductile iron is ductile and held the advantages of uniform distribution of nodule graphite microstructure. It offers a combination of strength, fatigue resistance, toughness and ductility in addition of famously advantages of cast iron – machinability, castability and economic of production.

The production of ductile iron means for adding magnesium to molten metal. There is four common techniques classified; transfer method (open ladle addition, sandwich, trigger process), plunging method, injection method and pressure ladle or pressurized chambers method. Because of fading problem, in mould method was developed in which metal is inoculated as it poured into the casting or within the actual running system of the casting itself. In mould method is classified as late inoculation technique offers advantages of virtually elimination of fading problem, lower increasing of silicon content in molten metal, effectively preventing the formation of carbide and greater consistency of structure uniformity.

Inoculation mechanism for in mould differs to great extent from other techniques. For example, during addition of nodularizing alloy to the iron inside the mould, the resulting high pressure of magnesium vapor may damage the mould itself. Otherwise, the vapor entrapped in the mould cavity may lead to the formation of incomplete castings.

The injurious effect of nodularization can be screening by using nodularizing alloys with relatively low magnesium content. But, the decrease of magnesium content in alloying agent may contribute of higher percentages alloy used which leading to yield decreasing. To make matter worse, the probability of partially undissolved alloy after filling the mould may occurs. Therefore the percentage and size of nodularizing alloy should be carefully applied in conjunction with the temperature and pouring rate of the molten metal, in order to successfully complete the inoculating process inside the mould.

With it, confirmation of parameters influence such percentage of nodularization agent used towards casting mechanical properties is worth to study for. Other than that, control factors such the particle size of nodularization agent, distance reactive from reaction chamber, and influence of casting cavity for effect of nodularization was also investigated. Hence, with the right combination of control factors, microstructure of the casting cavity as well as the mechanical properties of selected range can be predicted.

1.2 Importance of research

This research will deepen the knowledge of specific processing properties and parameters of ductile iron. Successfully discovered the main effects, interactions between parameters and significance parameters will enhance the understanding of in mould treatment for processing ductile iron.

1.3 Problem statement

There is a need to establish a clear understanding the effect of nodularisation parameter on the quality of ductile iron using in mould method. The controlling parameters affected nodularisation and mechanical properties will be the priority to identify its reflected variables.

1.4 Objectives of the study

The project is aimed at;

i. Determine the effect of percentage of nodularisation agent, runner distance and component size on nodular count in ductile iron, and

ii. Established the mechanical properties and material characterization of the ductile iron produced from the in mould treatment method.

1.5 Scopes

i. The grey iron treated was of a FC 450 normally used in automotive industry.

ii. The method that was employed in treating grey cast iron is the 'in the mould treatment method.'

iii. The sand casting process was used in casting of the ductile iron.