EFFECT OF MATERIAL STRUCTURE MACHININGCHARACTERISTICS OF HYPEREUTECTIC AL-SI ALLOY

FAREG SAEID MOFTAH SAEID

A project report submitted in the fulfillment of the requirements for the award of the degree of Master of Engineering (Mechanical - Advanced Manufacturing Technology)

> Faculty of Mechanical Engineering Universiti Teknologi Malaysia

> > NOVEMBER 2007

To My Beloved Mother, Father, Brothers and Sisters

.

ACKNOWLEDGMENTS

In the name of Allah, Most Gracious, and Most Merciful I would like to thank the many people who have made my master project possible. In particular I wish to express my sincere appreciate to my supervisors, Assoc. Professor Dr. Ali Ourdjini, Assoc. Professor Dr. Izman Sudin for encouragement, guidance, critics and friendship.

I would never have been able to make accomplishment without my loving support of my family.

I would like to thank all, technicians and fellow researchers in the Production and materials science laboratories especially to Mr. Aidid. Assistance given by my fellow postgraduate colleagues especially Mr. Denni Kurniawan and Mr.Kamely and Mr. Ayob.

My sincere appreciation extends to all my friends and others who have provide assistance. Their views and tips are useful indeed. Unfortunately, it's not possible to list all of them in this limited space. I am grateful having all of you beside me. Thank you very much.

ABSTRACT

In the present research, experimental results of an investigation of dry turning of hypereutectic aluminium silicon alloy using polycrystalline diamond (PCD) tools are presented. Attention is focused on the effect of workpiece microstructure on the performance of the cutting tools in terms of tool wear, surface roughness and chip formation. The experimental study involves turning operations at three different cutting speeds: 500, 600 and 700 m/min and constant depth of cuts and feed rates. The results obtained showed that PCD tools are important in cutting this hard Al-Si alloy of reduced machinibility. The lowest cutting speed provides good machinibility and surface finish. The change of workpiece structure was induced by modifying the primary Si phase in Al-Si alloy with strontium (Sr). This attempt found that Sr alone does not lead to a significant reduction in the size of primary Si phase. However, the results indicated that if the structure is modified the tool wear improves compared to the unmodified alloy.

ABSTRAK

Penyelidikan ini membentangkan keputusan hasil ujikaji terhadap pemesinan bahan aloi aluminium silicon hipereutektik tanpa menggunakan bahan penyejuk dengan menggunakan mata alat intan polikristal (PCD). Fokus utama adalah untuk melihat kesan mikrostruktur bendakerja terhadap mata alat dari segi kadar kehausan mata alat, kekasaran permukaan dan pembentukkan tatal. Kajian eksperimen melibatkan proses melarik dengan menggunakan tiga tahap kelajuan pemotongan yang berbeza iaitu 500, 600 dan 700 m/min. Kedalaman pemotongan dan kadar uluran adalah tetap. Hasil kajian menunjukkan bahawa mata alat PCD sangat penting kerana ia dapat memudahkan pemesinan aloi AI-Si yang keras ini. Halaju pemotongan yang paling rendah didapati memberikan kadar pemesinan yang paling baik dan hasil permukaan yang licin. pembahan mikrostuktur bendakerja adalah dihasilkan melalui pengubahsuaian fasa utama Si di dalam aloi Al-Si dengan strontium (Sr). Kajian ini mendapati bahawa Sr sahaja tidak memberi kesan yang nyata dalam pengurangan saiz fasa utama Si. Walau bagaimanapun hasil kajian ini menunjukkan bahawa sekiranya struktur ini diubahsuai, maka kadar kehausan mata alat dapat dikurangkan berbanding dengan aloi yang tidak diubahsuai.

TABLE OF CONTENTS

CHAPTER		TITLE		PAGE
	DEC	ii		
	DED	DN	iii	
	ACKNOWLEDGEMENTS			iv
	ABS	FRACT		vi
	ABS	ГRAK		vii
	TAB	LE OF (CONTENTS	viii
	LIST	OF TA	BLES	xii
	LIST	OF FIC	GURES	xiii
	LIST	OF AP	PENDENCES	xvii
1	INTH	1		
	1.1	1		
	1.2	2		
	1.3 Objective of the Project			2
	1.4	Scope	of the Project	2
2	LITE	RATUR	RE REVIEW	4
	2.1 Aluminium and its alloys			4
		2.1.1	Classification of Aluminium Alloys	5
			2.1.1.1 Casting Alloys	5
			2.1.1.2. Wrought Alloys	6
		2.1.2	Applications of Aluminium Alloys	7
		2.1.3	Casting processes	7
	2.2	Al-Si	Casting alloys	8

	2.2.1 \$	Solidificat	tion of Al-Si Alloys	9
	2.2.2 A	luminum	n- silicon – magnesium alloys	10
	2.2.3 H	Iypereute	ctic Al-Si Alloys	13
	2.2.4 0	Grain Refi	nement of hypereutectic Al-Si	
	А	lloys		14
	2.2.5.1	Modificat	ion of Al-Si Alloys	15
2.3	Machin	ning		16
	2.3.1	Theory o	f metal cutting and hard turning	17
		2.3.1.	1 Hard turning	19
	2.3.2	Cutting f	orce	20
	2.3.3	Cutting to	emperature and heat generated	20
	2.3.4	Chip For	mation	21
		2.3.4.1	Chip formation during hard	
			turning	24
	2.3.5	Tool life	criteria	25
	2.3.6	Tool fail	ure modes	25
		2.3.6.1	Flank wear	25
		2.3.6.2	Crater wear	28
		2.3.6.3	Brittle fracture	29
		2.3.6.4	Plastic deformation	30
2	2.3.7	Tool wea	r mechanism	30
		2.3.7.1	Abrasion (abrasive) wear	30
		2.3.7.2	Attrition (adhesion) wears	31
		2.3.7.3	Diffusion wear	32
		2.3.7.4	Oxidation wear	32
2.4	Cutting	tools		32
	2.4.1	Single po	int tools	33
	2.4.2	Cutting to	ool material	34
	4	2.4.2.1	High speed steel	34
	4	2.4.2.2	Carbides	34
	4	2.4.2.3	Coated carbides	36
	4	2.4.2.4	Ceramic	36
	2	.4.2.5 C	ubic boron nitride	37

		2.4.2.6 Diamond		37
		2.4.2.6.1 Single-	-crystal diamond	37
		2.4.2.6.2 Polyer	ystalline diamond	38
		2.4.2.6.3 Chemica	l vapor	
		depositio	on	38
3	RES	SEARCH METHODOLOGY		39
	3.1	Introduction		39
	3.2	Research Design Variables		41
		3.2.1 Response Parameters		41
	3.3	Workpiece Material		41
		3.3.1 CO_2 Sand Casting		42
		3.3.1.1 Modification of a	aluminium-silicon	
		casting alloys		43
		3.3.1.2 Impurity Modi	fication on Al-Si	
		Alloys		43
		3.3.2 Preliminary machining		45
	3.4	Machines and Equipments		45
	3.5	Tool Material		48
	3.6	Experimental Set Up		49
	3.7	Measurement of Tool Wear		49
	3.8	Tool Life Criteria		50
	3.9	Chip Morphology		51
4	RES	SULTS AND DISCUSSION		53
	4.1	Introduction		53
	4.2	Microstructure analysis of wor	kpiece material	57
	4.3	Wear and Tool Life curves		59
	4.3	Surface Roughness		64
	4.4	chip Morphology		56
5	CO	NCLUSIONS AND FUTURE W	VORK	73
	5.1	Conclusions		73

5.2	Recommendations for future work.	74
REFERENCES		75
APPENDIX A		79

LIST OF TABLES

TABLE NO.	TITLE	PAGE
2.1	The general characteristics of aluminium	4
2.2	Cast aluminum alloy groups	6
2.3	Wrought aluminum alloy groups	7
3.1	Chemical compositions of A390	44
3.2	Mechanical Properties of A390	44
4.1.1	Test results for the unmodified alloy for cutting speed of	
	500 m/min	53
4.1.2	Test results for the unmodified alloy for cutting speed of	
	600 m/min	54
4.1.3	Test results for the unmodified alloy for cutting speed of	
	700 m/min	55
4.2.1	Test results for the Sr-modified alloy for cutting speed of	
	500 m/min	55
4.2.2	Test results for the Sr-modified alloy for cutting speed of	
	600 m/min	56
4.2.3	Test results for the Sr-modified alloy for cutting speed of	
	700 m/min	57

LIST OF FIGURES

FIGURE NO.	TITLE		
2.1	Phase diagram of Al-Si alloy	9	
2.2	Types of microstructures that may form during		
	solidification of a casting	10	
2.3	Aluminum – silicon phase diagram and microstructures	11	
2.4	Cooling curve of a cooled metal and the effect of grain		
	refinement	12	
2.5	Orthogonal and oblique cutting, a) orthogonal cutting,		
	b) oblique cutting	16	
2.6	Terms used in metal cutting a) Positive rake angle, b)		
	negative rake angle	17	
2.7	Merchant force diagram	18	
2.8	Turning operation	18	
2.9	Force in turning	19	
2.10	Heat generation zone	20	
2.11	Formation of chip during metal cutting	21	
2.12	continuous chip formations during machining	22	
2.13	Continuous chips with BUE formation during		
	machining	23	
2.14	Discontinuous chip formation	23	
2.15	Chip morphology according to hardness and cutting		
	speed	24	
2.16	Types of wear observed in cutting tool	25	
2.17	Tool life criteria	26	
2.18	The effect of cutting speed and the progress of flank		
	wear	27	

2.19	Common properties of cutting tool materials	
2.20	Turning tool geometry showing all angles	33
2.21	Tool designations for single point cutting tool	34
3.1	Summary of the methodology used in the study	40
3.2	Condition of workpiece material	42
3.3	Comparison of the solidification modes in aluminium	
	silicon alloys	44
3.4	Condition of workpiece material (a) as cast, (b) after	
	skinning process	45
3.5	ALPHA 1350S, 2-axis CNC lathe	46
3.6	Tool Maker's Microscope Nikon	46
3.7	Portable Surface Profilometer, Taylor Hobson	
	Surtronic 3+.	47
3.8	Optical Nikon Microscope c/w Image Analyzing Software	47
3.9	Polycrystalline diamond (PCD) tool	48
3.10	Measurements of tool wear in turning according	50
3.11	Metallurgical and specimen preparation equipments, (a)	
	Mounting machine, (b) Polishing machine and (c)	
	Manual sanding machine	52
4.1	Microstructures of a) unmodified and b) Sr-modified	
	AlSi18 alloy (X100)	58
4.2	Wear curves for PCD insert in turning the unmodified	
	alloy versus cutting time at cutting speeds of 500, 600	
	and 700 m/min	60
4.3	Wear curves for PCD insert in turning Sr-modified alloys	
	versus cutting time at different cutting speeds of 500, 600	
	and 700 m/min	60
4.4	Image of flank wears of PCD tool when machining	
	unmodified AlSi18 alloy at different cutting speeds:	
	500, 600, and 700 (m/min).	62
4.5	Image of flank wear of PCD tool when machining Sr-	
	modified AlSi18 alloy at different cutting speeds: 500,	
	600, 700 (m/min).	63

4.6	Surface roughness obtained when machine unmodified		
	AlSi18 alloy with PCD at different cutting speeds	64	
	Surface roughness obtained when machining Sr-		
4.7	modified AlSi18 with PCD at different cutting speeds	65	
4.8	Types of chip produced by PCD tool in turning the		
	unmodified AlSi18 alloy at different cutting speeds and		
	cutting time	67	
4.9	Types of chip produced by PCD tool in turning Sr-		
	modified AlSi18 alloy at different cutting speeds and		
	cutting time	68	
4.10	Image of chip root when cutting unmodified alloy at		
	500m/min using PCD cutting tool.	69	
4.11	Image of chip root when cutting unmodified alloy at		
	600m/min using PCD cutting tool.	70	
4.12	Image of chip root when cutting unmodified alloy at		
	700m/min using PCD cutting tool.	70	
4.13	Image of chip root when cutting Sr-modified alloy at		
	500m/min using PCD cutting tool.	71	
4.14	Image of chip root when cutting Sr-modified alloy at		
	600m/min using PCD cutting tool.	71	
4.15	Image of chip root when cutting Sr-modified alloy at		
	700m/min using PCD cutting tool.	72	
A.1	Type of engine parts was produced by A390 alloy.		
	(Source by SEIL CO. LTD)	79	

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	application of aluminum silicon alloys	79

CHAPTER 1

INTRODUCTION

1.1 Background

Hypereutectic aluminum–silicon (Al–Si) alloys have been used for many lightweight, high-strength applications. A390 is one of hypereutectic Al–Si alloys, with 18wt% Si, and has been used for internal combustion engine parts, cylinder bodies of compressors and pumps, and brake systems, etc., because of its low thermal expansion coefficient, high hardness, and good wear resistance. In hypereutectic Al–Si alloys, the high silicon content, exceeding the eutectic composition (about 12 wt%), is purposely introduced to enhance the wear resistance at high temperatures, however, the excess silicon, in the form of proeutectic silicon grains (order of 10 mm), is hard, highly abrasive, and significantly impact the machinability.

Tool wear in machining of high-Si aluminum alloys has been characterized as abrasion due to scratching of crushed primary Si particles and adhesion/abrasion induced micro-chipping of the cutting edge due to periodic removals of the built-up workpiece material at the tool surface.

The wear mechanisms of PCD are various in machining different materials. Nowadays, the development of construction industry accelerates the increase of manmade boards. Much attention has been focused on the machining of wood based materials by diamond tools.

1.2 Problem statement

The properties of Al- Si alloy are controlled by the reinforcement and the interface. In particular, many of the considerations arising due to fabrication, processing and considerations performance of Al- Si alloy are related to process that take place in the interfacial region between matrix and reinforcement.

A continuing problem with Al- Si alloy is that they are difficult to machine, tool wear is rapid due to the hardness and abrasive nature of the Si and other reinforcing particles. Polycrystalline diamond (PCD) is an exception, as its hardness is approximately three or four times that of the silicon (Si). This is the reason why PCD is recommended by many researchers, who studied the turning of these materials.

Evaluate the performance of Diamond tool become important depends to application of Al- Si alloy to improve their machinability and to obtain economical tool life in machining Al- Si alloy.

1.3 Objective

The main objective of this thesis is to evaluate the influence of work-piece material structure on machining characteristics of hypereutectic Al-Si cast alloy and to examine the type of chips formed during turning of hypereutectic Al-Si cast alloy.

1.4 Scope of the Project

- a) Work-piece materials preparation
 - Unmodified hypereutectic Al-Si cast alloy.
 - Sr-Modified hypereutectic Al-Si cast alloy
- b) Microstructure Analysis.

c) Evaluate effect of material structure on machining characteristics during turning using diamond tools.

d) Performances the tools are evaluated based on wear and tool life criteria.