Shukor, N. A. and Ahmad, T. and Idris, A. and Awang, S. R. and Ahmad Fuad, A. A. (2021) Graph of fuzzy topographic topological mapping in relation to k fibonacci sequence. Journal of Mathematics, 2021 . ISSN 23144629

PDF
1MB 
Official URL: http://dx.doi.org/10.1155/2021/7519643
Abstract
A generated nsequence of fuzzy topographic topological mapping, FTTMn, is a combination of n number of FTTM's graphs. An assembly graph is a graph whereby its vertices have valency of one or four. A Hamiltonian path is a path that visits every vertex of the graph exactly once. In this paper, we prove that assembly graphs exist in FTTMn and establish their relations to the Hamiltonian polygonal paths. Finally, the relation between the Hamiltonian polygonal paths induced from FTTMn to the kFibonacci sequence is established and their upper and lower bounds' number of paths is determined.
Item Type:  Article 

Uncontrolled Keywords:  fuzzy topographic, Hamiltonian path, kFibonacci sequence 
Subjects:  Q Science > QA Mathematics 
Divisions:  Science 
ID Code:  94976 
Deposited By:  Narimah Nawil 
Deposited On:  29 Apr 2022 22:00 
Last Modified:  29 Apr 2022 22:00 
Repository Staff Only: item control page