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ABSTRACT Wireless Sensor Networks (WSNs) play a significant role in providing an extraordinary 

infrastructure for monitoring environmental variations such as climate change, volcanoes, and other natural 

disasters. In a hostile environment, sensors’ energy is one of the crucial concerns in collecting and analyzing 

accurate data. However, various environmental conditions, short-distance adjacent devices, and extreme 

usage of resources, i.e., battery power in WSNs, lead to a high possibility of redundant data. Accordingly, 

the reduction in redundant data is required for both resources and accurate information. In this context, this 

paper presents a comprehensive review of the existing energy-efficient data redundancy reduction schemes 

with their benefits and limitations for WSNs. The entire concept of data redundancy reduction is classified 

into three levels, which are node, cluster head, and sink. Additionally, this paper highlights existing key issues 

and challenges and suggested future work in reducing data redundancy for future research. 

INDEX TERMS Cluster-based, data redundancy, energy efficiency, reduction, wireless sensor networks

I. INTRODUCTION 

Wireless Sensor Networks (WSNs) are extensively used in 

hostile environments and large-scale applications [1][2], 

such as terrestrial, underground, underwater, multimedia [3]. 

Other applications include volcanoes, military issues [4][5], 

glaciers, earthquakes, agriculture [6][7], industry, 

environmental issues [8]–[10], and healthcare [11] etc. 

However, distribution deployment, designing, and energy 

consumption are the most common issues, and challenges of 

these applications as millions of sensor nodes are distributed 

in these large-scale areas. The life span of each sensor is 

entirely dependent on the battery power to perform different 

tasks such as sensing, computation, processing, and 

transmission for data collection. Data transmission, on the 

other hand, uses more energy than other processes. 

In WSNs, data-driven models are used for various 

applications and are classified into four fundamental data-

driven models. A query-driven model is obtained for specific 

knowledge items required from different places, such as home 

applications and logistic applications [12]. In a query-driven 

model, data is gathered, stored locally and transmitted on a 

requested suitable module for a certain knowledge item that is 

required from multiple locations. Event-driven data is inactive 

non-continuous, and transmitted with high energy 

consumption when the events occur, such as forest fire, mass 

movement, surveillance, earthquake, and forecasting of the 

flood, etc. Time driven is also known as periodic sensor data, 

mostly used for monitoring of a particular phenomenon such 

as melting glaciers, earthquakes, and healthcare. Furthermore, 

the periodic sensor continually collects data from the physical 

environment and reports it to the base station [13]. However, 

energy is mainly consumed due to the continuous sensing and 

reporting data to the sink nodes. Environmental objects move 

quickly or slowly, yet the data is identical or duplicated in both 

cases, increasing transmission costs. Different methods or 

processes, such as data aggregation and network hoping, are 

utilized to minimize transmission costs. The two forms of 

network hopping are single and multiple hopping. In single 

hopping, the data is directly sent from sensors to the sink node. 

Due to long-distance, transmission cost increases. Single hop 

is not suitable for large-scale regions. Thus, multi hop is used 

in large-scale regions. Multi hop is primarily used in 

hierarchical routing protocols such as chain based, tree based, 

and cluster based [14].  The best energy-saving protocol is 
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cluster based architecture [15]. The data transmission in nodes 

clustering covers a network view reduced between the nodes 

and the sink for an extended network lifetime. 

   

FIGURE1. Cluster-based architecture of the WSN. 

 

Figure 1 presents the cluster-based network both single and 

multiple hop routing. In general, cluster-based architecture 

consists of sensing area, sensor nodes, cluster head, base 

station, a sink node, and end-user. Clusters of sensor nodes are 

classified into distinct categories. Each cluster group has a 

cluster head which is responsible for identifying the nodes that 

constitute a cluster. A node in a cluster is responsible for 

gathering data from the member nodes in its cluster and for 

transmitting these data to the Base Station. The data is kept in 

three separate places in the cluster-based architecture: at the 

node level, at the cluster head, and finally, at the sink level, 

with the entire network's data.  

Previous survey and review studies focused on specific 

areas such as a survey on wireless sensor networks [13]–[18], 

energy-efficient hierarchical routing protocols [19]–[22], 

energy efficiency data aggregation techniques [23]–[27], 

challenges and design goals [28]–[31], big data [32]–[34], 

energy-efficient scheduling [35]–[37], wireless sensor 

network applications [4], [7], [44]–[46], [8], [11], [38]–[43] 

and data redundancy [47]–[49] in WSNs (detailed in Section 

II). However, this review article aims to classify the existing 

data collection and transmission mechanisms used by sensor 

nodes in WSNs. As a result, the state of the art of WSNs is 

described in terms of energy efficient data redundancy. The 

existing methods are classified into three levels: the node, 

cluster head, and sink. For each classification level, the 

performance of comparative and simulation parameters are 

also described based on existing studies with suggested future 

works.  

In this review article, our contributions are mentioned as 

follows: This review article gives a comprehensive literature 

analysis of energy efficiency for WSNs, emphasising energy-

efficient data redundancy reduction strategies. 

• It elaborates the schemes and methods of data 

redundancy for reducing in cluster-based 

architecture with the classification into various 

levels. 

• It analyzes the different approaches, methods, and 

schemes used in the energy-efficient data 

redundancy in WSN as well as highlights their 

benefits and weaknesses.  

• This review article also highlights all the 

performance metrics used to evaluate existing works 

of WSN.  

• Lastly, the summary of the suggested future works 

from the previous research is assembled, with the 

ambition that it will help new researchers follow new 

and innovative directions of energy efficiency in 

WSN. 

However, analyzing the existing approaches and considering 

their core ideas helps develop some additional applicable and 

enhanced techniques that might be an improved version of the 

existing techniques. This review article will assist future 

researchers in understanding status, needs, and future 

requirements and finding the loopholes responsibly for energy 

efficiency in WSNs. 

The rest of the paper is divided into the following sections: 

Section II provides the former survey and reviews researchers 

based on energy efficiency in WSNs. Section III presents the 

data redundancy problems in WSNs; Section IV shows the 

detailed classification of various data redundancy schemes. In 

Section V, the study focuses on the analysis of parameters with 

statistical determination. In Section VI, some direction of 

suggested future research areas in data redundancy reducing 

for the energy of WSNs are discussed, recommendation and 

conclusion are presented in Section VII. 

 
II. RELATED WORKS 

This section presents a comprehensive review of various 

existing surveys, comparative studies, and reviews focused on 

energy efficiency in the field of various perspectives for 

WSNs. 

Various programming approaches and model techniques of 

WSNs design methodologies are aggregated and explained by 

[16]. The study discusses two main approaches including low-

level-based and high-level-based approaches. Designing 

environment, power supply design, reconfiguration scenario, 

and non-functional property (NFP) verification are some of 

the issues stated in research for WSNs design. Furthermore, 

the main purpose of the review is to evaluate the architectures, 

different types, applications, and challenges of wireless sensor 

networks [50][17]. Researchers also study various techniques 

for energy and lifetime of WSNs and explain some general 

issues. Connectivity, coverage, node deployment, 

environment, fault tolerance, scalability, data aggregation, 

quality of service, hardware limits, and energy are some of the 

challenges identified in past studies [18].   

Chan et al. [22] survey the literature about hierarchical 

routing protocols for WSNs and present a comparative 

analysis of each routing protocol's advantages, disadvantages, 

and performance issues. On the other hand, a comprehensive 

review of the classical and swam intelligence approach 
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delivers the basics of using inside hierarchical energy-efficient 

routing protocols [19]. The recaps on hierarchical routing 

protocols are revised by considering energy efficiency, fault 

tolerance, location awareness, load balancing, quality of 

service (QoS), scalability, data aggregation, multipath, and 

query-based. The issues of objectives, methods, 

classifications, performance metrics, and other open issues are 

highlighted in detail for further research. Similarly, energy 

consumption is studied for WSNs lifetime [44]. The study 

explores the specifics of WSNs applications, design, and 

network structure and examines the energy efficiency of 

proactive routing algorithms considering the strengths and 

flaws. The energy efficiency protocols on periodic sensor 

networks based on their performance (life duration) and 

stability parameters are also compared. Furthermore, Sabor et 

al. [20] give a comprehensive survey about hierarchical-based 

routing protocols (HBRP) for WSNs based on communication 

paradigm, control method, routing approach, mobile element, 

mobility pattern, network architecture, clustering attributes, 

protocol operation, path establishment, energy model, 

protocol objectives, and applications. The comparison 

between survey protocols is based on delay, network size, 

energy efficiency, and scalability. Furthermore, the drawbacks 

and advantages are also evaluated. Abbasian et al. [23] present 

the different data aggregation methods and protocols. The 

ground, multimedia, underwater, underground, and the human 

body all employ data aggregation in network applications in 

distinct ways. With the IoT scenario in WSNs, the study 

compares data aggregation and non-aggregation approaches. 

Individually emphasized data reduction approaches are used 

for reducing data volume size and communication costs. 

A detailed review of existing techniques of distributed data 

aggregation problems under network settings is presented 

[24]. In this regard, the distributed data aggregation problems 

are divided into two main categories, communication and 

computation. For the communication category, routing 

protocols, network topologies, and all protocols are taken for 

aggregation process support, while the computation process is 

used to compute the aggregation function of algorithms. The 

review discusses the issues and recent approaches as well as 

advantages of data aggregation for underwater [25]. There are 

three types of underwater data aggregation techniques: cluster-

based, non-cluster-based, and other strategies. These 

techniques are compared through metric performance. In the 

study [27], different data aggregation issues of existing studies 

are conferred and compared with the previous solutions as 

well for data aggregation issues. Also, it covers the 

comparative analysis of various data aggregation techniques 

based on delay, average energy consumption, redundancy, 

strategy, and traffic load. In the study [31], WSNs applications 

along with their classifications are explained. The research 

challenges and concerns are also explained. Mallick and 

Satpathy [28] claim that the WSNs structure, applications, and 

characteristics are the biggest challenges during 

implementation and designing. The WSNs applications are 

divided into two groups and are explained in detail. The study 

mentions that the main challenges and design goals in WSNs 

depend upon resource constraints, including data redundancy, 

storage, integration, QoS, and topologies. 

Moreover, the survey is presented in the state-of-art of 

WSNs architecture, design and requirements, routing 

protocol, and its applications [29]. Further, for future designs 

of algorithms and protocols, some directions are also given. 

WSNs bring a tremendous change in agriculture monitoring 

by introducing smart farming, which has replaced traditional 

farming with its technology and applications. Farmers benefit 

from smart farming, such as water utilization, ease of 

agricultural land monitoring, and high yield. However, there 

are still issues with WSNs implementation in agriculture, but 

in the future, the entire agricultural system is automatic and 

sustainable owing to technologies like the internet of things, 

fog computing, and cloud computing that save time and 

resources [30]. In the same way, the big data challenges 

between wireless sensor networks and data aggregation 

strategies are reviewed and addressed [34]. The open issues, 

including the evolution of the IoTs, network architecture, real-

time communications on fog computing, extensive, flexible 

framework, modelling, and simulation are also discussed. The 

big data concept is presented by integrating the dimension and 

tools and addressed issues.  

Furthermore, a new classification for big data is created by 

WSNs requirements. In WSNs for big data aggregation, the 

different existing aggregation strategies are surveyed in detail. 

On the other hand, a comprehensive survey is used to 

investigate how big data is introduced in WSNs through its 

state of art research [33]. Moreover, for large-scale WSNs 

coverage, there are many challenges and opportunities. These 

challenges and opportunities are important to explore to 

increase the WSNs' lifetime efficiency. Moreover, in [32], Dai 

et al. present information on state-of-the-art big data and make 

recommendations for large-scale wireless networks to attain 

this aim. The authors concentrated on four phases of big data 

analytical (BDA) approaches: data acquisition, data pre-

processing, data storage, and data analytics, rather than 

outlining the details of big data for WSNs. According to BDA, 

the life cycle categorized into four consecutive data stages 

(acquisition, pre-processing, storage, and analytics) is also 

presented and open research issues and future directions. 

According to Pagar and Mehetre [36], the energy 

consumption is a basic challenge for WSNs applications. 

Different methods and techniques used to save energy, such as 

energy efficient sleep scheduling (EESS) algorithm for WSNs 

are discussed. Scheduling is also known as packet scheduling 

in WSNs by which packet schedules are managed, transmitted, 

and received from queue forms. The WSNs scheduling types 

are discussed in detail, along with their benefits and 

drawbacks. Bagaa et al. [37] focus on data aggregation 

scheduling algorithms for WSNs for energy efficiency, 

network lifetime, and accuracy. Data aggregation scheduling 

protocols are classified into two types according to waiting for 
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time nature, such as unslotted data aggregation scheduling 

protocols and slotted data aggregation scheduling protocols. 

Furthermore, each category is divided into subcategories 

based on its objectives. The unresolved challenges and 

directions for future study in data aggregation scheduling 

techniques are also explored. 

There are several studies published on WSNs applications 

explained in detail in [4], [7], [44]–[46], [8], [11], [38]–[43].  

Ali et al. [38] focus on real-time WSNs applications for 

criminal activities on borders, surveillance, traffic monitoring, 

water level, pressure, vehicular behaviour on roads, real-time 

intelligent observation of temperature, and remote monitoring 

of patients. WSNs types are according to different situations, 

and applications on modern society as well as the 

implementation concerning different fields are explained with 

strength, weakness, opportunities, and threat (SWOT) to 

identify the merit and demerits of WSN's real-life application. 

A specific application of WSNs for water pipeline monitoring 

is focused in [39]. The motivation of using WSNs for water 

pipeline monitoring is presented because being underground, 

the pipelines are supposed to phase different geological 

phenomena, including sinking, sliding, shaking, fracturing, 

and displacement of beds, which ultimately cause rupture and 

disruption in pipelines. A special application of WSNs in 

precision agriculture (PA) is presented by [41].  

WSNs are used in agriculture to minimize labour. The 

technology uses wireless communications protocols in 

agriculture to identify communication distance and energy 

consumption. In agriculture, the energy harvesting technique 

for WSNs as well as energy-efficient techniques are used to 

solve the power consumption issues and identify more suitable 

methods. The existing techniques are compared, and their 

limitations are identified. However, recent studies in WSNs in 

PA are based on the Internet of Things (IoT) which compares 

and surveys some fields such as IoT end devices, IoT 

application layer, IoT platforms, type of sensors, and 

actuators. Premalatha and Prathap [43] highlight the 

underwater sensor fields as a new field for research, which is 

an easier way to get information from hostile areas. The study 

uses sensors to explore the underwater endangered species and 

discusses the approaches, challenges, and issues. Some 

researches [8], [40], [51]  focus on reviews and surveys 

regarding WSNs applications for environmental monitoring 

systems as well. These applications are divided into two types: 

environmental monitoring systems and environmental 

monitoring applications. The existing environmental 

monitoring system techniques are compared and then the 

challenges and limitations of these techniques are identified. 

The challenges include power consumption, communication 

cost, scalability, remote management, and data transmission 

method. 

Large-scale WSNs are randomly, densely deployed due to 

increase in data size for two reasons. First, the generated data 

at each sensor node are highly correlated and redundant due to 

the unchanged natural condition of the physical environment. 

There is a significant historical correlation among each 

consecutive data of a sensor node. For example, if temperature 

data readings are captured on sensor nodes every five seconds 

every day, the temperature readings may not change 

significantly. Due to this reason, it is not necessary to count 

the new reading at five-second intervals; otherwise, the 

previous reading matches the actual one.  Second, when sensor 

nodes are randomly and densely deployed inside or close to 

the geographical phenomenon, a large volume of data size is 

generated and accessible for transmission as data is captured 

by all the sensor nodes in the area. In such a situation, all these 

nodes transfer a lot of redundant data. Another issue and 

challenge phased by WSNs is data redundancy. The similarity 

in the sensed data by a sensor is known as redundant data. As 

a result of the data redundancy process, sensor nodes waste 

most of their energy. However, to save energy, different 

methods and techniques are used. Generally, data redundancy 

has a huge influence on the quality of the data [49]. Curiac et 

al. [48] survey the impact of data redundancy by including and 

excluding the data redundancy from WSN. Two 

methodologies, which are fault tolerance and save operations 

for spatial and temporal data redundancy, are also discussed.  

Energy saving is one of the main issues of WSNs, which is 

caused by data redundancy. Although redundancy is used to 

boost the data security in WSNs, it utilizes a lot of energy. 

Data redundancy reduction in WSNs might be the only 

solution to save sensor energy. In redundancy reduction, the 

removal of useless data ultimately improves storage efficiency 

and reduces the transmission cast. Some algorithms and 

techniques are surveyed and designed for data reduction, 

which can improve the lifetime of WSNs and increase the 

energy [47]. 

Therefore, existing studies state the surveys of WSNs and 

their application, design routing protocols, implementation 

designing, and specific real-time application such as 

underwater, underground, multimedia, and terrestrial 

application etc. Hence, this review article elaborates the 

classification of energy consumption by data redundancy in 

WSNs where it occurs and elaborates the parameters used for 

energy consumption in their classifications. It also includes the 

mathematical equations for energy consumption in WSNs. 

Some of the existing studies established on the classification 

of energy consumption by data redundancy in WSNs are 

detailed in section III.  

 

 

TABLE I 

SUMMARY  OF EXISTING  REVIEWS AND SURVEY FOR WSNS   
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 [4] 
Security issues and military 

specificities in WSNs 
       ✓   

[7] 
New development and various 

issues WSNs in precision 

agriculture 
      

 ✓  
✓ 

 [8] 
WSNs environment monitoring 

systems such as indoor, outdoor, 

and greenhouse 
      

   
 

[11] 
Wireless body area sensor 

networks 
          

[19] 
Classical and swarm intelligence 
hierarchical routing protocol    ✓  ✓  ✓  ✓ 

[20] 
Hierarchical-Based Routing 

Protocols for Mobile Wireless 
Sensor Networks 

      
 ✓ ✓ 

✓ 

[21] 
Data aggregation protocols for 

structured and structure-free WSNs 
      ✓ ✓ ✓ ✓ 

[22] 

Routing protocols  such as: 

flat routing algorithms, hierarchical 

routing algorithms, and location-
based routing algorithms 

   ✓   
✓ ✓  

 

[23] 

Data aggregation architecture in 

terrestrial, underground, 

underwater, and wireless body 
sensor networks in WSNs 

    ✓  
✓ ✓  

✓ 

[24] 
Distributed Data Aggregation 

Algorithms such as structured, 
unstructured, and hybrid 

✓   ✓   
✓ ✓  

✓ 

[25] 

Data aggregation in underwater 

WSNs architecture such as Cluster-
based techniques, and Non-cluster 

based techniques  

✓ ✓  ✓   
✓ ✓ ✓ 

✓ 

[26] 

Data aggregation approaches 
challenges and security issues such 

as flat networks and hierarchical 

networks 

 ✓     
✓ ✓ ✓ 

✓ 

[27] 

Issues of data aggregation methods 

and strategies such as centralized, 

in-network, tree-based and cluster-
based 

 ✓  ✓   
✓   

✓ 

[28] 

Characteristics, requirements, 

constraints, applications, and types 

challenges and design goals of 

WSNs 

      
  ✓  

✓ 

[29] 
routing protocols and application 
for WSNs and their design goals 

and challenges 
      

✓   
 

[30] 
WSN used. Smart Farming d in 
agriculture and challenges involved 

in the deployment 
      

 ✓  
 

[31] 
Classification and types of WSNs 

         ✓ 

[32] 
Big data analytics includes data 
acquisition, data preprocessing, 

data storage, and data analytics 
      

✓  ✓ 
✓ 

[33] 
Applications, Network System, 
and Data System        ✓ ✓   



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3128353, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

[34] 
big data concept, its dimensions, 

and analytics tools integrated       ✓  ✓  

[36] 
Types of sleep Energy Efficient 

Sleep Scheduling inWSNs ✓ ✓     ✓ ✓ ✓  

[37] 
Data Aggregation Scheduling 

Algorithms in WSNs ✓ ✓     ✓ ✓ ✓ ✓ 

[44] 
WSNs Applications and Energy 
Efficient Routing Protocols for 

design 
      

   
✓ 

[45] 
Applications of WSNs 

         ✓ 

[46] 
WSNs:  used in environmental 
monitoring and challenges           ✓ 

[38] 
Types and Requirements of WSN 

applications           

[39] 
WSNs for Water Pipeline 

Monitoring Applications 
      ✓    

[41] 
Energy-efficient WSNs for 
precision agriculture 

       ✓ ✓  

[43] 
Underwater WSNs: processes, 

applications, and challenges  
      ✓    

[47] 

Data reduction in WSNs data-

driven approaches are classified 

such as data acquisition, data 
reduction, in-network processing, 

data compression reduce and data 

prediction predicts 

✓  ✓  ✓  

✓  ✓ 

✓ 

[48] 
Redundancy and its applications in 

WSNs for temporal and spatial 

redundancy 
✓ ✓  ✓   

  ✓ 
✓ 

[49] 
Impact of data redundancy when 

excluding and including  in WSN ✓ ✓  ✓   ✓  ✓ ✓ 

Current 

Review 

Classification of Data Redundancy 
Reduction for Energy-Efficiency in 

WSNs 
✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 
 

This article is a comprehensive review of WSNs in various 

levels of data reduction. We classify the data reduction 

methods and algorithms proposed in the literature for energy 

efficiency in WSNs. This classification is based on the most 

important objectives used for developing and solving energy 

constraints. The data reduction methods on WSNs are 

classified into three main levels: data reduction at the node 

level, at cluster head level, and the sink node level. To the best 

of our knowledge, a comparative study on the data reduces 

energy-efficient issues considering these classifications has 

not been conducted yet.  However, previous survey and review 

studies that focus on the specific areas on wireless sensor 

networks include military, agriculture, environmental 

monitoring, and wireless body area network, which also 

handled the architecture along with the limitations and 

challenges [13]–[18]. Various existing studies investigate 

based on routing protocols for data aggregation of types and 

applications [19]-[27]. Some of the literature focuses only on 

specific types along with their challenges and issues [28]- [31]. 

Big data generated by WSNs [32]-[34] are analyzed, including 

application and management of data. [36]-[38] provide a 

detailed explanation of scheduling sleep algorithms for 

energy-efficient in WSNs. Data reduction schemes' impact is 

investigated by including and excluding in WSNs, including 

at nodes level and aggregator level data reduction as shown in 

Table I. Hence, this article explored state-of-the-art strategies 

of data redundancy reduction and classified into three 

categories: node level, cluster head level, and the sink level, as 

shown in Figure 2. The purpose of these classifications is built 

to the basis for future researchers in WSNs. These 

classifications are based the illustrated their advantages and 

disadvantages, and also discribe various presented methods 

and schemes based on some important parameters regarding 

cluster-based architecture, such as percentage of data after 

applying aggregation phase, percentage of data sets sent to the 

CH, duplicate sets of data, sampling rate adaptation, energy 

consumption at the node level, the lifetime of a sensor node, 

data gathered a number ratio sent data set, gathered data 

readings two consecutive periods, and so on. As well, a side-

by-side comparison of all discussed strategies is presented, 

and some suggested future work are addressed. 

III. DATA REDUNDANCY REDUCTION 

This section describes the issues and problems related to data 

redundancy reduction in WSNs. Data redundancy is the 

repetition of a single entity more than two times. It is also 

known as similarity or the exact value [52]. Redundancy is 

found during the sensing process when sensor nodes sense a 

physical object. Due to some constraints in WSNs, there are 

approximate issues of redundancy, typically in hostile or harsh 

areas where the sensors cannot be replaced or recharged [53]. 

Conversely, another issue related to WSNs is big data, as 

thousands of sensors collect and compile the data in a wide 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3128353, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

2 VOLUME XX, 2017 

area and produces a significant portion of big data. Nowadays, 

WSNs are one of the main sources of big data in IoT because 

the sensors sense a huge amount of data in a minute before 

sending it to a base station. However, Big data processing is 

quite complex to manage [54]. The issues and challenges of 

data redundancy are stated in the section below, and different 

levels of redundancy in cluster-based architecture for WSNs 

are described. The main data challenges in WSNs are 

classified into different categories such as clustering [55], 

security, processing, data analysis, data aggregation, and 

energy saving.  

In addition, big data is classified into two major areas: 

network systems and data systems [32]. Usually, a network 

system delivers censored data which converts to an extensive 

form of data. Though many resources are required to save 

data, a huge amount of energy is also required for its processes, 

sensing, and transmission. After the network system delivers 

censored data to an extensive data network, the data system 

processes the data [56]. Generally, the data is received by data 

network in a redundant form for analysis, which causes 

multiple issues during data processing and analysis [57]. 

Another issue of WSNs is battery limitation, as the sensor 

lifetime relies on its battery. The sensor uses battery power in 

several operations with different quantities [58]. Battery 

power is not only important for sensors life but is also 

important for sensing, collecting, and communicating data. 

When the sensor uses redundant or raw data in the operations 

above, the battery`s energy depletes quickly [59]. As battery 

power saving is one of the most challenging issues, reducing 

redundancy could help save battery power. Moreover, data 

redundancy in WSNs raises some other issues, such as high 

workload, conjunction in-network, and high transmission cost.  

IV. CLASSIFICATION OF DATA REDUNDANCY 
REDUCTION 

In this review article, the data redundancy reduction schemes 

are classified into three levels: the node level, the cluster head 

level, and the sink level, as shown in Figure 2. These data 

redundancy reduction strategies are based on the factors that 

have been employed in the estimate of performance in 

numerous researches.  

WSNs are based on cluster-based architecture, and it is 

possible to identify the particular levels where the redundant 

data is formed [60]. Usually, the cluster-based architecture 

deploys in a large network which is further divided into small 

cluster groups [61]; each group has its cluster head and 

member node [62][63] and each cluster is supposed to send 

data to the sink node [64] 

 

 

 

 

 

FIGURE 2. Classification of data redundancy reduction in WSNs. 

 

In addition, redundant data is found at three different levels 

such as at node level, cluster head level, sink level. First, while 

the sensor is sensing data at its fixed time, where there are no 

dynamic changes in the environment, the data is redundant at 

the node level. Second, when the cluster head collects data 

from its member nodes, there is a big chance that the data is 

redundant as nodes are randomly distributed, i.e., some nodes 

might be close to each other or there are no dynamic changes 

in the environment. Lastly, nodes far away from the sink send 

their sensed data to nodes near the sink; thus, big data or 

redundant data are formed as the sensor near the sink has data 

of nodes away from the sink plus their own sensed data. When 

nodes near the sink node must forward big or redundant data 

to the sink, plenty of energy is used, thus, to conserve the 

energy used by the sensors near the sink, the sink node invents 

some mechanisms. Recently several researchers are worked to 

find the solution to preserve the battery power and proposed 

different methods and techniques. Below are the work of the 

recent researchers and some issues with their work. The 

taxonomy of various data redundancy schemes classification 

is presented in Figure 2. The details of these classification 

itemized, based on existing techniques used for energy 

efficiency in WSNs, are shown in Table II, VI, and VIII.  

A. DATA REDUNDANCY REDUCTION AT NODE LEVEL 

This section explains the existing studies of the data 

redundancy reduction schemes and algorithms used at the 

node level for the WSNs. However, the current techniques are 

analyzed and considered the necessary parameters for the 

emergence of data redundancy in WSNs. Table I presents the 

various problems of data redundancy reduction at the node 

level with proposed schemes by combining the models and 

strategies. The contributions and limitations in WSNs are also 

presented. 
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A cluster architecture that contains a cluster head and member 

nodes are shown in Figure 3. Moreover, each sensor node 

collects the data periodically. This periodic data is further 

divided into small intervals known as slots, and every slot 

senses unique data. However, the slot has a short, fixed period 

to collect the data. During this period, if the physical 

environment shows change (rapid or slow), then there are  

chances of similar or redundant data coverage [71]. 

Ultimately, the redundant data consumes a lot of energy at 

each sensor due to periodically sensing data. Even though 

TABLE II 

EXISTING STUDIES ARE BASED ON DATA REDUNDANCY REDUCTION SCHEMES AT NODE LEVEL 

References Schemes 
Problems 

Addresses 
Proposed Models / Strategies 

Improvements/ 

Enhancements 

Limitations/ 

Weaknesses 

[65] Aggregation 

and 
transmission 

protocol (ATP) 

Conserving 

energy, 
eliminating data 

redundancy, and 

reducing 
communication  

1. Aggregation phase using a 

similar function and measure 
frequency. 

2. Transmission phase us one-

way ANOVA model and 
fisher test 

Energy 

consumption, 
data quality 

Focus only on two 

consecutive 
readings and 

assumptions 

[66] Data collecting 

and 

aggregation 
with discerning 

transmission 

(DCADT) 
technique 

Redundancy in the 

collected data to 

sending it to the 
sink   

1. Data capturing for 

dimensionality reduction, the 

SAX symbolic method, and 
piecewise aggregate 

approximation (PAA) with 

adaptive piecewise constant 
approximation (APCA) DTW 

are used for two periods. 

2. Selective transmission using 
the notification (NOTIFY_ 

PKT) or (MEASURE_ PKT)  

3. Changes in sampling rate 

Consumed 

energy and data 

accuracy 

Complex 

computation and 

high memory used 

[67] The least 
number of bits 

Reducing energy 
consumption is 

one of the main 
issues in WSNs 

1. Sending the difference  
between new reading and  

previous reading for less size  
by least bits number 

Energy 
consumption 

and extends 
lifetime of 

sensor network 

Single value 
comparison due to 

this high 
computational rate 

[68] Min and max 

stratum 

Intra-temporal and 

inter-spatial 
correlation data 

generated by the 

dense distribution 
of sensor nodes 

1. First, comparison between 

predefined means values 
with new capture data 

2. Second, obtained from the 

previous step value compare 
either it is min or mix with 

predefined stratum values 

Control packet 

collision, 
communication 

cost network, 

congestion, and 
enhanced 

network 

lifetime 

Approximating 

the mean and 
variance are 

additional difficult 

than for simple 
random sampling 

[69] Energy-
efficient 

adaptive 

distributed data 
collection 

method 

(EADiDaC) 

A crucial issue in 
PSNs is the 

continuous 

collection of a 
large volume of 

data 

1. First, data collection 
adaptively 

2. Second, dimensionality 

reduction using adaptive 
piecewise constant 

approximation (APCA) 

technique 
3. Third, frequency reduction 

using the symbolic aggregate 

approximation (SAX) 
approach. 

4. Lastly, sampling rate 

adaptation is based on 
dynamic time warping 

(DTW) similarity. 

Preserve the 
energy at the 

sensor nodes 

and extend the 
PSNs lifetime 

There is overly 
complex and 

require huge 

processing 

[70] Kruskal–Wallis 

test 

Data reduction for 

WSNs 

1. First, eliminate similar 

reading from the vector by 

similar function and 

measures redundancy used 

reading weight 
2. Second, after ending each 

period searches for 

redundancy of new gather 
value if it is redundant just 

add its weight 

Reducing the 

size of data 

transmitted over 

the network and 

thus saving 
energy 

Do not apply 

correlation 

between 

neighboring 

sensor nod 
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many researchers have worked on energy conservation caused 

by data redundancy and have come up with some mechanisms 

and algorithms, energy issues continue to require attention 

[72].  

 

FIGURE 3. Process of data collection at the node level. 

 

In periodic sensor networks (PSNs), the network lifetime is 

based on the energy of each sensor node. Hassan et al. [65] 

propose an aggregation and transmission protocol (ATP) 

construction for each sensor node to reduce data transmission 

and ultimately preserve energy. In PSNs, each node gathers 

sense data in vector form. Each period is divided into fixed 

time slots. At the node level,  captured data  is a form of vector. 

The period is divided into equal fixed time slots. However, 

when the time interval is small, the node may have collected 

redundant or closely similar data due to the unintentional 

changes in the physical monitoring object. The study proposes 

the node level data redundancy reduction based on two phases, 

aggregation and transmission, to reduce redundant data. The 

aggregation phase at each node aims to reduce redundancy or 

size from raw data which increases the energy power of each 

sensor node. Moreover, the aggregation phase is classified into 

two functions. The first function is to identify the similarities 

between two measurements with application defined 

threshold. Furthermore, if these two measurements are similar, 

then their function adds 1 to the first measurement and 

discards the second measurement. If these two values are not 

similar, then it considers the new value.   After the aggregation 

phase, a node compiles the data sets observed by each sensor 

and decides whether to send these aggregated data to the 

cluster head (CH) for the transmission phase. Once the data is 

sent to the transmission phase, it is checked again to find out 

the data redundancy between two successive periods. Every 

period has its own data sets and time interval frequency 

measures. A statistical model is used for data redundancy 

reduction between two periods by using the analysis of 

variance (ANOVA) one-way model and Fisher test. 

Furthermore, the Fisher test shows whether all prior and new 

periods are similar. During the transmission phase, each 

sensor node uses the Fisher test to calculate the variance 

between the prior period of data sets and the current data sets. 

It checks if and only if the variance is not significant, then it 

discards the new period data sets and just sends a notification 

to the CH. The notification packet is empty, showing that the 

new dataset and the previous dataset are equal to avoid sending 

redundant sets to decrease the power consumption. However, 

while the ANOVA model identifies redundancy between two 

data sets, different data sets still need to be measured. 

Meanwhile, the Fisher test is usually needed when the small 

data size has high computational issues.  

The data collecting and aggregation by discerning 

transmission technique (DCADT) are proposed in [66] to 

increase the lifetime of PSNs. DCADT finds correlations 

among the collected data in every sensor by sampling rate in a 

dynamic way. This technique works in rounds, with each 

round divided into two periods and each period consisting of 

four phases: data aggregation, data gathering, frequency 

adjustment, and selective transmission.  To gather samples of 

data, every sensor node uses dynamic time warping (DTW) to 

measure distance. Both data gathering and data transmission 

are used for data sampling. The usage of both data 

transmission and data gathering is used for data sampling for 

the removal of redundant data within sensors while sending 

data to the base station. Before transmission, the redundant 

data first aggregate data. In the data-gathering phase to get 

adoptive data, a sampling rate is fixed in every sensor node. 

Second, in the data aggregation phase, the DGAST protocol 

uses a symbolic aggregate approximation (SAX) algorithm to 

eliminate redundant data from temperature reading before 

transferring to the CH. This phase is further distributed into 

two more stages. The first stage, dimensionality reduction, and 

adaptive piecewise constant approximation (APCA) approach 

use different lengths but constant values for the segment. In 

the second phase, the SAX method is used to reduce reading 

repetition by making a table of readings from segments 

representing symbols for breakpoints specification. This phase 

is a decision-making phase that decides whether or not to 

forward the data between two complete periods to the CH. 

Suppose there is redundant data between the two complete 

periods. In that case, it only sends notification packets, while 

if there is no redundancy in data, then it sends new period’s 

data to the CH. The final phase is the adoption of sampling 

rate, which finds redundant reading percentage between two 

consecutive periods per round for new redundant rate. For this, 

the DTW distance base is adopted for the measurement using 

a similarities function redundancy. 

The study presents methods to conserve energy and reduce 

data size for low transmission cost in every sensor [67]. It finds 

the differences in new sensed reading and last reading value 

and then uses the least number bit, which is used for 

transmission. Rather than sending all values to the start-up 

phase, every sensor sends its first reading to CH and saves it 

in its memory. When CH receives the first reading from every 

sensor node in cluster reading, it saves it in memory. Next, in 

the data collection phase, sensor node calculates the 

differences between the new and previous reading. The 

differences are called the least number of bits. It assumes that 

if the last sensor reading is 25°C (110012), then the new 

temperature in this reading is increased by 5°C. The new 
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reading then becomes 30°C (111102). Then the difference 

(30-25=5°C) (1012) is computed. The total number of bits is 

decreased and evaluated by using bits that save energy and 

reduce the data size. 

Similarly, the study proposes an energy-efficient and 

computational lightweight aggregation technique. The main 

advantage of this technique is node processing cost where it 

reduces the amount of data being sent to the base station which 

ultimately controls the data conjunction. In this scheme, every 

cluster member node places data according to a stratum that 

exists in every sensor node within the buffer.  Seven stratums 

are used for ranging the temperature value from 260C to 

32.990C. These ranges are common for all temperature 

readings captured by every sensor node. These seven strata are 

based on previously acquired historical data. In this approach, 

there are two steps. The values of new readings are compared 

to the stratum mean value in the first phase. The received value 

from the last stratum is compared to either the minimum or 

maximum value for a particular stratum in the second phase. 

However, each stratum is divided into the minimum or 

maximum values, amongst which each sensor node compares 

its values from minimum or maximum and then forwards it to 

cluster head in a predefined time interval [68]. 

Al-Qurabat et al. [69] propose an energy-efficient adaptive 

distributed data collection method (EADiDaC) for data 

aggregation, which collects data periodically to increase 

sensors lifetime. This method is divided into cycles and four 

different stages are built in each cycle. The first stage of the 

cycle is data collection, in which the process shows how the 

sensor collects the data in a network and its transmission 

process to the base station. Each cycle is divided into two 

periods and each period is divided into slots. EADiDaC 

method collects the sensor readings in time-series form, and it 

is called temperature readings. The redundancy in these 

temperature readings increases only under two conditions; 

when the time slot decreases or the changes in the area's 

physical environment are slow. The second stage is 

dimensionality reduction, where the adaptive piecewise 

constant approximation (APCA) technique is used to decrease 

dimensionality. There is a period fixed to measure sensor 

readings at this stage to reduce the size of data by 

dimensionality reduction technique using APCA technique. 

The study presents some modifications in APCA i.e., the 

length of the segment is not fixed and with the help of user-

specified reconstruction error, the adoption base is set. Then 

to build different segments, sliding windows through user-

specified reconstruction errors are used. The third stage is 

frequency reduction, which is reduced with the help of SAX. 

By using this method, redundancy from temperature readings 

before sending it to the base station is reduced. The EADiDaC 

method is used to build a reduced vector by imposing a 

variable length. Now the temperature readings are divided into 

an unspecified number of segments by using a sliding window 

that varies in length. Each segment calculates a mean which is 

called length. The mean values are turned into symbols and 

the alphabet to get a fixed size. It puts a breakpoint on the 

symbols which are predefined in a Table form. Before 

converting to APCA, the mean values are converted into 

symbols in which redundant symbols are also included. To 

remove the redundant symbols EADiDaC method uses a 

function to find the redundancy between the symbols before 

sending them to the base station. The final stage is sampling 

rate adoption which is based on dynamic time warping 

(DTW). This method finds the redundancy percentage from 

the temperature reading in a period and decides the sampling 

rate. Initially, it finds data similarities between two periods. At 

the end of each period, the EADiDaC method changes APCA, 

and it selects a different number of a segment whose length is 

different in every period. EADiDaC method uses similar 

functions to find redundancy between every two APCA 

temperature readings and then it verifies the number of data 

similarities in a period at each cycle. Thus, periods have 

different lengths in each cycle, so the reading percentage is 

calculated per cycle. Suppose the redundancy percentage is 

high in the readings at different periods. In that case, it means 

that there are only minor changes in the environment, but if 

the redundancy percentage is less, it means there are minimal 

changes in the environment. 

In the study [70], an online data reduction method is 

proposed in which the sensing rate of sensor node depends 

upon data variances Kruskal–Wallis test. The Kruskal–Wallis 

test is built in every node, so it reduces redundant data. The 

first phase at the node level is known as acquisition. It uses 

three periods in a cycle where data is organized in an order 

form in a table and an ordered rank is fixed for every reading. 

If the received reading is redundant, which is named as tied, a 

mean of the tied readings is calculated. Additionally, a 

threshold value of an application risk level is taken. In every 

round, each node decides after differentiating between risk 

level and sampling value that either the sampling rate should 

increase or decrease. To find the redundancy level, a 

behavioral function is used to identify the differences between 

the crucial value threshold and sensing data. Furthermore, 

suppose the values are higher than the risk level. In that case, 

it is labeled as one (1), else if it is lesser than risk level, then it 

is labeled as zero (0), and these values are placed in value R. 

There are chances of data redundancy in R and similar 

function is used to identify it. Three conditions are used to 

identify similar data. In the first condition, if the result is (0) 

zero after comparison, it labels as one (1). In the second 

condition, if it is lesser than the threshold value, then it is 

referred to as redundant readings. In the third condition, 

weight is fixed on it, and if it is redundant, then the weight 

generates a vector. Finally, the sensor sends a set of readings 

with its weight to the sink node.  

In Table II, simulation parametric values are based on a 

threshold value, measures readings, Eelec, ßamp, K, 

MINSAMP, data, and field; simulator and sensor at the node 

level are described. Most of the researchers used the 0.03 and 

0.05 threshold values with 50 nJ/bit on the intel Berkeley 
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research lab and due to using a small threshold value, the 

measures readings range is also less like 20-100. Some of the 

researchers used the large threshold value like 0.07 and 0.1 

with large measures readings ranged from 100-2000. Table III 

shows the existing proposed methods and schemes with the 

benchmark’s methods and schemes used for comparison. 

Also, it mentions the various performance comparison 

parameters for evaluating the existing schemes and methods 

for data redundancy reduction in WSNs. 

TABLE III. 
SIMULATION PARAMETRIC VALUES AT THE NODE-LEVEL 

References 
Schemes/ 
Methods 

Threshold 
Values 

Measures 
Readings 

Eelec ßamp K MINSAMP 
Data and 

Field 
Simulator 
and Sensor 

[65] ATP 0.03, 0.05 

and 0.07 

20, 50, 

100 

  

 

2  Intel 

Berkeley 

Research Lab 
and 

temperature 

Custom 

Java Based 

and 
Mica2Dot 

[73] DaT 0.03, 0.05, 
and 0.07 

20, 50, 
and 100 

50 nJ/bit 100 
pJ/bit/m2 

ρ/2  Intel 
Berkeley Lab 

OMNeT++ 
and 

Mica2dot 

[74] TLDA 0.03, 0.05, 

0.07, and 
0.1 

200, 500, 

1000 and 
2000 

50 nJ/bit 100 

pJ/bit/m2 

2  Intel 

Berkeley 
Research Lab 

and  

temperature 

OMNeT++

and 
Mica2dot 

[66] DGAST 0.07, 0.1, 

0.2, 0.03 

and 0.05 

20, 50, 

100, and 

200 

50 nJ/bit 100 

pJ/bit/m2 

2 20, 40, and 

60 

Intel 

Berkeley 

Research Lab 
and 

temperature 

OMNeT++ 

and 

Mica2dot 

[75] Divide-

and-
Conquer 

Algorithm 

 50, 100 

and 200  

    Intel 

Berkeley 
Research Lab 

Mica2dot 

[76] TTDR  20, 50 
and 100 

sensed 

data 

50 nJ/bit 100 
pJ/bit/m2 

   OMNeT++ 

[77] ESTS and 

Reliable- 

(RESTS) 

0.03, 0.05, 

0.07 and 

0.1 

200, 500 

and 1000 

    Intel 

Berkeley 

Research Lab 

Mica2dot 

[67] (Exact) and 
difference 

value (Diff) 

approaches 
 

 43086, 
14246 

and 

3213 

    Le Gènepi,   
Le Borien, 

and   

PlaineMorte 
Switzerland 

Java 
event-

driven  

[78] AAS 0.05, 0.07, 

0.1, 0.2, 
0.3, 0.4 and 

0.5 

50, 100, 

150, and 
200. 

    Intel 

Berkeley 
Research Lab 

Mica2dot 

[79] EK-Means 0.0 0 05 to 

0.025 

256 to 

2048  

50 nJ/bit 100 

pJ/bit/m2 

5 and 50.  Argo project Java based 

Simulator 

[68] Min and 

Max 

Stratum 

 1500 

packets 

  1.064 μ 

joule 

Packet 

size 128 

bytes 

Sampling 

rate is 1 

packet/se 

  

[80] Dual 
Prediction 

(DP) 

0.5 oC Data 
blocks 

sizes (m, 

8) and 
(m, 10) 

  data 
buffer 

size N = 

10 

 Intel 
Berkeley 

Research Lab 

Mica2dot 

[81] REDA   50.10−9J 100pJ/bits/

m2 

   MATLAB 

[69] EADiDaC 0.07, 

0.1and 0.2 

20, 50, 

100 and 

200  

50 nJ/bit 100 

pJ/bit/m2 

 20, 40 and 

60 

Intel 

Berkeley 

Research Lab 

Mica2dot   

OMNeT+

+ 
 

[82] KNN  50     Real sensor 

laboratory 

Crossbow 

telosb 

motes 
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[83] Two-level 

data 

reduction 
approach 

0.4, 0.5, 0.6 

and 0.7 

100, 200, 

500 and 

1000 

    Intel 

Berkeley 

Research 
Lab, and real 

sensor nodes 

laboratory 

Crossbow 

telosb 

motes and 
Mica2dot 

[70] Kruskal–
Wallis Test 

0.05, 0.01 
and 0.025 

50       

[84] KAB, 

Euclidean, 
cosine 

distance 

and PFF 

0.03, 0.05, 

0.07, 0.1, 
0.35, 0.4, 

0.45 and 

0.5 

200, 500 

and 1000. 

    Intel 

Berkeley 
Research Lab 

Mica2dot 

and Java 
based 

simulator 

[85] Prediction 

model ECR 

0.5 and 1 500 50 nJ/s 

for 1-bit 

150 nJ/s 

for 1-bit, 

10 m 

10   NS-2.34 

[86] Extended 
(DPS) 

       Internation
al Airport 

Tlemcen 

(Algeria) 
MATLAB 

Note: Eelec is the energy consume on the transmitter and the receiver, ßamp, is a transmitter amplifier, K means total periods, MINSAMP means a 
minimum sample rate, nJ/bit the circuitry is to path the source or receiver, pJ/bit/m2 is on the transmitter amplifier. 

TABLE IV.  

PERFORMANCE COMPARATIVE PARAMETER’S FOR SAVE ENERGY AT THE NODE LEVEL 
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[65] ATP PFF  ✓ ✓ ✓ ✓           

[73] DaT ATP and PFF   ✓ ✓ ✓          

[74] TLDA [71] and PFF   ✓  ✓ ✓         

[66] DGAST PFF, and Harb  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

[75] sensor tier: 

divide-and-

conquer 
algorithm 

PFF  

            ✓  

[76] TTDR ATP and PFF 
  ✓ ✓ ✓        ✓  

[77] ESTS and 
reliable- 

RESTS 

ESTS and 
RESTS ✓  ✓  ✓    ✓      

[67] Exact value 
(Exact) and 

Difference 

value 
(Diff) 

(Exact) and 
difference value 

(Diff) 

approaches 

       ✓     ✓  

[78] AAS Naïve approach 
           ✓   
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B. DATA REDUNDANCY REDUCTION AT THE 
CLUSTER-HEAD LEVEL 

This section describes the current studies of the data 

redundancy reduction schemes and algorithms at the node to 

the CH level for the WSNs. Although the existing techniques 

are examined and measured, the used parameters are essential 

for emergence of data redundancy in WSNs. Table V 

highlights that some of the current existing methods problems 

are addressed with their progress models, and proposed energy 

efficiency schemes to reduce data at the CH level for WSNs. 

Table V also deliberates the contributions and boundaries of 

existing methods. 

 

[79] EK-Means Naïve approach 
    ✓   ✓       

[68] aggregation 

technique 

 

 ✓ ✓ ✓    ✓ ✓      

[80] Dual 

Prediction 

(DP) with 
TRP and 

MSE 

OSSLMS, 

NNs, 

and LSTMs and 
DP 

            ✓  

[81] REDA ESPDA and 
SRDA 

✓         ✓    ✓ 

[69] EADiDaC PFF and Harb 

et al. (2016)   ✓ ✓     ✓ ✓ ✓    

[82] KNN S-LEC   ✓        ✓    

[83] two-level 

data 
reduction  

S-LEC 

 ✓           ✓  

[70] Kruskal–

Wallis Test 

Bartlett test and 

S-LEC              ✓ 

[84] With 

aggregation 

Without 

aggregation    ✓ ✓          

[85] Prediction 

Model 
ECR 

P-DPA and 

OSSLMS 
  ✓ ✓           

[86] Extended 
(DPS) 

DPS 
  ✓          ✓  

TABLE V. 

EXISTING STUDIES ARE BASED ON DATA REDUNDANCY SCHEMES AT THE CH LEVEL 

References Schemes Problems identify Proposed strategies Improvements/ 

enhancements 

Limitations/ 

weaknesses 

[73] 1. Data 
transmission 

(DAT)  

2. Energy-
efficient 

two-layer 

data 

transmission 

reduction 

(ETDTR)  

Reducing the data volume 
transmitted to the final 

base station or sink 

 

1. Node level: KNN modified 
k-nearest neighbor) 

algorithm 

2. CH level: grouping vectors 
into sets according to their 

length 

Data reduction 
rate, energy 

consumption, 

and lost data 

It does not work 
with big data sets   

[74] Two level data 

aggregation 
(TLDA)  

1. Reduce the amount 

of data captured by 
each sensor 

individually. 

2. Identifying closely 
matching sets, 

integrating replica 

readings, and 
transferring 

aggregated data to 

the sink 

1. Node level: data 

collection, segments 
generated by sliding 

window and adaptive 

piecewise constant 
approximation (APCA) 

technique used for data 

aggregate 
2. CH level: finding similar 

data sets by using a hash 

function and symbolic 
aggregate approximation 

(SAX) 

Reduce sensed 

data, reduce 
energy 

consumption, 

and data quality 
extend the 

lifetime of the 

PSN while 
retaining. 

It is based on the 

mean value 
which is causes 

to miss some 

important 
information 
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[76] Two-tier data 

reduction (TTDR)  

Sensor nodes create data 

and transmit it to a 

gateway (GW), which 
consumes high energy and 

storage. 

1. Node level: delta encoding 

with differences between 

two readings and run-
length encoding add 

repeated value number 

2. CH: minimum description 
length (MDL) set 

hypothesis by discrete 

normalization, description, 
and conditional length 

Control data 

transmission 

and energy 

length of a vector 

is fixed of all 

reading which 
causes data loss 

[77] Reliable-ESTS 

(RESTS) 

Densely distribution and 

the dynamic objects offer 
high correlation among 

sensor nodes 

1. Node level:  Euclidean 

distance for search sensor 
data similarities 

2. CH: Geographical 

closeness neighbouring 
nodes calculated by 

Euclidean distances   

Saving energy 

consumption, 
network 

lifetime, and 

coverage of the 
monitored 

range 

It does not 

consider adaptive 
sample rate 

[78] Aggregation and 
adaptive sampling 

(AAS) 

Two major challenges: the 
huge amount of collected 

data, and the absence of a 

replenishable source of 
sensor energy 

1. Node level: Similarities 
detect by similar function 

between two values 

reading redundant data for 
measures frequency 

2. CH level: Physical 

distance between two 
sensors is determined by 

Euclidean distance and 
adjust sampling rate for 

the next period by a 

correlation between 
sensors spatial temporal 

Saving sensor 
energy, data 

accuracy and 

coverage 
network 

When a similar 
sampling rate 

operate between 

two sensor nodes 
collision occur 

between packets 

[79] EK-Means Sensor nodes is huge 

volume of data collect  

1. Node level: Every data 

determined two 
consecutive points by 

Euclidean distance and two 

similar vectors found by 
similar threshold between 

two measures 

2. CH level: the difference 

between two equal vectors 

data sets determined by 

Euclidean distance if two 
different length vectors 

added new data point to 

equal them 

Less energy 

consumption 

Euclidean 

distance does not 
support a 

different length 

of data vectors 

[81] Redundancy 

elimination data 

aggregation  
(REDA) 

Redundancy elimination 

data 

1. Node level: received 

lookup table from CH and 

compared sensed value 
2. Generated lookup table 

for their member nodes 

Energy 

consumption 

and bandwidth 
occupancy 

Only for small 

area networks 

[82] K-Nearest 
neighboring 

(KNN)  

1. The first challenge is 
big data collection 

2. The second 

challenge is limited 
sensor energy 

1. Node level: big raw data 
reduce by Pearson's 

coefficient metric 

2. CH level: remove data 
redundancy collected by 

neighbouring nodes with k-

nearest neighbouring 

Energy 
consumption 

and data 

accuracy 

Very slow 
algorithm for 

large data 

requires high 
memory and 

[83] Two-Level data 

reduction  

WSNs are one of the big 

data givers, someplace 

data are being gathered at 
anomalously 

1. Node level: selective 

reading sends by Pearson 

coefficient 
2. CH level:  the combination 

among Euclidean distance 

and classic k=mean for 
reducing similarities 

between each cluster 

member nodes data sets 

Improving 

Network 

Lifetime 

When data has 

higher values, it 

can be easily 
misinterpreted 

[84] KAB, Euclidean 

Distance, Cosine 

Distance, and 
PFF 

The creation of a high 

volume of big data is 

WSNs 

1. Node level: similar 

function and weighted 

cardinality 
2. CH level: one-way 

ANOVA model with 

statistical tests and the 
distance functions, 

Energy 

consumption, 

data latency, 
and accuracy 

Geographically 

sensor nodes 

distance does not 
consider 
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In WSNs, scalability improves with energy efficiency by 

preparing a hierarchical design. The typical architecture 

technique is called clustering, which replaces single-hop 

transmission with multiple hop transmission for improved 

scalability. If the clustered-based architecture is considered in 

a periodic sensor network, then the network is supposed to be 

categorized into different clusters. Each cluster has a CH that 

receives its member node data and takes responsibility for 

further transmission as shown in Figure 4. Whenever its 

member nodes sense data and the nature of the environment is 

constant, the data have redundancy. The data is aggregated and 

sent to the CH by the member node. Subsequently, the CH 

receives different data sets of each member node. Due to short 

geographical distance and environmental changes, there is a 

greater chance of having redundant data. Among the member 

nodes in a cluster, this redundant data contributes to high 

traffic, high workload, high memory loss, and rapid depleting 

sensors’ battery [68]. However, several researchers have 

proposed different techniques and methods to resolve these 

problems, which are discussed in Table III. 

 

 

FIGURE 4.  Data sets were collected at the CH level from the member 

nodes. 

For the data redundancy at the CH level, Ying et al. [87] 

offer an energy-efficient data collection technique with 

cluster-based WSNs to identify spatial-temporal correlation 

data. To detect temporal redundant data, a dual prediction 

technique is applied to reduce intra-cluster transmission. Then, 

hybrid-compress sensing is built in clusters to identify spatial 

redundant data among the sensor nodes for inter-cluster 

transmission. The prediction model also presents an error 

threshold selection scheme to enhance energy consumption 

and accuracy recovery. In the prediction method, CH sends a 

forecasted value to its all member nodes. To decrease intra-

cluster transmission, when cluster member nodes received the 

forecast value from the CH, the observed and forecasted 

values are compared within a special threshold. If there is a 

large error between forecast value and observed value, then it 

ends at a threshold. Cluster member sends its observed value 

to the CH, but the CH considers a predicted value. Afterward, 

the inter-cluster transmission starts its work where the CH 

gathers the data from all member nodes in the cluster, and it 

transmits if it is lesser than a threshold value (M). If it is more 

than M, it aggregates data using compressing sense. Finally, 

the sink node uses the CS recovery method to restore all of the 

data to its original form. 

Moreover, Idrees et al. [73] provide an expanded version of 

the KNN (Modified k-Nearest Neighbour) method at the 

sensor node level to minimize energy usage in WSNs. In 

addition, to extend sensor lifespan, it uses DaT protocol that is 

divided into two stages: data categorization and data 

transmission in each interval. Modified k-Nearest Neighbours 

is used to classify the obtained data into multiple groups while 

instead of delivering all data, the DaT protocol picks the best 

illustrative data from each class and transmits it to the sink 

[88][87]. Likewise, similar classes are combined into a single 

class. Finally, the best representative readings of all classes 

with reduced vector are transferred to the sink at the data 

transmission stage. The KNN protocol is unfair by the value 

of K and has high computational complexity and less memory 

for large data sets. 

Al-Qurabat et al. [74] propose two-level data aggregation 

(TLDA) protocol for extending the lifespan of WSNs. At the 

node level, the data aggregation is constructed at an initial 

stage. Different lengths of segments for data are created using 

slide windows, and aggregate data is collected using the 

adaptive piecewise constant approximation (APCA) 

technique, which helps to decrease data collection size at each 

node level. The second level is created at aggregators or CH. 

The aggregator gathers a set of data by chaining a hash table 

together with the SAX method. At this point, it searches and 

decreases redundant sets by merging the redundant readings. 

Henceforth, it transmits the aggregate data to the sink node. 

TLDA protocol enhances the PSN lifetime, decreases 

redundancy data, saves node power, and maintains accuracy.  

In a similar way, Al-Qurabat et al. [76] propose a two-tier 

data reduction (TTDR) technique that works in two-tier 

[85] Extended Cosine 

Regression (ECR) 

Data aggregation to 

reduces duplicate data 

transmission 

1. Node level:  two vectors: 

one is the actual data vector 

(adv) and the other is the 
predicted data vector 

(PDVSN) 

2. CH: CH is built PDVCH 

Expand the 

network’s 

lifetime and 
accuracy 

Data accuracy is 

dependent on 

threshold 
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networks such as sensor nodes and gateway. The first tier is at 

the node level, where a straightforward data compression 

strategy is applied ideal for node restrictions. For determining 

temporal correlation in sensor node data, delta encoding 

followed by run-length encoding (RLE) is utilized. The 

purpose of delta encoding is to reduce the dynamic range in a 

data set. Delta encoding finds a difference between current and 

previous sensor data, then compresses it, and sends it to the 

CH. However, the redundant data is also included at this stage 

and to remove the redundant data, RLE encoding method is 

used to compress more data. In the second tier, when the 

period ends, it sends all gathered data to the aggregator or CH. 

Subsequently, when the aggregator receives the data set from 

its member nodes in the cluster, it finds the data redundancy 

and compresses data size before sending it to the sink by 

minimum description length (MDL). Furthermore, there is a 

hypothesis through (MDL) at the CH level, and each cluster 

follows it. Ultimately, the CH sends the difference between 

data and hypothesis to the sink. By this procedure, they 

identify the redundant data sets and non-redundant data sets 

and send them to the sink. According to (MDL), if two data 

sets are similar, then it compresses them; otherwise, they are 

considered different. 

A Reliable-ESTS (RESTS) in spatio-temporal scheduling 

(ESTS) technique is proposed on spatio-temporal correlation 

of sensor data and ultimately increases the lifetime of PSNs 

[77]. In addition, a new model is introduced to use Euclidean 

distance to search periodical correlation between spatio-

temporal data of nodes neighbours. Thus, at this level, a 

temporal correlation at the sensor node level is identified.  

There is redundancy at each consecutive reading and to check 

this redundancy, a local temporal correlation is suggested. By 

using local temporal correlation, redundancy is found between 

two consecutive readings; if the redundancy is found, then 

only one reading is used and the other discarded, while in a 

replace of the discarded value and keep weighted values.  

Further, the CH receives data sets with the weights of each 

member node at the end of each period. Before delivering data 

to the sink, the CH seeks a spatio-temporal correlation for each 

node, removing duplicated data among neighbouring nodes. 

By using the Euclidean distance, the CH finds the distance 

between sensor nodes with the help of a specific threshold. 

First, if some nodes are nearer to the predefined threshold 

distance, then it considers them in a spatial correlation. 

Moreover, the CH checks the temporal correlation of the 

nodes which are near to each other. After finding the spatial-

temporal correlation, the CH applies a scheduling algorithm 

such as sleep/active sensors mode. Second, suppose two nodes 

are closer to each other and produce similar data but the 

remaining energy level amongst one of them is weak. In that 

case, the algorithm keeps the node at an active mode with more 

energy, and the other with less energy is turned into sleep 

mode. Now, the active node senses collect data and send it to 

the sink. 

For PSN applications, [78] recommends a novel adaptive 

sampling methodology. Aggregation and adoption are two 

steps of this method. The primary goal of the first step is to 

limit the amount of data acquired by the node. In this stage, 

the data is collected in a vector form. Redundant data from 

vectors is removed by a data similar function. A new adaptive 

sampling technique identifies redundancy between two values 

by a special threshold that is given based on an application. If 

it identifies the two as similar, then their similar function is 

equal to one (1); otherwise, they are recognized differently. In 

the case of constantly similar data, it adds one (1) in their 

frequency through the frequency measuring function. In the 

end, a set of data is collected by each node and transferred to 

the sink node. In the second stage, the CH receives a set of 

data and its frequency weight. Subsequently, the CH found a 

special correlation between sensor nodes by using two 

techniques including closer geographical sensor nodes and 

highly spatial correlation between collected data by their 

member nodes. However, to find geographical distance it 

takes the help of Euclidean distance between two nodes. On 

the other hand, to find spatial correlation, it uses some 

functions (overlap coefficient, Jaccard similarity, and cosine 

similarity) on a dataset of both nodes and data sets. To find 

similarity between both data sets and sensor nodes, two 

different values, zero (0) and one (1) are taken, whereas zero 

(0) is considered as different data sets and one (1) is considered 

as redundant data sets. Finding spatio-temporal correlation 

between sensors helps to decrease energy consumption 

between sensors. 

By using the EK-means, a new data processing strategy is 

given that reduces data transfer without compromising data 

integrity. This strategy works in two stages. Data redundancy 

is removed at the node level in the first stage, using a linear 

interpolation function and the Euclidean distance 

methodology. First, a point is captured as a vector and then 

two vectors are considered to identify redundancy between 

them if these two vectors of measures are with constant data 

sets size. Suppose the measurements of these two vectors are 

similar in the threshold value. In that case, the quantity of the 

data similarities via threshold value concerning the two 

vectors is created on Euclidean distance.  Moreover, every 

node finds its representative point at each period. However, to 

find the representative point, a starting point and an endpoint 

are selected. The use of Euclidean distance calculates the 

distance between starting point to the endpoint. After the 

collection of a set of representative points at one period, the 

data is sent to the CH. In the second step, the aggregator 

receives the dataset of representative points by member nodes. 

At this level, the main task is to check the data redundancy 

among data sets between member nodes and to reduce the data 

amount before sending it to the sink node. A CH approach 

introduced in the K-mean algorithm is enhanced to make a 

cluster for the data sets to accomplish this task. The new 

approach decreases the data latency. In the EK-mean, there are 

two main differences from classical k mean. First, Euclidean 
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distance is used to calculate a distance between a dataset of 

points instead of data vectors. Second, the Euclidean distance 

is measured only if the radius value is higher than the threshold 

value. Finally, the EK-mean builds up in clusters for each 

period and then identifies special information from each 

period. In the end, the aggregator sends all the cluster's 

centroid values to the sink node [79]. 

An efficient data aggregation technique is done at the node 

level, which is also known as local aggregation. At this stage, 

most of the data collected by the sensor are strongly dependent 

on monitoring conditions, whereas there are greater chances 

of having redundant data. The measurement selected in a 

period contains dissimilar data, and at end of the period that 

measurement comes out in form of a vector [84]. Although the 

vector includes a lot of redundant data, users can use a similar 

technique to find redundancy data between two measures by 

specifying a threshold value. Only if their comparable function 

is equal to one (1), then two successive redundant 

measurements exist. The redundant data found in the vector is 

presented by the weight measurement function for information 

integration. The sensor takes a set of measurements without 

redundancy after each period and sends it to the CH. In the 

second stage, aggregation starts at the CH level by using 

similar functions. However, the CH also receives a set of 

measurements and their weight from its member nodes. 

Aggregation at the CH level aims to deduce redundancy 

between the member nodes using a specific threshold value. 

The Jaccard (similarity function) is used to identify similarities 

and their weights between two data sets. Whereas, for the 

comparison of the weight and data, the prefix frequency 

filtering (PFF) technique is proposed, and it works in two 

steps. The first step is candidate pairs generation in which the 

sensor searches candidate pairs at every dataset. The CH 

chooses a candidate pair only if the calculations are greater 

than β. The second step is the Candidates’ verification. After 

finding candidate pairs, it considers a candidate pair between 

two data sets in case if the similarities of both data sets are 

greater than the Jaccard threshold. The analyzed variances 

between measurements are calculated using K-mean and 

adopting the ANOVA model and the Bartlett test. Both 

distance functions, Euclidean distance and Cosine distances, 

are used to determine data redundancy between data sets.  

Extended cosine regression (ECR) data aggregation is 

proposed to reduce energy depletion during data collection 

[85]. It is a prediction model, and the key objectives are used 

to reduce data redundancy, maintain accuracy, and enhance 

network lifetime. ECR model is based on two vector models 

which stop inter-cluster transmission by making a data 

sequence that is implemented both at the member node and the 

CH in each cluster. A precondition is established for the 

prediction model. The node lifetime of each sensor is further 

divided into a mixed identical slot and in that slot, a sensor 

only has to store one identical value. Moreover, both the CH 

and member node have the same prediction algorithm and if 

both receive any knowledge, acknowledge each other. The 

base station broadcasts two threshold values to the CH and 

member node. One of the values is the application-specific 

error threshold, whereas the other is the user predefined 

threshold error. Furthermore, each member node forms two 

types of vectors. The first one is the actual data vector (ADV) 

which saves actual values. The second one is the predicted 

data vector (PDV) which saves the prediction values that are 

similar between CH and member node. The length of ADV 

and PDV remain the same at each cluster, however, the CH 

forms a corresponding vector for each of its member nodes. 

Every member node first saves the sensed value into ADV and 

PDV then sends it to the CH, which forms its private PDV. 

The ECR method is implemented on variations of cosine 

distance on linear regression which is divided into three 

phases. The first phase is the initialization phase. The based 

station (BS) broadcasts an acceptable prediction error to every 

CH and member node. In every cluster, its member node 

transfers its sensed data to CH in a cluster by using single-hop 

communication. Now the CH saves all the member node's data 

in an ordered form. Before predicting each sensor node is a 

new value that forms a vector from its old values using an 

ERM technique. At the end of the start-up phase, the CH has 

a huge amount of data that it uses in the ERM model. The 

second phase is the modelling phase that combines linear 

regression and cosine distance to increase the prediction 

accuracy of each member node. Generally, the linear 

regression does not pass any data unless the sequence line has 

perfect coordination. The differences between the two data 

sets are found by using signal differences between two vectors 

distance similarities. The third phase is the working phase 

where every member node calculates prediction value and 

prediction error. At this point, it compares the value with an 

error; if the value is lesser than or the same as the error, then it 

does not send it to the CH, while on the other hand, if the value 

is more than the error, then it sends actual value to the CH. 

Furthermore, the same procedure applies to CH when it 

receives the values. 

WSNs also play a key role in big data collection. The major 

challenge of big data collection is the consumption of sensor 

energy which affects network lifetime. The two-level data 

reduction approach in WSN by Harb et al. [82] is proposed to 

reduce data communication and enhanced network lifetime. 

At the first stage, the data compression model is implemented 

at the node level where the coefficient of Pearson is used to 

identify a correlation between two data sets. If the Pearson 

coefficient is equal to 1, it means a positive correlation; 

otherwise, it considers no correlation when the indicator is 

equal to 0 or -1. The vector of the reading collected at each 

sensor node level is to reduce the Pearson Coefficient. The 

representation readings selection algorithm is applied on a 

vector to divide into sub vectors until these sub vectors show 

high correlation. The divide function divides the readings 

vector into two equal sub vectors. If the correlation is less than 

a certain level, the Pearson Coefficient is used to set a limit. 

This vector evaluates the final vector of readings, then consists 
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of mean reading values and weight of values, which is the 

number of readings represented by the mean value. At the end 

of the process, each sensor node provides a vector reading to 

the CH. Second, the data clustering model is used at the CH 

level to identify redundant data sets when received from 

member nodes. CH has used the K-mean algorithm to orderly 

allocate redundant data into data sets. The group data sets in K 

clustering by K-mean algorithm with Euclidean distance are 

used to group similar data sets in the same cluster.  

To minimize communication and extend the network's 

lifetime, a two-level data reduction strategy is presented. Each 

node continues to compress data obtained at the first level 

using the Pearson Coefficient [55]. When the Pearson 

coefficient is equal to -1, there is no correlation between the 

two data sets; otherwise, there is 0. When the Pearson 

coefficient is equal to -1, there is a negative correlation 

between the two data sets. The high correlation is determined 

only in case if the predefined threshold is closely similar or 

equal to the data sets. Moreover, the data compression 

algorithm is implemented at each member node to compress 

the collected data vector and find a subset reading with the 

whole vector. Further, the vector readings are divided into sub 

vectors and to find a high correlation between vector readings 

by applying the Pearson coefficient. At the end of each 

process, every node contains mean values and weighted values 

representing a repeated number of readings. After receiving 

the data sets to CH from their cluster member nodes, the 

clustering data model is applied to identify the redundancy 

between grouping data sets at the same cluster based on K-

mean and TopK nearest algorithm. The EK-mean algorithm is 

the combination of classic k-mean and Euclidean distance. 

EK-mean is used for checking the  similarities between  in 

cluster data sets  to determine high and low correlation. The 

main objective of this process is to eliminate data redundancy 

from collected sensory data and nearest neighbouring nodes to 

reduce big data and enhance network lifetime.  

Energy conservation is one of the critical issues in WSNs. 

To preserve energy for WSNs. Khriji et al. [81] propose a 

redundancy elimination data aggregation algorithm (REDA). 

The algorithm has two main characteristics, better data 

aggregation and enhanced network lifetime for reducing 

energy consumption. REDA is used to reduce data redundancy 

and communication based on the pattern code generation 

approach. The pattern code generation algorithm is applied on 

all sensor nodes for predefined sensed data. Each CH 

generates a ranges number of intervals called lookup table and 

then sends it to cluster members.  Moreover, each member 

node compares its sensed data with a look-up table that was 

received from CH. According to the look-up table, each 

member node computes its pattern and sends the first iteration 

to the CH. The sensor node then computes a new pattern code 

and compares it to the old one. It does not transmit if both 

patterns are the same; else, it is sent to CH.  

In Table VI, simulation parametric values of data 

redundancy at the CH level based on threshed value, measures 

readings, Eelec, ßamp, K, data and field, simulator and sensor 

are presented. Proposed methods and schemes are also 

mentioned with their resource parameters. Table VII shows 

the current proposed estimation the existing schemes and 

methods for data redundancy reduction in WSNs. 

 

 

 

TABLE VI. 
SIMULATION PARAMETRIC VALUES OF DATA REDUNDANCY REDUCTION AT THE CH LEVEL 

References 
Schemes/ 
Methods 

Threshed 
Value 

Measures 
Readings 

Eelec Βamp K 
Data and 

Field 
Simulator 

And Sensor 

[73] DAT 0.03, 

0.05, and 
0.07 

20, 50, and 

100 

50 nj/bit 100 

pj/bit/m2 

ρ/2 Intel Berkeley 

Lab 

Omnet++ 

and 
Mica2dot 

[74] TLDA 0.03, 

0.05, 
0.07, and 

0.1 

200, 500, 

1000 and 
2000 

50 nj/bit 100 

pj/bit/m2 

2 Intel Berkeley 

Lab and 
temperature 

Omnet++ 

and 
Mica2dot 

[75] Grid-leader tier: 
support-

confidence 

 50, 100 and 
200 

   Intel Berkeley 
Research Lab, 

Mica2dot 

[78] AAS   0.0 0 05 
to 0.025  

512      

[88] 

 

Dual Prediction 0.2 500,and 

1000 

One bit is 

600 Nj 

Per clock 

cycle is 3.5 
Nj 

  Matlab 

[79] Ek-Means 0.0 0 05 

to 0.025 

512  50 nj/bit 100 

pj/bit/m2 

5 and 

50. 

Argo Project Java Based 

Simulator 
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C. DATA REDUNDANCY REDUCTION AT NODE TO CH 
AND CH TO SINK LEVEL  

This section describes the recent studies of the data 

redundancy reduction algorithms and schemes at node to the 

CH and the sink level for the WSNs. The current techniques 

are studied and the absorbed important parameters measured 

for improvement of data redundancy in WSNs. Table VIII 

displays how some of existing methods addressed their 

problems with improved models, and proposed schemes for 

energy efficiency to reduce data at the sink level for WSNs. 

Table VII also debates the contributions and weaknesses of 

existing methods. 

From node to the CH and then the sink level data reduction 

model is shown in Figure 5. There are two different processes 

of data aggregation in WSNs, containing the simple data 

redundancy reduction (DRR) and DRR with prediction.  First, 

at simple DRR, a sensor periodically captures and aggregates 

the data by interacting with the environment and transferring 

data to the CH. Then the CH receives the member nodes' data 

and aggregates the data between data sets and sends it to the 

sink. After receiving data from CHs, the sink further processes 

and checks the data accuracy. Second, in many existing types 

of research, the same prediction models are implemented at 

both levels (sensor node or CH and the sink) for data 

redundancy reduction. The study [86] presents the adaptive 

dual prediction scheme (DPS) to reduce data transmission. To 

update the model's perimeter, history, data tables are avoided, 

and the old collection models that are already activated from 

past sequences are used to build DPS. A new prediction is 

started at sensor node and sink level which updates the 

perimeter models from time to time by using new data history 

tables and maintain the accuracy. First, an ordinary adoptive 

DPS is generated and computed on the sensor node and sink. 

As the data increases, the prediction models are supposed to 

activate and all the data is saved at the sink node. At the initial 

phase, the previous sample is eliminated, and a new sample is 

considered for the first data set for new model perimeter 

prediction.  

However, the data size is based on a threshold. For this, 

WSNs is used in a ringing model and the sink node is present 

at the centre, whereas source to destination transmission 

occurs through its intermediate node. In the data routing 

scheme, data is sent from one node to another in ring, and this 

process goes on until the data reaches the sink node. A time 

interval is set to separate two consecutive transmissions on the 

sensor node, which is 30 minutes in current research. A 

lightweight algorithm is used to set at the node and the sink 

levels. The lightweight algorithm does not consume useless 

data due to which their storage and running time is increased. 

Also, the transmission model informs the number of 

exchanged data on the sensor at a period 1 / f is the number of 

transmissions found. The prediction model then forms a 

unicast transmission and predicts an accuracy at every sensor 

node. During transmission, if the data captured by any sensor 

TABLE VII. 

PERFORMANCE COMPARATIVE PARAMETER’S FOR ENERGY SAVING AT THE CH LEVEL 
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[73] ETDTR [71] and PFF 
✓ ✓  ✓ ✓   

[74] TLDA [71] and PFF   ✓ ✓    

[75] Grid-leader tier: support-

confidence 

PFF technique 
 ✓ ✓     

[76]  TTDR    ✓ ✓   ✓ 

[78] AAS (Aggregation and 
Adaptive Sampling) 

na¨ıve approach. 
 ✓ ✓     

[88] dual prediction CHCS and DPPCA       ✓ 

[79] EK-means K-means    ✓    

[80] Data Compression    ✓    ✓ 

[82] K-nearest neighboring 

(KNN) 

S-LEC 
 ✓ ✓     

[83] Two-Level Data Reduction  S-LEC and PFF       ✓ 

[84] KAB, Euclidean distance, 
cosine distance and PFF 

KAB, Euclidean distance, 
cosine distance and PFF 

 ✓ ✓ ✓ ✓ ✓ ✓ 
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match, then that data is not transferred to the sink node where 

minimum accuracy is maintained so that the average is also 

maintained. The prediction data model depends on a sink or 

sensor node and gathers data from the cloud. The sink is 

responsible for generating the prediction model and spreading 

it towards sensor nodes. For spatial-temporal correlation 

between sensor data, a novel data reduction strategy called 

spatio-temporal correlation-based approach for sampling and 

transmission rate adaptation (STCSA) is developed. The data 

decreases the overall sampling and reduces transmission rate 

and maintains data quality [87]. 

Second, a backend reconstruction algorithm is proposed at the 

sink level to maintain data accuracy. However, at the node 

level, the algorithm still needs to perform a unique sampling 

rate and reduce data transmission at all sensors. At the end of 

every round, the CH runs the algorithm to find the spatial 

correlation between member nodes data that was sent to the 

CH. Next, the CH transfers the data to its sensors and provides 

a command to make a new sampling rate or the next round 

between cluster heads. To find a sampling rate, a high 

correlation is shown between many sensor nodes which are in 

a specific number. 

 

TABLE VIII.  
EXISTING STUDIES ARE BASED ON DATA REDUNDANCY SCHEMES AT SINK LEVEL 

References Schemes Problems addressed Proposed strategies 
Improvements/ 

Enhancements 

Limitations/ 

weaknesses 

[80] Dual 

Prediction 
(DP) and Data 

Compression 

(DC)  

High data traffic 

generated in WSNs 
through spatial and 

temporal correlation 

1. CM level: DP data store in buffer and use 

it predicts for the next value then 
evaluate the predictive value and new 

observation value. If accuracy is yes 

storing the value in buffer otherwise it 
sent to the CH 

2. CH level: DP same illustrate in CH and 

to exploit spatial correlation by DC 
scheme 

3. Sink level: same dc scheme constructs at 

the sink for data accuracy 

Data 

transmission 
reductions 

High affects 

bandwidth, energy, 
and congestion   

[86] Extended Dual 

Prediction 

Schemes 
(DPS) 

Data transmission 

control 

Ring model: The sensor nodes and the sink 

generate activity new data history table for 

update the parameters of a model 

Communication 

reduction and 

accuracy 

Synchronization 

problem between the 

sensor nodes and their 
neighbors is not 

considered 

[88] Dual 

prediction and 

hybrid 

compressed 

Data redundancy 

temporal for intra cluster 

transmission and spatial 

for inter cluster 
transmission 

1. Node level: It compares current value 

and predicts value when the error 

between them is equal or large 

2. CH level: Decision for transmitting data 
if data is less than m it transmits directly 

else CH aggregate and compressed these 
data m dimension 

3. Sink level reconstructs the original data 

by cs recovery algorithm 

Reduce 

transmission 

energy cost and 

data recovery 
accuracy 

Only reduce data size 

but still need to 

reduce data 

redundancy 

[89] Long short-

term memory 

(LSTM) 

Volume of raw data sent 

on the network 

1. Node level: first some periods directly 

send to the sink node for training data at 

the sink level. After that sensor received 
predicted training data values and 

compared them with their original sensed 

data 
2. After received sensor data sets and 

manage, sequential manner and training 

these data sets by 1st to predict remain 
periods of each sensor nodes 

Decreasing data 

transmission 

and saving 
network 

lifetime 

Does not consider the 

geographical distance 

between sensor nodes 
in WSNs 

[90] Reinforcement 

learning-based 
signal 

predictor 

(RLSP)  

Exploit the signal 

prediction issue in a 
learning pattern at the 

sensor side 

1. Node level: RLSP runs the same Q-table 

and parameters that are used at the sink 
level. If the predictive value and sensed 

value are not equal the sensor transmit 

the value to the sink 
2. Sink level: received data use for next 

signal value and compare its own 

predicted data and update predicted 
model 

Extremely low 

data 
transmission 

and energy 

consumption 

It is needed to a lot of 

data and a lot of 
computational which 

is not feasible at the 

node level 

[91] Hybrid linear 

model (HLM) 

High delay, high 

transmission cost, and 
complex model training 

1. At node level: a forward stagewise 

algorithm for training of a hybrid linear 
model 

2. Sink level: data reconstruction and 

prediction by using received hybrid 
model from the sensor nodes 

Energy 

efficiency with 
controllable 

delay 
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Figure 5.  Energy efficiency data redundancy reduction process at Node, CH and Sink Level in WSN. 

The stata is a form of vector of sensor nodes when it sends 

its data to CH which has the same size for each node. The Stata 

does not compute nan values for correlation; instead, it 

replaces the nan values with a number representing how often 

those nan values occur. After finding every sensor's 

correlation it prepares a table and divides the table into two 

columns: max (maximum) correlation for sensor jth which 

forms sensor ith to find the correlation degree. Some sensor 

data does not appear in the second column in the table because 

their data might not match. The aim of this process is to find 

correlation degrees between the sensor nodes which are found 

at the CH. Now the sink node is responsible for making 

prediction models and disseminating them to sensor nodes 

through unicast. 

A distributed round-based prediction model for hierarchical 

large-scale sensor networks is adopted in the study [89]. The 

network lifespan is divided into a series of rounds in a 

distributed round-based prediction model, with each round 

including multiple periods. The periods are separated into 

defined slots, and the sensor takes some of the data from each 

period and transmits it to the sink node in each round, while 

the remaining sensor nodes are in sleep mode. When data is 

received, the sink nodes then apply a prediction model based 

on the long short-term memory (LSTM) time series on it and 

finds which sensor nodes are on sleep mode. The main purpose 

of finding data prediction is to reduce data transmission in 

sensors to save energy, decrease data, and improve lifetime. 

The data that is sent to the sink node is converted into the 

training data vector. If the size of training vectors is big, the 

maintained accuracy is high. When the sensor collects data, it 

sends the active packet name and collected data to the sink 

node; otherwise, if the packet is empty, it is considered as a 

sleep packet.  In addition, when the sink node receives the 

training data vectors from the sensor, it tries to predict data for 

the next round. After receiving data from sensor nodes, it uses 

this data for normalization. Normalization is formed at 

different scales which are defined in the different ranges (0 to 

1). The minmax scaler algorithm is used on received data. The 

sink processes Minmax scaler before the data prediction 

process and then neural network parameters are determined by 

three indicators: the selection of the values of the number of 

blocks, the number of time steps, the number of features, and 
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depend on simulation setup that is fixed. After the training 

process, the LSTM model starts to find variation between 

training data and expected future data. It  is divided into two 

concepts: loss function and optimizer. Loss function calculates 

variations of data between training data and optimization uses 

an iterative method which samples randomly from data and 

finds an error in the loss function. To find the error, mean 

square error (MSR) is used. The first step is that the data is 

predicted. In the training period, when the sink first receives 

the data, it considers the last d stands for period values and 

forms an order to make a prediction value for the rest of the 

periods. 

Moreover, Nazaktabar et al. [90] prepare a framework that 

learns the relation of signal behaviour to find the next value. 

The approach is used to reinforce learning-based signal 

predictor (RLSP). The purpose behind the preparation of the 

framework is to transfer the sensor data to the sink node when 

the signal fails at the sink side. The RLSP model is applied in 

DSP at both sensor node and the sink level through 0 

initialization as well as in Q-learning algorithm, which is used 

to Q-table where the perimeter and configuration remain the 

same. In addition, on the sensor node side, if there is a 

difference between prediction and sensory data, it is sent to the 

sink node; otherwise, it discards. Once the data is received at 

the sink side, the sink uses it to set the next data values; in 

other words, the sink uses it for prediction. If the prediction 

values and the data are equal, then it is considered by signal 

action, otherwise it is considered by sensory data. On the other 

hand, if the sink node does not receive data from the sensor 

node, updating the Q-table utilizes old data and predicts a 

value. Now it is time to correct the sink node's projected data. 

The getinitiate action is used to declare the vector's final 

element as the initial prediction. The sensor gathers data from 

the environment and uses its prediction model to forecast it on 

the sensor side. If the data is rectified during prediction, the 

sensor does not transmit data to the sink and instead modifies 

the model to reflect the new information. Otherwise, the data 

is sent to the sink and its model updated by using the new 

readings. When the sink receives sensory data from (#k), it 

also uses its prediction model to predict data from the sensor 

that sends data. If the data gets predicted, then it is confirmed 

that the data is predicted and updated the number of k, and if 

the data does not get predicted, then that data is used for text 

prediction and updates of its prediction. 

In the study [91], two models are combined to build a hybrid 

model based on historical data reconstruction and future data 

prediction for decreasing additional transmission, controlling 

delay, and improving the energy efficiency of sensors. This 

hybrid model is implemented in real-world WSNs and two 

algorithms have been proposed. The first one is on node-level 

which is the stage-wise algorithm. This algorithm avoids the 

computation load and creates flexibility in the hybrid model. 

In the second algorithm, data reconstruction and the prediction 

implemented at the sink node level evaluates hybrid models' 

performances with the help of rough experiments stimulated 

based on different data sets taken from real-world WSN 

applications. A hybrid linear model is presented which counts 

the continuous readings of the certain physical environment 

which are captured into time series by sensors. The sensor 

senses the data and uploads it without prediction. The linear 

model assumes that the environmental data have a short-term 

linear behaviour. It builds a training model in each section. 

Subsequently, instead of sending the original value, it sends 

the parameters of the training model to the sink node, which 

then construct pure data. Likewise, the same model is 

established at the sink node and sensor node level for future 

data.  

However, if the prediction error increases, a pre-set 

threshold is set in the hybrid model, and the sensor sets as a 

retainer. There are two data points in each model and each data 

point has two data values and two reconstruct values. Using 

these data values, three parameters for a data model are used 

to stop additional transmission. To train Hybrid Linear models 

least square method is used which optimizes the error. After 

that, the new value is compared to the projected value, and if 

the difference is more than the absolute error, a new error is 

created. When the sensor node sends a hybrid model to the 

sink, the data is automatically built for reference, and the 

sensor predicts a value based on it. 

WSNs have a challenging problem in terms of energy 

conservation and complicated decision-making for large 

amounts of data. Marwa et al. [75] present an energy-saving 

adaptive approach and decision-making approach. The 

technique is composed for grid-based architecture network 

consisted of three tiers. The first tier at the node level mostly 

works with redundant readings among the period for all slots. 

The collected readings vector is divided into three equal 

divisions by a divide-and-conquer algorithm. After that, the 

mean value is calculated for each division and a vector of these 

mean values dataset sent to the GL (grid-leader/CH).  At the 

CH level layer, the GL gets a mean set of data from each 

sensor node at the conclusion of each session. After collecting 

important information from surrounding member nodes at 

each grid, the GL reduces the redundant data from data sets 

among the member nodes in grid. GL uses a mean support and 

frequent mean support algorithm with a predefined threshold 

to look for received mean values. It only sends the mean value 

which are equal to or greater to the defined threshold by the 

sink. At the sink level tier, the decision-making model is used 

for real-time decision-making, consisting of two main tables.  

The first table scores the decision table which is used for 

specific application such as a normal range of temperature, 

light, wind speed, and humidity. The second table is the early 

decision table which the users prepare to predetermined value 

matches with the collected value range for data aggregation. 

The technique worked efficiently and achieved the goals of 

saving energy and accuracy of the data. 

The spatial and temporal correlation data flow among 

sensor nodes is one of the most serious problems in WSNs. In 

a two-tier data reduction system, dual prediction DP and data 
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compression DP [80] techniques are given to minimize data 

transmission in network traffic. The DP technique is used at 

the node level to identify redundant data at each node. The 

goal of the DP method is to minimize traffic between two 

points, such as a cluster member node and the cluster head. 

This scheme algorithm is constructed at both ends of link 

points. At the endpoint of CM, the last observation is held in 

buffer, but some collected observations are initially 

transmitted into the other endpoint CH. Later the observation 

value is predicted by using buffer held values which are then 

compared with the new observed value. If the new observed 

value is fairly similar to the prediction value, then the data 

transmission of the other endpoint does not happen; otherwise, 

it is sent. However, at the other ending point, CH saves the 

previous observation values in the buffer which have the same 

length as that other endpoint CM. CH receives a new observed 

value, which it saves in the buffer, but if no observation value 

is received, then it is considered as accuracy prediction value 

and both values are in same  conditions, then it updates the DP 

model. DC scheme is implemented at each CH to exploit the 

spatial correlation data collected from CMs. CH makes data 

blocks on CMs transmitted data and sends these blocks to the 

sink. After receiving these blocks, the sink uses inverse 

operation to recover the block data. In Table IX, simulation 

parametric values such as period size (τ), measures readings, 

number of steps (S), number of blocks (B), number of features 

(F), size of round (ρ), training data size (α) and energy cost of 

message sending at the sink level are described.  

Table X displays that the existing proposed methods and 

schemes with the benchmarks methods and schemes are used 

for comparison. Also, it indicates the various performance 

comparison parameters for the evaluation of the existing 

schemes and methods for data redundancy reduction in WSNs. 

 

 

 

 

 

TABLE IX.  

SIMULATION PARAMETRIC VALUES OF DATA REDUNDANCY REDUCTION AT SINK LEVEL 

Reference 
Schemes/ 
Methods 

Period 
Size (τ) 

Measures 
Readings 

No 

of 
Steps 

(S) 

No of 

Blocks 

(B) 

No of 

Features 

(F) 

Size of 

Round 

(ρ) 

Training 

Data Size 

(α) 

Energy 

Cost of 
Message 

Sending 

Data and 
Field 

Simulator 

and 

Sensor 

[75] 

Tier: 

Decision-
Making 

Model 

 
50, 100, 
and 200  

      
Intel Berkeley 
Research Lab 

Mica2dot 

[89]  LSTM 

100, 
500, 

1000 
and 

2000 

 

50 

and 
200 

5  

and  
50 

 1      10  
  1   

 
 

Intel Berkeley 

Research Lab 
Mica2dot 

[90] RLSP          
Intel LAB and 
NDBC 

Mica2dot 

[91] HLM 

 13 

bytes, 

and 11 
bytes, 

      
0.0144mJ 

/Byte 

Intel Berkeley 

Lab and Life 
Under Your 

Feet (LUYF) 

project 

Mica2dot 

TABLE X. 
PERFORMANCE COMPARATIVE PARAMETER’S SAVE ENERGY AT SINK LEVEL 
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[75] Sink Tier: 
Decision 

Making 
Model 

GL1 with GL2 

✓ ✓      

[89] Long Short-

Term 
Memory 

LSTM 

SFDC 

✓  ✓ ✓    

[90] RLSP  AR and CM      ✓ ✓  
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In the data collection, thresholds are fixed depending upon 

small and large data readings values. There are two types of 

scenarios found in existing studies: the small range of readings 

that give small threshold values while the large range of 

readings give the large threshold values. However, work needs 

to be done on large range of readings, which should give the 

small threshold values in terms of date redundancy reduction 

in WSNs. At the node level, energy analysis, percentage of 

data sent after aggregation, data transmission ratio to the CH 

and data loss are most useable comparative performance 

parameters found, while redundant data calculation, adoption 

sample, energy saving at each node and data sets sent ratio are 

less considerable comparative performance parameters and 

need to be more focused in further research. At the CH level, 

energy consumption at the CH, data accuracy and number of 

data sent to the sink are most applied performance 

comparative parameters found while data received from 

member nodes, data latency and communication cost are less 

substantial performance comparative parameters and need to 

be more focused in further research. At the Sink level, period 

size fixed, calculation of data transmission ratio, and energy 

consumed are most effective performance comparative 

parameters found while data delay and memory usage are less 

extensive performance comparative parameters and need to be 

more focused in further research.  

Omnet++ and java-based simulator are the most suitable 

and used simulators considered for the simulation. Mica2dot 

is the most appropriate sensor device and readings from the 

temperature are used as a dataset for the simulation of date 

redundancy reduction in WSN. 

V.  ANALYSIS OF PERFORMANCE METRICS USED IN 
EXISTING STUDIES  

In this section, performance metrics used for assessing in 

the previous research studies are presented in Tables II, V, 

VIII and III, VI, and IX. There are several performance 

parameter matrices are used to measure data redundancy 

reduction at sensor nodes and CHs level. Numerous 

performance matrices are presented, which are used in current 

studies to determine energy saving in WSNs.  

The main goal is to maximize profits and revenue from 

WSN's. For this purpose, different techniques/algorithms or 

schemes are used which increase the user satisfaction, avoid 

raw data transmission, decrease energy consumption, and 

enhance network lifetime. On the other hand, data redundancy 

reduction minimizes the overheads and increases the overall 

performance. The performance parameters are used for data 

redundancy reduction for saving energy in existing studies are 

described below: 

 

A. NETWORK LIFETIME 

Network lifetime consider in various definitions with the 

time in which the network performs the desired task include 

time till network becomes disjoint link, first node fail, certain 

percentage of nodes fail given predefined threshold, largest 

links disconnected, some percentage of data rate loss, and all 

nodes fail. In clustering architecture, the network lifetime is 

defined as the time till the nodes in the network entirely 

deplete their energy in the network [92][93][77]. The 

network lifetime is calculated when all rounds of network 

fail due to the discontinuation of one or more sensors with 

the help of Equation (1).  

n

n sn

mim
sn SNNlif Nlif=     (1) 

where 
sn

Nlif  is the lifetime of sn is a sensor node, mim is 

the minimum energy sensor nodes and SN is the sets of nodes 

without including the sink, n

n
Nlif  represents the failure of 

the first node’s life in a network. 

B. DATA AGGREGATION RATE 

Data aggregation rate is an amount to remove duplicate 

values and allows sensor nodes to decrease the quantity of 

data gathered. The amount of decrease is determined by the 

threshold value selected as well as the total number of 

recorded readings. The threshold value can be increased to 

identify additional data redundancy [94][65]. The primary 

motivation for using a data aggregation at the node level is 

to conserve energy d-bit data is shown in equation (2)   

     (2) 

Where  is the energy consumption while data 

aggregating,  is d-bit data and  is energy consumption at 

transceiver.  

C. DATA AGGREGATION AT THE CH   

Overall energy usage in WSNs can be reduced by decreasing 

transmission costs. For reducing the inter clustering 

communication by data redundancy elimination at CH level   

in a cluster; otherwise, redundant data is influencing the 

whole network transmission [76][94]. Correspondingly, the 

total energy consumption at cluster head in a cluster are 

receiving, aggregating, and transmitting data to the sink node 

with the preference of Equation 3.   

  (3) 

 

 

[91] HLM (DBP) and 

(OSSLMS) 
  ✓   ✓ ✓ 
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Where  is total energy consumption at CH level,

 is energy consumption of data received at CH,  

energy consumption on data aggregation,  is energy 

consumption for data transfer. 

D. DATA ACCURACY  

Error-free data is a term used to describe data correctness. 

The data accuracy is calculated by dividing the proportion of 

data lost by the amount of data supplied by sensor nodes. The 

data loss measurements increase as the sensing range and 

reconstruction error threshold value between the data 

readings. Hence, as the quantity of obtained readings 

increases over time [77][85]. The data accuracy is calculated 

by the quantity of data successfully transmitted and the total 

amount of data sent on sensor nodes using Equation (4) [94]. 

 

   (4) 

 Where  is estimation mean, and  is actual mean of 

data. 

E. ENERGY ANALYSIS 

Energy analysis is an important concern for WSNs due to its 

resource-constrained network [73][68]. The total energy 

consumption is calculated in-network energy consume 

include the function perform data aggregation, data received 

and response, transmissions, and computation. The energy 

consumption for data transmission is determine equation (5). 

      (5) 

Where  is energy consumption of data transmit,  is 

distance consist of sending and response, sending  bit data to 

the node, data transmission link loss and is 

amplifier link loss 

 

F. DATA AGGREGATION AT EVERY NODE 

Each sensor node is found data redundancy between the data 

sensed measurements at each time during the aggregation 

process. Aggregation is thus dependent on the threshold, the 

number of collective measurements each period, and 

changes in the monitoring object. However, if data 

aggregation is not performed at each sensor node, a higher 

volume of data is sent, resulting in increased network energy 

usage. Aggregation is advantageous on a network because it 

reduces transmission costs while increasing network 

lifespan. As a result, the proportion of data aggregation 

focuses on all other factors such as node lifespan, 

transmission cost, energy usage, and network lifetime 

[66][79]. As stated in equation (6), the data aggregation at 

each node is determine by following formula . 

    (6) 

Where  is data aggregation at node,   total 

aggregated data before transmitted and  is the total data 

collection before transmitted  

G. DATA DUPLICATE SETS   

At the conclusion of each period, the CH gets all the data sets 

from each member node in a cluster. The most common issue 

in aggregator/CH is that huge data sets are gathered, and 

redundant data sets must be removed before being delivered 

to the sink node. To increase data accuracy and network 

lifespan, redundant data sets must be eliminated [74]. The 

duplicate data examines variations between two dataset’s 

comparisons by using Equation (7). 

  (7) 

Where  is redundant data sets,  are two data 

sets, n is the length of data sets and if and only if  and 

 are considered redundant it is  less than 

threshold. 

H. ENERGY CONSUMPTION AT THE NODE LEVEL 

When each sensor node collects data during most of the data 

is redundant. it means that the monitoring condition speeds 

up and slows down as a result, more readings from each 

sensor node are redundant [74][79]. As a result, energy 

consumption is increased because the sensor sends all 

collected readings to their CH. However, the network 

lifespan is quickly depleted energy of each sensor node in 

network. The energy consumption of data receiving node 

receiving d bit data is  determine by Equation (8) and 

(9).  

 

   (8) 

and energy consumption of data transmit on sensor node d 

bit data is . 

    (9) 

Where   is required energy for bit data transfer. 

I. DATA REDUNDANCY BETWEEN TWO 
CONSECUTIVE READINGS 

The data redundancy between two consecutive readings are 

calculated by similar functions [94][61]. Therefore, two 

readings are redundant if and only if the similar function is 1 

or 0 as shown in Equation (10). 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3128353, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

VOLUME XX, 2017 3 

( ) 1 2

1 2
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− 
=




 (10) 

 

 

where (R1, R2) are the two consecutive readings and R1 is 

compared to R2 if both are same added 1 on first reading; 

otherwise, the second value is considered a new reading with 

δ user-defined threshold.  

J. ENERGY CONSUMPTION AT THE CLUSTER HEAD 

Energy consumption in the CH is illustrated as the energy 

needed for data management, data received from member 

nodes and transfer data toward the sink  [84][95]. The energy 

consumption at CH is determined by the total energy 

consumed at CH is measured by Equations (11). 

 

 (11) 

 

where   energy consumed of data transmit, energy 

consumption in aggregation is ,  is a number of 

average nodes per cluster, and  is the distance from the 

sink node to the cluster head. 

K. DATA SENT RATIO:  
Data quantitative analysis by ratio functions determine in each 

node, cluster head and the sink node. It uses various data 

analysis parameters such as data sent, data aggregate, data 

received, data reduction, and data transfer ratio.  

100R
ratio

TR

D
DS

D
=     (12)  

where RD
 data reduction in total data received TRD

. The data 

ratio is calculated by Equation (12). 

L. NUMBER OF REDUNDANT PAIRS: 

 In two or more than two nodes, inter data redundancies are 

correlated. Various studies used Pearson correlation [96] to 

determine the percentage of data redundancy in the same type 

of data collected by various neighbour nodes [15]. Suppose 

two vectors’ data V1 and V2, with the help of Equation (13), 

are determined by the data redundancy correlation coefficient. 

  (13) 

  

Hence  the Pearson correlation between two data vectors 

where δ is a sign parameter and it takes two values such as 

positive 1 or negative -1 values. 

 

VI. SUGGESTED FUTURE WORK  

The main common issue associated with energy efficiency in 

WSNs are sensor nodes correlation, threshold values define, 

energy efficiency at hostile environmental conditions issue, 

high transmission, data reduction and aggregation, 

prediction system, data accuracy, various level data 

transmission, check sum error or bit modulation, data 

collision and data redundancy etc. Figure 6 is a bubble graph 

that narrates the future directions in energy efficiency as 

pointed out in previous research articles by other authors.  

A. SENSOR NODES CORRELATION:  

Networks are randomly dense nodes deployed as the distance 

nearest two or more sensor nodes, known as neighbouring 

sensor correlation. When sensor nodes cross the predefined 

distance limit and are geographically close to one another due 

to this they generate duplicate data as a result high network 

traffic still need to enhance for dense deployment nodes, as 

recommended by [65] [66] [82] [73] [75] [79] [89][83]. 
 

B. PREDEFINED THRESHOLD:  

Predefined threshold values control the data limits. There is no 

standard threshold for data size and shape and comparing 

research with various applications is challenging. Control and 

termination data links are more difficult to achieve [65]. 

 

C. ENERGY EFFICIENCY AT HOSTILE 

ENVIRONMENTAL CONDITIONS ISSUE   

Glaciers, floods, environmental monitoring, and health care 

are examples of real-world applications. In WSNs, energy-

efficient data redundant reduction is a prerequisite for real-

world applications such as underwater and healthcare 

applications. Therefore, achieving an enhanced lifetime of the 

network is still considered in a real-world application as a most 

challenging issue in the research [66][97][98].[68]. 

 

D. HIGH TRANSMISSION:  

The WSNs transmission means the data or any message that 

travels on a link from one node to another node or among the 

nodes which reach its end user. It is estimated in real-life test-

bed applications. In WSNs, due to data redundancy, high 

bandwidth is required, thus high usage energy and congestion 

occur due to high data transmission rate and duration. These 

are key challenge in WSNs indicators for future work by [99]–

[102] [80] [87] . 

 

E. DATA REDUCTION AND AGGREGATION:  

Data reduction and aggregation means combining multiple 

sensor nodes data set to reduce data size and maintain accuracy 

as well as energy saving by an aggregator or cluster head. 

However, data processing need more capacity by different 

data redundancy processing including data merging with as 

key-value stores [103], blockchains [104], and big data [105] 

in future work [106]. 

 

F. DATA PREDICTION SYSTEM:  

In WSNs, the sensors predict future data based on the previous 

sensed data, reducing transmission and increasing energy. 
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Previous studies focused on data prediction algorithms on 

each sensor level and CH level where there is a need for high 

memory, high data analysis processing. As a result, there is 

still need to focus on data prediction system for WSNs to 

improve energy and transmission cost for further 

recommendations [107][86] [75][108].   

 

G. DATA ACCURACY:   

Data accuracy is depending upon data aggregation and data 

reduction ratio. In WSNs, data accuracy is the major 

component of information quality. Data redundancy occurs in 

WSNs due to inefficient transmission and data process 

complexity. In order to measure data redundancy reduction, 

sufficient amount of data must be available for maintaining the 

data accuracy, it is necessary to fix the amount of data 

redundancy reduction in scientific way. So that research needs 

to work or fined the accurate amount of data redundancy 

reduction. The data accuracy improvements still 

recommendation for further research [109]–[111] [75]. 

 

H. VARIOUS LEVEL DATA TRANSMISSION:  

Various level data transmission means three-phase. In the first 

phase, data transmits from member node to CH; in the second 

phase, the data transmits from the CH to the sink are known as 

forward data transmission; and in the last phase, data transmits 

from sink to CH or each node in the network are known as 

backward data transmission. As future work, data reduction 

techniques to reduce data transmission at three-tiers require 

more focus such as fog tier, gateways tier, and each sensor 

node tier as recommended by [112] [76].  

 

I. CHECK SUM ERROR OR BIT MODULATION:  

Bit representation means sensor collected data is converted 

from digital to binary. The data transmission in WSNs is also 

considered as a part of bit representation,  which is proposed 

by [67]  to reduce data transmission for save energy.  

However, bit presentation only detects odd bit numbers, and 

does not detect when the data values are in even form. Thus, 

some errors occur in data, indicating the need for improvement 

as a future recommendation. 

 

J. DATA COLLISION:  

When two sensor nodes are sent similar packets at the same 

time, the collision occurs. In WSNs data collision detect more 

difficult for determining the sensor nodes location of a fault 

can be challenging in [78] [84] [69] for further enhancement.  

 

K. DATA REDUNDANCY:  

In WSNs, data redundancy occurs for different reasons. 

primarily, two consecutive readings may be the same and 

between two periods readings are same, neighboring sensor 

nodes data sets are the same, nearest neighbor nodes 

correlation sensed data are same because environmental 

conditions have speed up or slowed down. In [105], [113], 

[114] [78] [66] [75] [76], data redundancy is  suggested, 

especially in terms of energy consumption, data quality, and 

network lifetime. Thus, there is a need to design efficient data 

reduction algorithms and the enhancement the lifetime WSNs. 

Refer to Figure 6, there is still a need to improve data 

transmission cost. Data redundancy reduction is highly 

recommended for future research in various applications while 

less research is required for data accuracy, data prediction and 

criticality of application in 2021. In 2020, further research is 

focused on the neighbouring node regions correlation, real 

application, and data redundancy reduction. Also, more 

research is presently focused on the data different sampling 

rates, data prediction system, transmission reduction 

neighboring nodes correlation and data redundancy reduction 

and fusion in 2019. Similarly, in 2018, there is a further 

suggestion to focus research activities towards the area of 

neighboring nodes correlation, data different sampling rates, 

and accuracy. Previously based on 2017-2015, there is an 

enormous interest in areas such as three-tier data transmission, 

neighboring nodes correlation, different sampling rates, data 

redundancy, and data redundancy and fusion. These exposed 

issues and future works present a conclusive role in relating 

the technological strategies for further improving energy 

efficiency in WSN. 
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Figure 6. Innovative ideas of energy efficiency in WSNs. 

 

VII. CONCLUSION 

WSNs is an inspiring field of research, with the aim of 

proportional modernization and high performance in terms of 

technological express. The data redundancy reduction 

schemes or methods should be as simple as possible, requiring 

less computation, processing, and transmission so that they 

consume less energy and increase data accuracy to work as 

part of IoT, cloud computing, and smart networks. There are 

some challenges and limitations. Scalability, dynamic 

environment, mobility, node localization, and user satisfaction 

in wireless sensor networks are also aided by IoT applications, 

enhancing the network lifetime and saving energy.  In this 

review article, a classification scheme and an expressive 

literature review of data redundancy reduction are briefly 

described for energy efficiency in WSNs. However, existing 

data redundancy reduction schemes for energy-efficiency in 

WSNs research is still contradictory due to the application`s 

requirements and technological concerns, such as application-

oriented data redundancy, QoS for designing and 

implementing approaches, spatial correlation as a lot of 

resources such as transmission, bandwidth, data accuracy, and 

energy are wasted in case of data redundancy (like big data 

and IoT resources) regarding monitoring  environmental 

condition  of WSNs are involved . The classification and 

descriptive review provide a detailed description and open 

loopholes with their benefits and limitations for researchers 

and experts of the current assertion of data redundancy 

reduction and stimulate the further research interest of energy 

efficiency in WSNs. 
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