Universiti Teknologi Malaysia Institutional Repository

Growth mechanism and optical characteristics of Nd:YAG laser ablated amorphous cinnamon nanoparticles produced in ethanol: Influence of accumulative pulse irradiation time variation

Salim, A. A. and Ghoshal, S. K. and Bakhtiar, H. (2021) Growth mechanism and optical characteristics of Nd:YAG laser ablated amorphous cinnamon nanoparticles produced in ethanol: Influence of accumulative pulse irradiation time variation. Photonics and Nanostructures - Fundamentals and Applications, 43 . p. 100889. ISSN 1569-4410

Full text not available from this repository.

Official URL: http://dx.doi.org/10.1016/j.photonics.2020.100889

Abstract

This paper reports the optical characteristics and growth mechanism of some amorphous cinnamon nanoparticles (ACNPs) prepared in ethanol via the nanosecond-pulse laser ablation in liquid (N-PLAL) method with optimum laser parameters. As-prepared samples were characterized using different analytical tools. The effects of different accumulative pulse irradiation times (0–2100 s) on the fluorescence quantum yield, bonding vibration, absorption, and photoluminescence emission traits of these samples were determined. The transmission electron microscope image and select area electron diffraction pattern of the samples displayed the nucleation of nearly spherical ACNPs (mean size ~23.07 ± 4.31 nm) with self-agglomerated morphology. The emergence of a broad halo around 15-30° in the X-ray diffraction pattern verified the amorphous structure of the ACNPs. Fourier-transform infrared and optical absorption spectra of the ACNPs showed the existence of protein components and many intense plus weak peaks in the range of 315 to 278 nm, respectively. Photoluminescence spectra of the ACNPs exhibited three prominent peaks at 406, 435, and 459 nm. Fluorescence quantum yield of the ACNPs prepared at the laser fluence of 2.1 ± 0.4 J/cm2 was discerned to be 0.0242. These amorphous ACNPs are asserted to be beneficial for the biomedicine applications especially against the deadly viruses.

Item Type:Article
Uncontrolled Keywords:Fluorescence yield, Morphology
Subjects:Q Science > QC Physics
Divisions:Science
ID Code:94903
Deposited By: Widya Wahid
Deposited On:29 Apr 2022 22:22
Last Modified:29 Apr 2022 22:22

Repository Staff Only: item control page