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Abstract: An important aspect of hydrocarbon drilling is the usage of drilling fluids, which remove
drill cuttings and stabilize the wellbore to provide better filtration. To stabilize these properties,
several additives are used in drilling fluids that provide satisfactory rheological and filtration prop-
erties. However, commonly used additives are environmentally hazardous; when drilling fluids
are disposed after drilling operations, they are discarded with the drill cuttings and additives into
water sources and causes unwanted pollution. Therefore, these additives should be substituted
with additives that are environmental friendly and provide superior performance. In this regard,
biodegradable additives are required for future research. This review investigates the role of various
bio-wastes as potential additives to be used in water-based drilling fluids. Furthermore, utilization of
these waste-derived nanomaterials is summarized for rheology and lubricity tests. Finally, sufficient
rheological and filtration examinations were carried out on water-based drilling fluids to evaluate
the effect of wastes as additives on the performance of drilling fluids.

Keywords: waste derivatives; rheological properties; nanomaterials; graphene; drilling fluids

1. Introduction

Drilling operations are conducted to obtain oil and gas from natural reservoirs deep
underground [1]. To facilitate the extraction of hydrocarbons from the ground, a deep
hole is drilled to form a wellbore. The use of drilling fluids is an important factor in the
drilling process, and these fluids play many roles, such as to assist in removal of drill
cuttings and formation pressure control [2,3]. There are viable chemical additives used
in the drilling fluid that have shown the desired features. However, these additives are
non-biodegradable and environmentally hazardous [4]. As a result, researchers have
sought to identify alternate additives that are environmentally friendly, biodegradable, and
sustainable, while also maintaining the properties of efficient drilling fluids [5].

Drilling fluids must address several challenges encountered during the drilling pro-
cess. For instance, the drilling structures erected during the process are made of metal, and
are thus susceptible to corrosion, which in turn affects the overall drilling operation [6].
A drilling fluid additive that possesses good corrosion inhibition can efficiently address this
issue. Another challenge is the excessive circulation loss of fluids into the filtrate medium,
which is relatively expensive. To address this problem, a drilling fluid additive should
promote good control of the circulation, and of mud cake formation and thickness [7].
Wellbore collapse also may occur due to the interaction and reaction of drilling fluids with
formation fluids. The drilling fluid must contain an additive that forms a mud cake with
a suitable thickness to ensure that the pipe does not become stuck and to maintain the
wellbore stability [8].
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Other possible scenarios in drilling operations include equipment failure during
wellbore completion. Wellbore completion is the process of preparing a wellbore before
the production stage, to ensure that the desired hydrocarbons flow out of the formation
into the wellbore, and then out [9]. In this situation, a drilling fluid requires additives that
are able to control the well and to prevent any significant damage until the equipment
can be repaired [10]. Another vital aspect of a drilling fluid is its ability to control pH,
rheology, and, in particular, the plastic viscosity, yield point, and gel strength. pH affects
the dispersion process and can greatly affect the physical properties of the drilling mud,
such as the properties of the filter cake [11].

Sharma et al. observed that tamarind gum and polyanionic cellulose showed bet-
ter rheological properties and filtrate loss control performance in an oil well, and also
significantly reduced formation damage [12]. Meng et al. evaluated the performance of
carbon ash as an additive in comparison to a rheological modifier. Carbon ash showed
a superior performance, displaying better rheological properties, satisfactory filtrate loss
control, and improved wellbore stability in water-based drilling fluids [13]. Moreover,
Omotioma et al. found that cashew and mango extract improved corrosion resistance
of water-based drilling fluids, proving that these materials are good corrosion inhibitors,
and concluded that the use of extracts of plant leaves boosted the performance of addi-
tives [14]. Similarly, Al-Hameedi et al. identified that fibrous food waste material was
environmentally friendly and improved the performance of water-based drilling fluids in
terms of a wide range of factors, such as better pH control, fluid loss control, mud cake
thickness control, and rheological properties [15]. In addition, Al-Hameedi et al. found
that biodegradable grass powder (GP) in comparison to starch, which is a commonly used
additive, was batter able to control fluid circulation loss. Although starch showed better
rheological properties than GP, this indicates that grass can be used in a supporting capacity
in combination with starch to provide a more environmentally friendly additive [16].

Furthermore, Ismail et al. established that henna leaf extract and hibiscus leaf extract
enhanced rheology and filtration properties of water-based drilling fluid in comparison
to a common additive used in the industry [17]. Oseh et al. also investigated henna leaf
extract in terms of its efficiency in transporting cuttings during drilling operations, and
showed that henna leaf was effective, and had upgraded rheology and filtration properties
under thermal aging conditions [18].

The drilling industry currently uses many additives that provide satisfactory drilling
fluid performance. However, these materials have been found to be hazardous, either
to the workforce operating on the site or to the environment. Substantial research has
been conducted on possible alternative drilling fluid additives that fulfill two conditions:
first, that the additive provides the properties required of drilling fluids; and second, that
it is environmentally friendly, biodegradable, and sustainable. This paper reviews the
research undertaken using various environmentally friendly waste-generated additives
in water-based drilling fluids. In particular, the role of these additives on rheological
properties, such as plastic viscosity, yield point, gel strength, filtrate loss, and mud cake
thickness, is evaluated. Additionally, as a noteworthy aspect of drilling fluids, the impact
of various nanomaterials as additives in lubricity tests us summarized.

2. Drilling Fluids and Rheological Properties

The principal functions of drilling fluids include removal of drill cuttings and cleaning
of the wellbore, lubricating and cooling the drill bit and string, maintaining wellbore
formation, and preventing well blowout [19,20]. Thus, the drilling fluid plays a significant
role in the upstream oil and gas industry. As a major success factor of drilling processes,
the properties of drilling fluids are constantly monitored and adjusted as recommended
by the American Petroleum Institute (API) Recommended Practice 13B-1 for WBDF and
Recommended Practice 13B-2 for OBDF. Based on API Recommended Practice 13B-1,
the International Organization for Standardization (ISO) has prepared and outlined the
ISO 101,414 under the general title of Petroleum and Natural Gas Industries—Field Testing
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of Drilling Fluids (API, 2009) [21]. ISO 10,414 outlines the standard procedures to regularly
determine and monitor the mud properties to ensure maximum drilling performance.
These procedures are improved and periodically revised with the emergence of newer
studies and developments.

2.1. Mud Density or Weight

The mud density or weight is an important property of drilling fluids that functions
to improve wellbore stability and maintain formation pressure. According to Das and
Chatterjee [22], low mud density can lead to shear failure of rocks, known as a borehole
breakout, which subsequently collapses the wellbore. However, Ebikapaye et al. [23]
reported the possible loss of circulation, decrease in rate of penetration, and formation
damage due to excessive mud density values. Thus, researchers have worked to develop a
reliable route, i.e., the PSO-ANN model, to estimate the most suitable density of drilling
fluids under HTHP wellbore conditions [24].

2.2. Plastic Viscosity

Viscosity measures the internal resistance of drilling fluids, whereas PV is the flow
resistivity caused by friction between the solid particulates in drilling fluids and fluid
layers [25]. PV is dependent on the viscosity of the base fluids, i.e., water and oil, and the
concentration of solids. In short, an increase in mud weight or solid content in drilling
fluids results in higher PV, which is undesirable because it lowers the drilling speed. The
adverse effects caused by PV have been reduced by the addition of water or a thinning
additive [26].

2.3. Yield Point

YP is defined as the measured degree of shear thinning performance of non-Newtonian
drilling fluids. It is the ability to carry drill cuttings in suspension while circulating in the
wellbore and out of the annulus. Hence, drilling problems such as differential sticking can
be prevented [27]. According to Maiti et al., as the solid additive particles reduce in size,
the YP increases [28]. This is due to the increased attractive forces between solid particles
which enhance the carrying capacity of drill cuttings and cleans the wellbore.

2.4. Gel Strength

Gel strength (GS) measures the forces of attraction between particles in static condi-
tions, unlike YP which measures them in dynamic conditions [29]. Therefore, gel strength
refers to the ability to suspend drill cuttings during connections or other static conditions.
As it increases over time, more pressure is required to overcome the accumulated gel
strength and initiate the circulation [30].

2.5. Filtrate Loss and Mud Cake Thickness

Filtration or fluid loss measures the amount of liquid that permeates a solid mud cake
formation. According to previous researchers [31], drilling fluids invade well formations in
response to the greater hydrostatic pressure of fluids compared to the pore pressure. This
leads to the formation of mud cakes as the pores are filled with suspended solids from the
drilling mud. Consequently, the rate of filtrate loss and mud cake thickness decreases as
solid concentration in drilling fluids increases. Both filtration rate and mud cake thickness
are monitored properties of drilling fluids. This is because to high filtrate loss and mud
cake thickness could potentially lead to sticking of the differential pipe [32]. An exceptional
mud cake possesses extremely low permeability while being equally thin, tough, and
compressible. Filtration control is costly due to requiring many control factors, such as
concentration of drilling fluids, size and type of suspended solids, concentration of fluid
loss control (FLC) additives, and thermal stability of the system [33].
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3. Waste Derivatives in Drilling Fluids
3.1. Emergence of Waste Materials in the Environment

The global population, which is currently 7.8 billion and growing at 1.1% per year,
relies on the consumption of the Earth’s natural resources [34]. Waste materials are unusable
materials that have exceeded their use and been discarded. Unfortunately, an effect of this
continued consumption is the proliferation in waste materials of all varieties, as shown in
Figure 1 [35].
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Waste material includes municipal solid waste (MSW), which comprises common
items consumed and discarded by the public, and represents the fastest growing form
of waste due to its prevalence in urban society [36]. In a review of solid waste manage-
ment, Hoornweg and Bhada-Tata estimated that, by 2025, MSW will increase to around
1.42 kg/capita/day (2.2 billion tonnes per year), generated by 4.3 billion urban residents.
The authors also estimated that 1.8 million tonnes of MSW would be generated daily in
Asia [37,38].

Other types of waste are produced by a range of sources, including domestic and
commercial; ash; animals; biomedical and construction industries; and sewers. These
wastes may comprise industrial solid waste, biodegradable and non-biodegradable waste,
and hazardous waste [39].

Some of these types of waste pose a serious threat to the environment and human
health. Clinical waste, which is produced by medical clinics, hospitals, and laboratories,
carries the risk of infection and may spread disease if not appropriately managed [40,41].

Electrical and electronic waste (E-waste), from electronic equipment such as cables,
wires, cords, and batteries, releases dangerous substances, and thus causes serious harm to
those who contact it, particularly workers in the recycling industry [42,43]. Additionally,
waste management requires recycling of hazardous waste by various approaches, as
presented in Figure 2.
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Figure 2. Strategies for recycling of waste materials.

Food waste is a major global issue that is caused by factors including poor food pro-
cessing operations and management, inadequate household planning of food consumption,
and over preparation of food in the food and beverage industry [44,45]. Nevertheless, the
problem of food wastage may be meaningfully addressed if the waste can be utilized and
reapplied to different applications. The accumulation of wasted food in landfills results in
the formation of methane gas and further pollution of the air [46,47].

3.2. Waste Materials in Drilling Fluids

A significant amount of research has been conducted regarding the use of food waste
in the oil and gas drilling industry [48]. For instance, Al-Hameedi et al. investigated the
use of mandarin peel powder (MPP) in an eco-friendly fluid additive, as an alternative
to non-biodegradable additives that harm the environment. They utilized MPP as an
eco-friendly alternative fluid additive in comparison to a reference polymer, PAC-LV. The
MPP additive yielded better outcomes because it was able to significantly lower the pH
and reduce the fluid circulation loss with a low concentration of the powder. Thus, MPP
was shown to be a good additive for lowering the pH, viscosity control, and reducing
circulation loss. This study encouraged the use of food waste as a suitable alternative to
the non-biodegradable chemicals that are currently used in the drilling industry [49].

Furthermore, Al-Hameedi et al. recognized that grass, hay, and palm leaves are also
viable candidates. The study verified that food waste can be repurposed to promote an
environmentally friendly operation of the oil and gas drilling industry [50]. Figure 3
represents the preparation of food waste as an additive for application in water-based
drilling fluids.
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The oil and gas drilling industry uses additives in drilling fluids for a variety of
uses, such as pH control, and to provide rheological properties, such as plastic viscosity,
gel strength, and yield point [52,53]. These additives must also address issues such as
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circulation loss control, wellbore integrity, wellbore completion, and inhibition of corrosion
to ensure a smooth drilling operation [54]. However, at present, the chemicals used for
these purposes are non-biodegradable and can cause significant negative effects on the
environment [55]. A sustainable solution would use chemicals that are biodegradable
and do not cause any environmental damage, while simultaneously providing the desired
properties of a good drilling fluid, as presented in Figure 4.
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Recent studies have shown the impact of various waste-derived additives for efficient
rheological properties in drilling fluids [57]. For example, Joshi et al. reported on the use of
tamarind kernel powder as an alternative additive in drilling fluids. The study outlined
the impact of using tamarind kernel powder on the mud density. Mud density is one
of the significant properties of drilling fluids, and helps provide and regulate wellbore
stability and control formation pressure. In the study, it was stated that the density of the
mud sample increases with the addition of tamarind seed powder and the combination of
bentonite. Increasing the concentration of tamarind seed powder resulted in a thicker mud
sample and an increase in mud density. The mud density of the samples was observed to
be in the range of 8.22–8.97 ppg, which has been considered to be a suitable range for use
as an additive in the formulation of drilling fluids [58].

Moreover, Murtaza et al. demonstrated the use of environmentally-friendly okra as
a viable alternative additive in drilling fluids. The performance of okra as an additive
was evaluated with the absence and presence of clay in drilling fluids. Comparatively, the
incorporation of okra in clay-based drilling fluids presented a greater improvement in the
rheological properties compared to that in clay-free drilling fluids. In clay-based drilling
fluids, the addition of 2 and 3 g of okra resulted in an increase in plastic viscosity (PV) of
more than 100%, compared to the addition of 2 g of starch, which only yielded a 45.7%
increment. Increasing the concentration of okra also led to an increase in the yield point
of drilling fluids. However, was observed that starch is more efficient in improving the
yield point than okra. Fluid loss was evaluated at different concentrations and observed to
be reduced at different proportions for each concentration [59]. In addition, the filter cake
thickness was reduced with the addition of okra, with further reductions evident at higher
concentrations, as shown in Figure 5a–d.
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versus starch [59].

Similarly, Ghaderi et al. proposed sustainable saffron purple petals (SPP) as an eco-
friendly alternative for additives in drilling fluids. The addition of SPP powder in drilling
mud resulted in an effective increase in PV values. As the concentration of SPP powder
increases, the PV value also increases. Additionally, the introduction of SPP powder to
drilling mud also dramatically enhances the yield point compared to that of base mud.
The incorporation of SPP powder into drilling mud demonstrated excellent filtrate loss,
whereby the filtrate volume was reduced gradually with increasing concentration of SPP
powder. The addition of SPP powder in the drilling mud also resulted in the reduction of
mud cake thickness compared to that in base mud [56,60].

The above-mentioned studies have demonstrated the effectiveness of food waste
in drilling fluid additives as a substitute for the environmentally hazardous materials
currently in use within the industry [61]. In this regard, there is a need to promote the
“waste to wealth” concept by studying the potential of using unused waste derivatives as
additives in drilling fluids, and to address the issue by exploring the additives’ rheological
properties, which ensure it is viable and cost effective [62]. Table 1 displays the role
of varying waste materials used as additives for the improved rheological properties of
water-based drilling fluids.

3.3. Bentonite in Drilling Fluids

Bentonite is a clay material that is naturally composed of sodium montmorillonite and
minor quantities of minerals. It is used in a variety of applications due to its absorption and
adsorption capabilities [58]. For instance, it has been used as a health remedy because it
contains iron, magnesium, and calcium. In clay form, these elements are beneficial because
they absorb and remove toxins from the body [80].

In the presence of water, bentonite hydrates and swells to form a thixotropic gel,
i.e., a mud cake, thus protecting the well formation from invasion, which causes the loss
of fluids to permeable formations. However, mud cakes formed by bentonite have been
found to be highly detrimental to the productivity of drilled wells. This is due to the
inefficient removal of protective mud cakes that is undertaken to restore performance of
wells [81]. According to Li et al., he difficulty to remove mud cake greatly increases in
deeper reservoirs. [82].
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Table 1. Summary of rheological properties of waste-derived materials in drilling fluids.

Types of Wastes Materials Process Parameters Range of
Particle Size

Amount of
Waste Used (g)

Yield Point
(lb/100 ft2)

Plastic
Viscosity (cP)

Filtrate Loss
(% Reduction) References

Basil Seed Powder (BSP) 90–150 ◦C 5–10 µm 1 5–45 Pa 5–28 mPa.s 10.2–67.9% [63]

Carboxymethyl cellulose
carton waste (CMC) - - 1–5 g - - 0.4–10% [64]

Wild Jujube Pit
Powder (WJPP) 6.9 MPa 54, 75, 100 µm - 1.5–2.5 Pa 3–4 mPa.s 30–47.5% [65]

Banana Peel Powder (BPP) - - 6–18 g 10–16 6–12 39–54% [66]

Black Sunflower Seeds
Shell Powder 250 ◦F, 500 psi 52–400 µm 3.5–24.5 g 26–47 7–13 0.3–25% [51]

Brachystegia eurycoma
rice husk - - 20 - - 35.62% [67]

Detarium microcarpum
rice husk - - 15 - - 44.44% [67]

Fibrous Food Waste
Material (FFWM) 100 psi 2% - 13 8 7.0 cc/30 min [15]

Green Olive Pits’
Powder (GOPP) - 1.5% 9 26 7 11.5 cc/30 min [68]

Henna leaf extract 78 ◦F, 300 ◦F, 100 psi - 10–40 33–52 23–45 29.9- 32% [17]

Hibiscus leaf extract 78 ◦F, 300 ◦F, 100 psi - 10–40 73–148 41–75 31.0- 35.1% [17]

Palm Tree Leaves
Powder (PTLP) 55 ◦C 3% 22 5 9 8.9 cc/30 min [69]

Potato Peels Powder (PPP) 73 ◦F 4% 6 6 10 8.75 cc/30 min [70]

Saffron Purple Petals (SPP) 100 psi - 50 g 6.04–10.67 Pa 0.016–0.039
Pa.s 23–45% [56]

Durian rind - 44–2000 µm 5–10 ppb 2–75 10–80 17–60% [71]

Mandarin peels
powder (MPP) - 1–4% - 14–57 14–63 44.0–68.0% [49]

Date Seed Powder 100 psi 300 µm 0.25–2 ppb 4 9 8–20% [72]

Pistachio Shell Powder (PSP) 104.44 ◦C, 3.45 MPa 75–150 µm 5–9 g 12.2–13.5 19.8–24 15.3–44% [73]

Soybean Peel Powder (SB) 100 psi - 5 ppb 23 4 60% [74]

Grass - 35–300 µm 0.25 -1 ppb 3.5–5 8–9 11.0–14.6% [75]

Corn Starch 170–200 ◦F <125 µm 6 - 2.67–5 31% [76]

Rice husk - 125µm 5–20 9.56 Pa 0.008 Pa.s 16.0–42.5% [77]

Agarwood - 45µm, 90µm - 22 11.9 14.0 [78]

Sawdust 70 ◦C 1 mm - - - 8.6% [79]

Walnut shells - 2–6 mm 20–60 110–180 55–80 11.0–14.5% [80]

Most importantly, because bentonite clay contains montmorillonite, a crystalline struc-
ture that forms the clay, bentonite precipitates when water is added [83]. This is beneficial
in drilling fluids, in which the ability to precipitate significantly assists in reservoir forma-
tion and protection from the invasion of drilling fluids into the reservoir when exposed to
water [84]. The impact of Na-bentonite as a weighing agent on mud density is compared
with ilmenite and barite in Figure 6.

Magzoub et al. have studied bentonite compounds comprising different primary
elements, such as calcium (Ca), potassium (K), and sodium (Na), and found that sodium
bentonite is commonly utilized in drilling fluids. In contrast, calcium is rarely used due to
its unsatisfactory rheological properties. However, this study used sodium to activate the
calcium bentonite to improve its performance [86].

Karagüzel et al. have found that sodium and calcium bentonites in combination
with soda and MgO additives show enhanced swelling properties, lower filtrate loss, and
increased viscosity at favorable concentrations. An important fact to note is that although
sodium and calcium bentonites were used as mud viscosifiers and fluid loss reducers, they
did not qualify as good drilling fluids. This finding highlights the importance of choosing
suitable additives that can effectively enhance the properties of a drilling fluid [87].
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The disadvantages of bentonite have been studied, leading to the formulation of
nanomaterial-based drilling fluids, and resulting in significant improvements in wellbore
cleaning properties while successfully maintaining optimum viscosity and density [88].
Compared to conventional bentonite, the breakthrough study by Xie et al. have intro-
duced the successful use of nanofluids which reduced mud filtrate and enhanced thermal
conductivity as well as rheological properties of the WBDF [89].

4. Effects of Nanomaterials in Drilling Fluids

Nanomaterials are manufactured substances that have a size ranging from 1 to
100 nanometres (nm), and therefore are utilized in extremely small dimensions [90,91].
Nanomaterials are widely applied in various fields, such as pharmaceutical, automotive,
and electronics industries and, most notably, in several areas within the chemical industry.
An example of these is the drilling industry [92,93].

To facilitate the drilling of a borehole, drilling fluids imparts a vital factor for a
successful drilling operation; that is, the fluids help remove the drill cuttings and fragments
from the drilling area and the wellbore.

Nanomaterials have an extremely high surface area to volume ratio due to their
nano-sized particles. Therefore, WBDF containing nanomaterial active agents possesses
improved physical and chemical sensitivity, which enhances its performance efficiency com-
pared to that of OBDF [94]. In addition to exhibiting advantages compared to OBDF, the
improved nano-based WBDF is also cheaper and more environmentally friendly. For exam-
ple, graphitic nanomaterials are excellent binding agents and have successfully been used
to develop a compact, impermeable, and thinner mud cake [95]. This enables nano-pores
to be physically plugged together, thereby reducing water losses during shale formations.
Consequently, the use of the graphene family enhances wellbore stability [96].

Furthermore, nanomaterials have also been used as lubricants to reduce friction
between the wellbore and drill string, which consequently reduces the likelihood of a stuck
pipe. Figure 7 demonstrates the increase in surface area of nanoparticles compared to
macroparticles of the same volume.
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The pioneering works on the significant usage of nanomaterials in drilling fluids
were undertaken by Abdo et al. [97]. In enhanced oil recovery and drilling operations,
Amanullah et al. reported the promising use of nanomaterials in smart fluid development
due to their enhanced physio-mechanical, chemical, electrical and thermal properties [98].
At a very small concentration of nano-silica (SiO2), the rheological, hydraulic, and filtra-
tion properties of WBDF are effectively improved [99]. In a recent study, Karakosta et al.
testified the improved drilling efficiency in the HTHP environment when metal oxide nano-
materials are used [19]. The addition of nanomaterials as additives reduced the amount
of filtrate entering the reservoir, thus preventing potential damage [100]. Gautam et al.
showed the positive impact of nanoparticle usage on controlling filtrate loss and mud cake
thickness [101]. In summary, the use of drilling fluids improves drilling efficiency, reduces
drilling costs, and is less damaging to the environment [102].

For example, Kasiralvalad et al. found that adding traces of nanomaterials to the
drilling fluid, thereby making it a nanofluid, played an essential role in enhancing the mud
cake quality, and reduced the sticking of the pipe to the reservoir, promoted good borehole
stability and reservoir protection, and increased recovery of both oil and gas products. This
was possible due to the modifications to the fluid caused by the nanoparticles, which aided
in its superior performance [103].

Another reflection of this finding was provided by the study of Li et al., in which
the authors established that nanomaterials helped to improve the mud cake quality and
reduced loss circulation. In addition to these qualities, they also found that when nanoma-
terials were used as viscosifiers, emulsifiers, and lubricants, they improved the qualities of
borehole cleaning, borehole stability, and reservoir protection, and enhanced oil and gas
recovery [104].

Salih et al. emphasized the concentration of nanomaterials, and found that the rheo-
logical and filtration properties of the drilling fluid were superior at a low concentration
compared to the inferior performance achieved at a higher concentration. Other researchers
analyzed noteworthy parameters related to nanomaterial usage [105]. This research high-
lights the key factors to be considered to ensure a good performance of drilling fluids, as
displayed in Figure 8.

In addition to waste-derived materials, recent studies have presented nanomaterials
as promising alternative for use as additives in drilling fluids. As an example, Kamali et al.
assessed the effects of Fe3O4-carboxymethyl cellulose (CMC) nanocomposite as a fluid
loss control additive in drilling fluids. In this study, the effect on rheological properties of
drilling mud with and without salt was studied. The study observed that the utilization of
the nanocomposite enhances the fluid viscosity of the drilling mud under both conditions.
Based on the study results, in general, the yield point of the drilling fluid is further increased
with increasing concentration of the nanocomposite. It was observed that the integration of
the nanocomposite into the drilling fluid allows for the production of a thinner filter cake
in comparison to the CMC mud system [107]. In addition, a reduction in filtrate loss was
recorded with an increasing concentration of the nanocomposite, as seen in Figure 9.
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Figure 9. Yield point verses nanocomposite concentrations. Nanocomposite with the ratio 1:4
increased the yield point to a maximum of 50% compared to other ratios [107].

Saboori et al. highlighted the importance of adding the appropriate concentration of
additives to the drilling fluid for improved properties. They investigated the addition of
varying concentrations of copper oxide (CuO), also called polyacrylamide nanocomposite,
to a water-based drilling fluid. They found that increased concentration significantly mini-
mized fluid loss and filter cake thickness in comparison to the absence of nanocomposites.
They also observed higher viscosity, higher thermal conductivity, and a favorable filter
cake porosity [108].

Another important distinction was made by comparing drilling fluid performance
between salty and non-salty water. It was found that both types displayed the best
performance under certain conditions, and that a specific salt concentration may result in
the best performance for both salty and non-salty water. This study again showed that
additives play a vital role in the performance of a drilling fluid [109]. Figure 10 presents
the effects of CMC on the reduction in filtrate loss compared to nanocomposites using
various concentrations.

A compelling recent study carried out by Lekomtsev et al. utilized tools including an
Extreme Learning Machine (ELM) and Particle Swarm Optimization-Least Square Support
Vector (PSO-LSSVM) to investigate the effect of various nanoparticles on the filtration of
a volume of drilling fluids. This research showed a decrease in the amount of filtration
volume with the increase in the weight percentage of the nanoparticles. Among the
parameters evaluated, the study indicated that nanoparticle concentration had the greatest
impact on the filtration volume and mud cake thickness of drilling fluids [110,111].
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Al-Zubaidi et al. studied nano-Iraqi clay and other nanomaterials, such as graphene
and magnesium oxide (MgO), in various concentrations and separately combined with com-
mercial nano-bentonite to observe the performance of the fluid. The addition of MgO with
nanomaterials resulted in an improved filter loss and yield point. This demonstrates that a
wide range of additives with appropriate concentrations can improve the performance of
drilling fluids [112].

Graphenaceous materials have been extensively used in drilling fluids because they
promote and enhance the rheological properties of these fluids. Kosynkin et al. found that
the use of a graphene oxide additive in water-based drilling fluids improved its filtrate
loss properties, significantly lowering the filter cake thickness and fluid loss, and screening
enhanced shear thinning and thermal stability. It was also observed that graphene in both
flake and powdered form was a contributing factor to the improved performance. This
study indicates that the presence of an additive influences the properties of a drilling fluid,
and shows how the form of the additive can contribute to value-added properties [113].

Sadeghalvaad and Sabbaghi studied a TiO2/polyacrylamide nanocomposite as an
additive in water-based drilling fluids, and found a significant reduction in fluid loss and
mud cake thickness with its use, as observed in Figure 11 [114].

Patel et al. observed that conventional water drilling muds exposed to water sensitive
shale cause the shale to absorb water from the mud, resulting in problems during operation.
Therefore, the water-based muds must contain additives to effectively inhibit the shale.
Salt compounds were used to inhibit the shale. However, the high concentrations of the
salt compounds affected the surrounding ecosystems. The concentration was altered, and
the shale was successfully inhibited [115]. This study demonstrates the importance of the
optimal concentrations of additives in drilling fluids to achieve the superior performance
of the drilling fluid without causing side effects [116].
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Similarly, Qu et al. investigated polyoxyalkyleneamine (POAM) as a potential additive
and found that POAM improved the shale inhibition capabilities in water-based drilling
fluids [117]. As an added benefit, POAM is water soluble, has good compatibility with
other additives in the drilling fluid, and is nontoxic. Subsequently, nanomaterials have
been explored as potential additives to be used in drilling fluids [118].

In the drilling industry, many researchers have studied nanomaterials and found
a wide range of chemicals that can improve the properties of drilling fluids. The clear
advantage of using nanomaterials is that the amount required is very small [119]. Hence,
the use of nanomaterials can conserve resources. The drilling industry spends millions
of dollars to address situations of wellbore instability [120]. The use of nanomaterials
as additives to drilling fluids should be economically sound so that resources can be
conserved. For instance, nanomaterials that are used for filtration reduction, such as
viscosifiers, emulsions, and clays, can decrease the rate of water penetration into shale
because these nanomaterials are small enough to seal the shale, thereby strengthening
the wellbore [121]. Aramendiz et al. found that SiO2 nanoparticles added to water-based
drilling fluids enhance inhibition, and filtrate loss and rheological properties. The added
benefit is that the preparation of SiO2 nanoparticles has a low cost due to their common
methods of preparation [122].

Similarly, Taraghikhah et al. found that the optimal concentration of SiO2 nanoparti-
cles is below 1% w/v in shale inhibition, thus constituting a very small, and hence economi-
cal, concentration [123].

Gbadamosi et al. investigated SiO2 nanoparticles as an additive in water-based drilling
fluids. They found that SiO2 nanoparticles increased the viscosity of the fluid, thereby
allowing it to more efficiently carry drill cuttings from the wellbore. This ensures the
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wellbore is clean and, therefore, does not pose challenges when the drill needs to be
removed or maintenance work is required [124].

Al-Yasiri et al. also investigated the use of SiO2 nanoparticles with xanthan gum as
a base in water-based drilling fluids, and found an increased yield point, superior hole
cleaning ability, reduced filtrate loss, and more efficient lubrication of the drill bit during
operation compared to drilling fluids without SiO2 [125].

Bayat et al. studied four nanoparticles types, namely, aluminum oxide (Al2O3),
titanium dioxide (TiO2), SiO2, and CuO in bentonite, and their effects on water based
drilling fluids. They found that the combined additives improved overall rheological
properties and gel strength at low concentrations in comparison to the base fluid without
nanoparticles [52]. This shows that additives efficiently increase rheology using a small
concentration and thus conserve resources in the drilling process.

Another recent study by Medhi et al. evaluated the impact of zinc oxide (ZnO)
nanoparticles on the rheological properties of non-damaging drilling fluid (NDDF). In com-
parison to base NDDF, NDDF incorporated with ZnO nanoparticles exhibited higher shear
stress and viscosity. The addition of ZnO nanoparticles to NDDF helped overcome the
issue of NDDF degradation through stabilization of viscosity at higher temperatures. Tem-
perature sweep test measurements indicated a good operational temperature range of base
NDDF was between 70 and 80 ◦C. NDDF containing ZnO nanoparticles exhibited improve-
ment in fluid loss control. However, it was observed that an increase in pressure resulted
in a decrease in fluid loss [126]. Table 2 summarizes numerous studies on modifications of
rheological properties and reduction in filtrate loss by adding nanomaterials as additives.

Table 2. Literature studies on the effects of nanomaterials as fluid loss agents in drilling fluids.

Types of
Nanomaterials

Modified Rheological
Properties

Experimental
Parameters Conclusions References

Carbon nano-tubes
(CNT)

• Filtration loss
(API and HTHP)

• Shale inhibition

LPLT and HPHT

• 248 ◦F
• 302 ◦F
• 347 ◦F
• 392 ◦F

Addition of 0.8% CNT in
WBDF reduced significant
filtration loss in HTHP
conditions.

[127]

Ferric oxide (Fe2O3)
• Filtration loss

(API and HTHP) LPLT and HPHT
Addition of Fe2O3 in
nanoparticles increased fluid
loss at LTLP.

[128]

Graphene
• Filtration loss (API)
• Shale inhibition

LPHT

• 120 ◦F
• 351 ◦F

Results showed 30% API
filtration loss when 1–5 wt% of
graphene were added to
nanoparticles in 10 ppg WBDF.

[129]

• MWCNT
• Gold

nanoparticles

• Filtration loss (API)
• Mud cake thickness LPLT

Au nanoparticles-MWCNT at
0.005% w/v exhibit reduction in
filtration loss by 6%.

[130]

• MWCNT
• Graphene oxide

• Filtration loss
• Mud cake thickness

LPLT

• ~100 psi

MWCNT and graphene oxide
at ratio 1:1 of 0.2g each,
reduces fluid loss and mud
cake thickness.

[131]

Polystyrene

• Filtration loss
(API and HTHP)

• Mud cake thickness

LPLT and HPHT

• 24–150 ◦C
• 100–500 psi

Reduction of 50.7% and 61.1%
of filtration loss for LPLT and
HPHT conditions, respectively.
Low permeable and thinner
mud cake thickness is also
observed through addition of
nano-polystyrene.

[132]
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Table 2. Cont.

• Polystyrene
• Clay

• Filtration loss (API)
• Yield point
• Gel Strength

250◦F

Nanocomposite achieved a
reduced API filtration loss by
22% in WBDF and showed
excellent thermal stability at
high temperature, 250◦F.

[109]

Sepiolite
• Filtration loss
• Mud cake thickness

HPHT

• 77–365 ◦F
• 100–16,000 psi

4.0 wt% of nano-sepiolite with
30–90 nm diameter showed
reduced filtration loss under
HPHT conditions.

[133]

GO
• Filtration loss
• Mud cake thickness HPHT

Graphene oxide nanosheets
using >0.5 wt% improved
stability by plugging and
sealing of micropores.
Reduction in filtration loss by
up to 50% by adding 0.8 wt%
of graphene oxide
was observed.

[134]

Polymer-graphene
oxide

• Filtration loss 240 ◦C
Highly efficient filtration loss
properties as compared to
bentonite-based mud.

[135]

SiO2
• Filtration loss
• Mud cake thickness

LPLT and HPHT

• 199 ◦F
• 1000 psi

0.7 wt% of SiO2 reduces
filtration losses when
concentration of SiO2 is
increased. In addition, the
lowest mud cake thickness
(1 mm) was also obtained.

[105]

Synthetic based
Acrylamide–styrene
Copolymer(SBASC)

• Plastic viscosity
• Yield point
• Gel strength
• Filtration loss

250 ◦F

SBASC achieved reduction in
API and HTHP filtration loss
by 47.5% and 38.8%,
respectively.

[136]

T80ZnO • Filtration loss

API/HTHP

• 80–250 ◦F
• 100–500 psi

0.7g of T80ZnO mitigated API
filtration loss and HTHP
filtration loss by 17% and 30%,
respectively.

[137]

TiO2- Bentonite

• Filtration loss
(API and HTHP)

• Mud cake thickness
API/HTHP

API and HTHP filtration loss
reduced by 10% and 9.2%,
respectively.

[138]

MWCNT = multi-walled carbon nanotubes; API = American Petroleum Institute; HTHP = high temperature high pressure; LTLP = low
temperature low pressure.

Lubricity of Drilling Fluids

One of the significant characteristics of drilling fluids is lubricity. Lubricity is required
in order to reduce the friction due to the continuous contact between the wellbore and
drilling string in the horizontal and directional wells [139]. There are two main aspects
concerning lubricity of drilling fluids, which are referred to as torque and drag. Torque
refers to the frictional resistance to the rotation of the drill string, whereas drag is described
as the frictional resistance to lowering and hoisting the drill string [140]. In comparison
to water-based drilling fluids, it is evident that oil-based drilling fluids provide better
lubricity properties [141]. Nonetheless, water-based drilling fluid is preferred compared to
oil-based drilling fluids due to the use of environmental friendly fluids in the former [142].
As a result, lubricant additives are used in water-based drilling fluids with the purpose
of reducing friction between the wellbore and the drill string, lowering the probability of
differential pipe sticking, and increasing the drilling rate [143].
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Farahbod et al. presented a study of the thermo-physical properties of a drilling fluid
incorporated with nanoparticles to examine the capability of drilling fluids to transfer
heat. The use of nanoparticles, including titanium dioxide nanoparticles and CNT, were
suggested because nanoparticles possess a high specific surface area, which may increase
the rate of heat transfer [144]. The study observed that drilling fluids integrated with
CNT exhibited a higher percentage in the ratio of convective heat to conductive heat in
comparison with fluids using the titanium dioxide nanoparticles. As such, CNT are not
favored for the purpose of improving the coefficient or level of convective heat transfer.
Furthermore, the study observed an increase in the rate of heat transfer and the convective
heat transfer coefficient with a decrease in the average size of the titanium dioxide and
CNT, respectively. This indicates that nanoparticle size is a significant parameter to be
considered in the utilization of nanoparticles in drilling fluids [145].

In drilling fluids, lubricity reduces the torque and drag force [94]. Typically, lubricity
of drilling fluids is measured via torque reduction, which can be determined using the
coefficient of friction (CoF). The CoF is defined as the ratio of the force of the friction
between two bodies and the force pressing them together [146]. Ideally, a good lubricant
should possess favorable properties, including high viscosity, high lubricating film strength,
low flammability, low corrosion, and high solubility, and should also be non-toxic [147,148].
The addition of a minimal quantity of lubricants is sufficient to provide drilling fluids with
adequate lubricity, as shown in Figure 12.
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Husin et al. reported a torque reduction of 20% with the use of a lubricant concentra-
tion of only 1% [149]. Some of the conventionally used lubricants in drilling fluids include
oils, graphite, powder, surfactant, and soaps [150].

Studies have reported various types of additives used as a lubricant for drilling
fluids, including modified vegetable oils and refined polyols [151]. The combination of
polyols and mud changes the wetting characteristics of the mud, causing it to behave
similarly to oil mud [152]. Consequently, the lubricity and shale stability of drilling mud
are considerably improved. However, polyols may also change the wettability of reservoir
rocks, leading to the formation of water blocks [153]. At present, polyalkylene glycols
(PAGs) and polyalphaolefins (PAOs) are the most common types of lubricant used in
drilling fluids. PAOs are favored in synthetic mud due to their remarkable lubricating
properties, and are applied to wellbore cleaning, shale stabilization, and bit cooling and
lubrication [154]. Nonetheless, PAOs possess drawbacks, including small range of viscosity
and low polarity [155].

In recent decades, there has been growing interest in the use of nanomaterials as lubri-
cant additives. This interest has been motivated by the movement in the industry toward
the use of water-based drilling fluid due to the environmental concerns associated with
the use of oil-based and synthetic drilling fluids [156]. The novel properties of nanoparti-
cles offer many potential applications, particularly to the oil and gas industry. Recently,
Aftab et al. demonstrated the potential use of environmentally-friendly Tween 80/ZnO
nanoparticles for use in drilling fluids. The approach significantly improved the lubricity
and rheological properties of the drilling fluid due to the asymmetrical morphology of the
nanoparticles, which eased the rotation of metal–metal surfaces and resulted in a reduced
CoF [137].

Table 3 represents the variety of nanomaterials used as lubricant in water-based
drilling fluids.

Table 3. Role of various nanomaterials used as lubricants in drilling fluids.

Type of Nanomaterials Range of
Particle Size

Amount of Material
Used (wt%)

Coefficient of
Friction (CoF) CoF Reduction (%) References

Graphene nanoparticles - 1–3 vol% 0.157–0.255 - [148]

Laponite 20 nm 0–2 - 11.3–32.3 [157]

Carbon dots 1–4 nm 0.05–1.5 0.03–0.055 33 [158]

CuO nanostructures 6–60 nm 0.8 0.168–0.199 65.4–70.9 [159]

Graphene oxide 50 nm
-

0.075
0.119
19.8

-
24.3

[142]
[160]

SiO2 nanoparticles 10–20 nm 0.013–0.53 0.24–0.38 13–25 [161]

TiO2/API bentonite
nanocomposite (TNBT) 29 nm 0–1.0 g 0.16–0.23 33–35 [137]

Gilsonite nanoparticles 300 nm 10 g 0.15 15 [139]

Polypropylene- SiO2
nanocomposite 80–390 nm 0.23–0.28 20.7 [124]

SiO2 nanoparticles - 0.5–1.5 ppb 0.267–0.41 3.2–12.61 [162]

Xantham gum
(XC polymer), barite

and lignite

10–400, 112, 63
nm 0.2–4 g 0.178–0.357 2.72–51.49 [163]

Borate nanoparticles 35–40 nm 0.01 g 0.06–0.12 69–86.5 [164]

Boron Nitride (BN)
nanoparticles 250 nm 0.05–0.20 g 0.27–0.33 24–37 [165]

Iron oxide (Fe2O3)
nanoparticles - 0.05–0.20 g 0.147–0.170 43–51 [165]
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Table 3. Cont.

MWCNT 20–40 nm 0.0095–0.38 0.15–0.30 30–50 [166]

MWCNT - 0.01–0.04 0.07–0.15 62 [167]

SiO2 nanoparticles - 0.2–0.6 0.35–0.38 - [168]

Titanium oxide (TiO2)
nanoparticles - 0.2–0.6 0.31–0.34 - [168]

Titanium oxide (TiO2)
nanoparticles - 0–2.625 lb/bbl 0.34–0.38 - [169]

Titanium Nitride (TiN) 20 nm 0.0095 0.311, 0.546 46 [170]

Titanium oxide (TiO2)
nanoparticles - 0.5–1.0 0.36–0.40 14.3 [171]

Boron-based
nanomaterial enhanced

additive (PQCB)
- 1–5 - 30–80 [172]

Zinc oxide nanoparticles
deposited acrylamide

composite
- 0.1–1.0 g 0.21–0.28 25 [143]

Nanographene 1–5 0.07–0.16 34.6–54.6 [129]

SiO2 nanoparticles 1–60 nm 0.5–2.0 0.105–0.287 22.5–71.6 [123]

Palygorskite
nanoparticles 10 nm–15 µm 0–8 g 0.23–0.34 68 [140]

5. Challenges and Limitations

Based on the results of recent studies, the usage of environmentally friendly additives
such as bio-wastes has significantly improved the performance and functionality of drilling
fluids compared to commercial GO.

However, several challenges must be addressed before these bio-wastes can be applied
and commercialized at a larger scale in the oil and gas industry. One of the key issues
is that raw waste materials and waste-derived nanomaterials may contain high impuri-
ties, thus necessitating an additional purification process. Therefore, future studies and
exploration must be carried out to improve the yield and characterization of waste-derived
nanomaterial production. A schematic illustration of the challenges related to the collection
of waste materials and their recycling, and the interconnected role of consumers in society,
is presented in Figure 13.

In addition, it is also important to examine novel waste derivatives by conducting
aging tests and experimental studies under HPHT conditions to study the degradation of
the environmentally friendly additive. In addition, the environmental impacts of waste-
derived nanomaterials should be highlighted. These waste additives can be added to and
optimized in OBDF and SBDF formulations, in addition to those of WBDF. Furthermore, a
thorough comprehensive quantitative analysis of different types of green additives and
their performance can be conducted to determine the best rheological improvements.
Hereafter, the role of environmentally friendly waste-derived additives will have a major
role in the preparation of novel green additives for drilling fluids. It is recommended
that future research focuses on identifying the green additive that optimally improves the
significant rheological and filtration properties of drilling fluids. Therefore, a breakthrough
can be achieved by improving the efficiency of drilling operations while reducing any
harmful risks to the environment and the health of personnel.
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Future Recommendations

To implement the use of waste-derived materials, more research is needed to achieve
a better understanding for application in the oil and gas industry. Waste materials such as
food waste have the potential to be utilized as an alternative to harmful and toxic additives
that are conventionally used in drilling operations. To date, a variety of waste-derived
materials have been explored due to their potential use as additives. These materials
include food waste, such as durian rind, and plant-derived wastes, such as black sunflower
seeds. The role of waste-derived nanomaterials, and the key features with the potential to
improve the efficiency of drilling performance, are presented in Figure 14.
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Recommendations of this study are as follows:

• A comprehensive investigation of the interactions between waste-derived materials
and content of drilling fluids, such as bentonite, should be undertaken.

• Cost-effectiveness of waste material usage requires more attention prior to commercializa-
tion to ensure consistency in generating drilling fluids with improved rheological properties.

• In-depth analysis is required to develop extensive methodologies for the production
of additives based on waste-derived materials.

• Future studies should consider the analysis of the lubricity of drilling fluids using
waste-derived materials. Extensive analysis should be undertaken to examine the
morphological properties of drilling fluids.

• The potential to convert waste materials into nanomaterials, and the reproducibility
of the conversion, should be considered for a variety of applications.

• A comprehensive quantitative analysis of nanomaterials used in drilling operations
is necessary. Particular focus is required to determine optimum concentrations to
improve conservation of resources.

• More studies should strive to investigate the mechanisms of interaction between
nanomaterials and other additives present in drilling fluids.

• A comparison of drilling fluid optimization between water-based drilling fluids using
nanomaterials, and synthetic and oil-based drilling fluids, should be undertaken. The
comparison should be conducted in relation to conventional base fluids subjected to
high temperature and pressure conditions.

6. Conclusions

The increased production of waste materials is a significant concern due to their
effect on public health and the environment. Mismanagement of food waste, in particular,
has become a major global issue, thus prompting the need for better solutions that use
these materials in different applications. Among various applications, food waste can be
considered to be a sustainable alternative for additives in drilling fluids used in the oil and
gas drilling industry. Chemical additives to drilling fluids are necessary components to
facilitate drilling operations by enhancing the fluids’ properties, including rheology and
filtrate loss. Studies have demonstrated that waste-derived materials, including food waste,
have the potential to provide an environmentally safe alternative to toxic conventional
chemical additives used in water-based drilling fluids. The materials summarized in
this review include food waste and waste generated from plants. The efficiency of these
materials was evaluated in terms of their effects on the yield point, plastic viscosity, filtrate
loss, and mud cake thickness.

Nanomaterials are viable alternative additives for drilling fluid application. Nano-
materials can be used economically due to the small concentrations required for their
efficient use in drilling fluids. Based on the summarized studies, quantities less than 1 g
are sufficient to generate changes in the lubricity of drilling fluids. The lubricity of drilling
fluids is a property that is considered to be necessary to ensure smooth drilling operations.
For water-based drilling fluids, in particular, lubricant additives are required to provide
better lubrication and thus reduce friction in drilling operations.
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