IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 21, 2021, accepted June 21, 2021, date of publication June 29, 2021, date of current version July 14, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3093366

An Adaptive Behavioral-Based Incremental Batch
Learning Malware Variants Detection Model
Using Concept Drift Detection and

Sequential Deep Learning

ABDULBASIT A. DAREM ', (Member, IEEE), FUAD A. GHALEB “?3, ASMA A. AL-HASHMI"',
JEMAL H. ABAWAJY?, (Senior Member, IEEE), SULTAN M. ALANAZI',
AND AFRAH Y. AL-REZAMI>®

lDepartment of Computer Science, Northern Border University, Arar 91431, Saudi Arabia

2Faculty of Engineering, School of Computing, Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Malaysia
3Department of Computer and Electronic Engineering, Sana’a Community College, Sana’a, Yemen

4Cybersecurity Research and Innovation Centre, Deakin University, Burwood, VIC 3217, Australia

SMathematics Department, Prince Sattam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia

°Depa.rtment of Statistics and Information, Sana’a University, Sana’a, Yemen

Corresponding authors: Abdulbasit A. Darem (basit.darem @nbu.edu.sa) and Fuad A. Ghaleb (abdulgaleel @utm.my)

This work was supported by the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia through project 1385.

ABSTRACT Malware variants are the major emerging threats that face cybersecurity due to the potential
damage to computer systems. Many solutions have been proposed for detecting malware variants. However,
accurate detection is challenging due to the constantly evolving nature of the malware variants that cause
concept drift. Existing malware detection solutions assume that the mapping learned from historical malware
features will be valid for new and future malware. The relationship between input features and the class label
has been considered stationary, which doesn’t hold for the ever-evolving nature of malware variants. Malware
features change dynamically due to code obfuscations, mutations, and the modification made by malware
authors to change the features’ distribution and thus evade the detection rendering the detection model
obsolete and ineffective. This study presents an Adaptive behavioral-based Incremental Batch Learning
Malware Variants Detection model using concept drift detection and sequential deep learning (AIBL-MVD)
to accommodate the new malware variants. Malware behaviors were extracted using dynamic analysis
by running the malware files in a sandbox environment and collecting their Application Programming
Interface (API) traces. According to the malware first-time appearance, the malware samples were sorted
to capture the malware variants’ change characteristics. The base classifier was then trained based on a
subset of historical malware samples using a sequential deep learning model. The new malware samples
were mixed with a subset of old data and gradually introduced to the learning model in an adaptive batch
size incremental learning manner to address the catastrophic forgetting dilemma of incremental learning.
The statistical process control technique has been used to detect the concept drift as an indication for
incrementally updating the model as well as reducing the frequency of model updates. Results from extensive
experiments show that the proposed model is superior in terms of detection rate and efficiency compared with
the static model, periodic retraining approaches, and the fixed batch size incremental learning approach. The
model maintains an average of 99.41% detection accuracy of new and variants malware with a low updating
frequency of 1.35 times per month.

INDEX TERMS Malware variant detection, adaptive incremental batch learning, concept drift detection,
deep learning, statistical process control.

I. INTRODUCTION

The associate editor coordinating the review of this manuscript and Recently, malware threats have been dramatically increased
approving it for publication was Mohamad Afendee Mohamed . due to the increasing of internet users, the proliferation of
97180 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 9, 2021

https://orcid.org/0000-0002-5650-1838
https://orcid.org/0000-0002-1468-0655
https://orcid.org/0000-0001-7871-7069
https://orcid.org/0000-0001-5985-3970

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

IEEE Access

malware creation tools, and the use of obfuscation techniques
by malware authors [1], [2]. Malware is a general term that
refers to malicious software or any unwanted software which
is design to gain unauthorized access, manipulate computer
content, violate privacy, steal valuable information, and/or
disrupt normal operation [1]-[4]. Malware can be found in
many types such as viruses, worms, botnet, backdoors, trojan
horses, ransomware, rootkit among many other families [3].
Each type of malware attacks and functions differently. The
consequence of malware also varies according to the type of
malware, type of the infected target, and the purpose of the
attacks [4], [5].

Malware attacks are spreading exponentially in volume,
complexity, and severity. In terms of volume, recently, mal-
ware proliferated to huge figures due to the availability of
public hacking tools and the presence of some enabling ser-
vices such as Malware-as-a-Service (MaaS). These services
make it easy for even novice attackers such as script kiddies to
develop and spread malware over the internet [6]. According
to the AV report [7], 350,000 malware are detected every day,
7 million malware attacks were reported in 2019, and the total
number of malware worldwide will exceed 1.13 billion by
the end of 2020. Most of the malware files are propagated
through the internet and most of the new malware is malware
variants [1], [8], [9]. Malware authors increase the complexity
of the previous malware files and generate new variants to
evade detection. Many malware variants are generated using
sophisticated tools including code-reuse techniques, artifi-
cial intelligent-based tools, obfuscation techniques, encryp-
tion, and packing among many others are used by malware
authors to hide the malicious characteristics of the malware
and make the analysis difficult [9], [10]. Malware variants
are ranked as the major emerging threat faced by internet
security [11]. Therefore, detecting malware variants is crucial
to safeguards cyberspace users and reduce the number of
victims of cyber-attacks [5].

Malware analysis can be performed using either a static or
dynamic analysis approach. In static analysis, the malware
features are extracted from the portable executable file (e.g.,
EXE or DLL file in the Windows operating system) without
executing the malware file. However, static analysis is vulner-
able to code obfuscation, packing, and malware authors. That
is, malware authors use obfuscation and packing techniques,
or more advanced approaches such as polymorphism or
metamorphism to generate malware variants to evade detec-
tion [12]. Meanwhile, in dynamic malware analysis, behav-
ioral features are extracted by executing the malware and
monitoring its interaction with the computer system. Unlike
the limitation of static analysis in the detection of obfuscated
malware and malware variants, in the case of dynamic mal-
ware analysis, it is difficult for the malware author to hide
the actual malicious intent of the malware variant. That is,
the newly emerging malware variants still have the same
malicious behavior as the original malware [1]. Accordingly,
many researchers use a dynamic analysis approach to
extract the behavioral characteristics of the malware

VOLUME 9, 2021

variants [9], [10], [12]-[14]. Some researchers [14] combine
the features extracted from both static and dynamic analysis
to complement each other’s limitations. More specifically,
to identify the malware that exploits the vulnerability of the
dynamic analysis environment against anti-malware analyst
techniques.

Two approaches have been used to detect malware files
in the literature, namely, signature-based and behavioral-
based [39]. Signature-based detection aims at detecting mal-
ware files by matching the file signature (hash value) of
the subject malware file with one stored in the malware
hash database. Although such an approach can thwart many
malware files, it is ineffective for new malware variants
or zero-day attack types. These methods change the binary
of the malware, and thus its hash, but leave its behavior
unmodified. Behavioral-based malware detection has been
extensively studied in the literature [13], [15]. Machine
learning techniques were used to train a model based on
features collected from dynamic analysis. Although such
approaches show their effectiveness in detecting malware
variants comparing with the static analysis-based features,
existing behavioral-based solutions suffer from two main
limitations. First, it needs domain experts and feature engi-
neering expertise for extraction and selection of the signif-
icant features which is time-consuming and the extracted
features may not perfect due to the limitation of human
capabilities and the ever-changing malware variants nature.
The deep learning approach, which has become the recent
trend for constructing malware detection models, can extract
the features automatically and more effectively than the
human crafted-based features if enough data were introduced
to the model for learning [1]. Second, existing machine
learning-based approaches including deep learning assume a
static relationship between the input features and the output
class. That is, the mapping between the input and output is
considered stationary which does not hold for the evolved
nature of malware and malware variants. The detection model
becomes obsolete and the weights of the features drifted grad-
ually with the malware variants and suddenly drifted with new
types of malware. Such a problem renders existing solutions
that were developed for malware detection ineffective for
detecting future malware and malware variants.

Some existing approaches suggested overcoming such a
problem by retraining the model from scratch once new
malware samples are introduced. However, such an updating
method has two main limitations. With the huge amount
of malware files research is needed to identify when such
a model should be retrained. Late training left the system
vulnerable to new attacks while early retraining is inefficient
way due to the enormous amounts of malware files scanned
every day. Thus, existing malware detection solutions are
ineffective to detect malware variants due to the inconsid-
eration of the concept drift caused by the malware variants.
Therefore, an effective and efficient updating strategy of the
malware detection model is needed to improve detection
performance.

97181

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

To this end, this study proposes an Adaptive Behavioral-
Based Incremental Batch Learning Malware Variants Detec-
tion Model using Concept Drift Detection and Sequential
Deep Learning (AIBL-MVD). The proposed model contin-
uously monitors the concept drift and accordingly is updated
using a dynamic batch-size buffer containing behavioral fea-
tures extracted from the API calls sequence. The model is
updated when the concept drifts only to avoid unnecessary
updates that increase the model complexity and affect the
detection performance.

Our work makes the following original contributions:

1) An adaptive batch window size incremental deep
learning model has been designed and developed for
detecting malware variants. The detection model is
incrementally updated based on concept drift detection
and API traces extracted from both new and old mal-
ware samples to avoid the forgetting behavior of the
new model.

2) An approach based on the sequential deep learning
model is proposed to extract the representative hidden
features automatically according to a given malware
variant API’s sequence. Sequential deep learning can
effectively learn to recognize the behavioral patterns of
the malware samples.

3) A concept drift technique has been designed and devel-
oped using the statistical process control method to
monitor and detect the concept drift utilizing the clas-
sification error rate. That is, once concept drift is
detected, the model adapts to the change by perform-
ing incremental learning without forgetting its existing
knowledge.

4) Extensive experiments were conducted to evaluate and
validate the proposed model. The results show that
the proposed model achieves an average of 99.41%
detection accuracy and a lower updating frequency
of 1.35 times per month.

The rest of the paper is organized as follows. The
related work is presented in Section II. The proposed adap-
tive behavioral-based malware variants detection model is
described in Section III. The experimental setup is described
in Section IV. Section V presents the results and discussion.
Section VI concludes this study.

Il. RELATED WORK

The fight against malware seems to be a never-ending and
cyclical arms race: as security analysts and researchers
improve their defenses, malware developers continue to inno-
vate, find new infection vectors and enhance their obfus-
cation and anti-malware analysis techniques [2]. There are
two approaches to analyze the malware samples in the lit-
erature: static or dynamic. In the static approach, the mal-
ware features are extracted from the physical structure of the
malware files such as the format of the malware binary file
such as the portable executable file (or EXE files and DLL
files in Microsoft Windows platforms). Examples of static

97182

features that are extracted from malware samples include
the operation codes [11], the imports [16], the strings [17],
function call graph [18] among many others. Although
statistical-based features play important role in identifying
malware, such features are ineffective for detecting malware
variants where the malware authors use obfuscation tech-
niques to evade detection.

Dynamic analysis, on the other hand, focuses on extract-
ing the behavioral features. The analysis is conducted while
the malware is running and its behavior is recorded. Many
researchers argue that dynamic malware analysis is more
effective than static analysis for detecting malware variants.
The idea is that malware authors can use polymorphic and
metamorphic techniques to mutate the code of the malware
samples to circumvent the detection yet the malicious behav-
ior is difficult to hide. That is, the original functionality
of the malware is intact. Accordingly, dynamic analysis is
the typical approach for malware variants detection. A wide
range of features can be extracted from dynamic analysis
including API call sequence [16], [19], network-based behav-
ior [20], [21], file access control behavior [22], memory struc-
ture [23], CPU registers values [24], and Windows registry
keys [25].

In both dynamic and static analysis, malware analysts use
the extracted features to construct an automated solution
to identify malicious software. Many techniques have been
used for constructing malware classifiers such as machine
learning, statistical and rule-based techniques [2], [6], [23].
Machine learning techniques were the most widely used in
the literature. Two approaches were commonly used in the
literature to construct the detection model: signature-based
or behavioral-based. In the signature-based approach, a
signature is created for each malware file using crypto-
graphic algorithms such as hashing programs such as the
Message-Digest Algorithm 5 (MDS5) and the Secure Hash
Algorithm 1 (SHA-1). The detection is performed by match-
ing the known signature or hash of malware files with
the hash of the new programs. Traditional anti-virus pro-
grams maintain a database that contains signatures of all
known malware. The signature-based approach is suitable
for detecting known malware but it is ineffective for new
malware or malware variants. Some researchers construct
even more advanced signatures that can be generalized for a
group of malware. That is, utilizing features extracted from
static analysis, a common attack pattern or attack signa-
ture is extracted to identify a group of malware that have
similar characteristics. Such an approach is more effective
and efficient than the single signature; however, it also fails
to identify the new attacks and malware variants. In the
behavioral-based detection approach, both static and dynamic
features were used to construct a model that can distinguish
between benign and malicious programs, however, the model
constructed using dynamic analysis is more effective for
detecting malware variants due to the difficulties of hiding
malicious behavior of the malicious program in dynamic
analysis.

VOLUME 9, 2021

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

IEEE Access

Al-rimy, et al. [4] introduced an incremental bagging
method to reflect the progression of the malware files in the
early stages of their execution. Then, the most informative
features for each subspace were selected to build a pool of
base classifiers. Finally, the detection of malware was con-
ducted using a majority voting strategy. This method shows
its effectiveness in the detection of ransomware samples
in their early stages. However, the training was conducted
offline where the unknown malware and malware variants
were not considered. Lee, ef al. [26] used the batch learning
method to update a malware classifier constructed using the
Support Virtual Machine (SVM) technique. However, it is not
clear how and when the model was constructed, trained, and
updated. Nevertheless, retrain the model from scratch is the
main drawback of their work.

Concept drift handling was intensively studied in the lit-
erature in many fields including and not limited to fraud
detection, anomaly detection, spam detection; however, sur-
prisingly, the impact of such a problem has not yet been
investigated in depth in the malware analysis field. Mal-
ware authors continuously try to drift the concept to evade
detection by creating malware variants. Singh, et al. [27]
propose a technique for tracking concept drifts using static
features and variable sliding windows. The cosine similarity
was used to measure the temporal change of summarized fea-
tures extracted from sample source codes. These summarized
features were called meta-features which include the n-gram
unique terms and the terms with the highest frequency. The
samples were ordered based on their timestamps to reflect the
temporal change in the feature’s changes. The idea was that
the similarity will degrade over time. However, the proposed
technique has three main drawbacks. First, the study consid-
ered static features only which is subject to obfuscation by
malware authors. That is, the actual malware features may
not be extracted. Besides, the study was focused on particular
malware families where malware families are evolving and
new families occur. Second, no online training was proposed.
All the studied classifiers were constructed offline. Third,
the study is limited to three types of malware families which
may not be generalizable to other families.

An ensemble learning-based malware mitigation algorithm
was proposed by Wang, et al. [28] to demonstrate the concept
drift problem in malware analysis. The statistical p-value was
introduced which combines the vertical life-cycle algorithm
with the horizontal traffic similarity algorithm for correla-
tion learning and gradual concept drift detection. However,
the study focuses on extracting trends of single concept drift
in a particular malware attack which may not be generalizable
for other types of malware. Also, the detection model was
constructed using offline training, thus no model update was
considered once a drift is detected.

A two-tier architecture malware detection was proposed by
Yan, et al. [29] in which an incremental learning method was
devised to update the model online. The model consists of
two layers one for premilitary detection using a random forest
algorithm and the second layer for enhancing the detection by

VOLUME 9, 2021

training a classifier based on a dataset constructed from the
wrongly classified samples or the samples with low detection
confidence in the first layer. A random forest algorithm was
also used for training in the second layer. The model is
updated by retraining the two layers from scratch utilizing the
new samples and the final model is constructed by combining
the decision trees that achieve high classification accuracy.
There are two main shortcomings of this model as follows.
The power of diversity in that random forest may be violated
when some trees that have important features are deleted dur-
ing the updating phase. In most cases, the malware datasets
are imbalanced thus the trees which contain the minority
may be deleted which may cause a catastrophic forgetting
problem. Also, the update is conducted using batch training
where the time of updating will last a long time, meaning
the model will not be updated for a long time. Moreover,
the model is blindly updated without detecting the concept
drift which is unnecessary and may degrade the detection
accuracy.

Dai, et al. [30] proposed malware detection based on
ensemble learning. Multiple features were used to construct
the ensemble model. API call sequences were combined with
hardware features extracted from the performance counter
and memory dump. The random forest algorithm was inte-
grated with the multilayer perceptron to train the proposed
model. Although this model shows its advantage compared
to the other tested models, the dynamic change in malware
variants features has not been considered as the model will
become absolute over time. Table 1 depicts the drawbacks of
the existing related work.

To sum up, most of the existing malware detection models
were constructed based on statistical estimation with the
underlying assumption of a stationary population of the mal-
ware data. The relation mapping between input features and
the class label was always assumed static which does not
hold for malware samples. The malware authors continuously
change their malware structures to evade detection which ren-
ders the malware population nonstationary i.e., changes over
time. The nonstationary population is called concept drift
in machine learning [31]. Therefore, the mapping between
inputs and outputs should be updated as new malware sam-
ples or variants are introduced or whenever the relation
change. However, concept drift mitigation in the malware
domain was not investigated in-depth in the literature. Most of
the existing solutions are either based on one-time training or
based on model retraining which is neither effective nor effi-
cient for the ever-evolved malware. Similarly, instance-based
incremental learning will suffer from updating overhead and
catastrophic forgetting. Thus, in this study, an Adaptive Incre-
mental Batch Deep Learning model for detecting malware
variants (AIBL-MVD) based on the API call sequence to
accommodate the new malware variants is introduced. Unlike
previous models which assume a static relationship of class
features and stationary distribution of feature representations,
the proposed model can adapt to the change in malware char-
acteristics by firstly tracking the malware behavior in terms of

97183

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

TABLE 1. Issues found in the related work.

Author Features Method Issues
Al-rimy, et al. [4] API calls — Incremental Bagging with Random e Concept drift was not considered.
Dynamic Forest o It can’t cope with malware variants and zero-day attacks
Analysis due to offline training.
Lee, et al. [26] APl calls — Support Vector Machine (SVM) o Updating through retraining from scratch
Dynamic
Analysis

Singh, et al. [27] API functions —

Static Analysis

Relative temporal
cosine similarity

Wang, et al. [28] Network Traffic—
Dynamic
Analysis
Yan, et al. [29] Network Traffic—
Dynamic
Analysis

Forest

Dai, et al. [30] APl calls +
Memory Dump +
Performance
Counters

Perceptron

similarity -

The statistical P-value

Incremental learning with Random

Ensemble Learning by integrating
Random Forest and Multilayer

Static analysis can’t effectively reveal the actual malware
behavior

Offline model training

Limited to specific families

Assume the Concept drift has a stationery trend
No model update was proposed
Limited to botnet detection only

Regular retraining from scratch contains the concept drift.
High false alarms due to the catastrophic forgetting
problem.

Assume static relationship between input features and
class label
® No model update is proposed

its API call sequence. Such features restrict malware authors’
ability to obfuscate malware behavior. The evolved change in
malware behavior is also captured and the necessary model
updating is conducted through monitoring the concept drift
and accordingly update the model through incremental learn-
ing. If the current concept deviates much from the previous
one, then the model is incrementally updated. Two types of
updates are conducted: a minor and major update. In the
minor update, a small batch size is used while in the major
update the larger batch size is used. The larger batch is
collected from new and old malware samples to include the
new malware variants features and reduce the problem of the
catastrophic forgetting of incremental learning. The detailed
methodology conducted for constructing the proposed model
is discussed in the following section.

Ill. THE PROPOSED AIBL-MVD MODEL

In this section, the proposed Adaptive Incremental Batch
Deep Learning model for detecting malware variants
(AIBL-MVD) model is presented and discussed. The
AIBL-MVD model has been designed in three phases,
namely, base classifier construction, online operation, and
incremental learning phase. Figure 1 presents the architecture
of the proposed model and the colored arrows show the
flow of each phase. In the first phase, the base model is
trained using sequential deep learning. The second phase is
the classification and monitoring phase. The third phase is the
detection of concept drifts and the incremental batch learning
phase. In Figure 1, the black, red, and blue solid arrows refer
to offline model construction, the online classification, and
incremental learning, respectively, while the dashed arrows
refer to the base classifier that is constructed in the offline
phase.

97184

A. BASE CLASSIFIER CONSTRUCTION PHASE

This phase consists of five main steps as follows.
Feature extraction, features representation, features selection,
imbalanced data resampling,and training the base classifier.

1) FEATURES EXTRACTION METHOD

Malware features can be extracted through either static
analysis or dynamic analysis (or through a combination of
both types of analysis). Because the representative malicious
features that are extracted from the static analysis can be
obfuscated. In this study, the features are extracted through
dynamic analysis. The idea behind selecting dynamic anal-
ysis is that the behavior of the malware variant does not
change much compared with the original malware behav-
ior if the malicious payload is executed. Dynamic analy-
sis methods are effective for detecting obfuscated malware
because it is difficult for malware authors to hide the actual
intent of the program. During the analysis, several types
of data can be collected such as API calls, memory, CPU
registers, processes, file system, registry, and network traffic.
The API calls sequences are the most type of data that have
been used for monitoring malware behaviors in the previous
malware analysis. Therefore, the malware sample, usually a
Portable Executable file (or the.exe file), is firstly executed in
a controlled environment to obtain its real behavior. The API
call sequences invoked by malware during the execution are
used to represent malware behavior.

The API calls of each malware are ordered sequentially
according to their appearance during the execution and used
to represent malware behavior. Because the API calls can be
used by either malware and benign samples, short sequences
of the API calls are extracted using the n-gram model with
n = 2 to increase the distinguishability between benign and

VOLUME 9, 2021

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

IEEE Access

Base Classifier Online Operation

Incremental Base Classifier

Construction Phase Phase Learning Stage — = lerig SEs i Era peei
Phase
Dynamic Dee
B Analysis Raw N-Gram Training and P
o APl Sequence s Learning
EXE > —» Features Extraction Features Validation Training/
Cuckoo [P Extraction [Extraction Dataset o
Validation
Sandbox I
/_L\ v |
" TFIDF I
Labeled Features Feature Data
» VirusTotal Label and Date—— . . = Balancin |
Dataset Representati e Selection
on g |
"—_____—___,_/
| he
A 4 l
e® Deep Learning h
Error Rate | (Online _ _0 Learning
| calculation Operation) State
Malware/Benign r'y
7y
Model Update 8y
HeGi) + Tete) > Goc | O
Out Incremental
In Drift Detection? of - Learnin
Control Control g
DDurConn'oi 4

4

Next Instance
Classification

Soe > Moty + Totiy > Oy Clean The Buffer

Wf;c‘gg—b Instances in
the Buffer
D

warning

FIGURE 1. The architecture of the proposed malware variants detection model (AIBL-MVD).

malware files. Thus, the features vector consists of a collec-
tion of a single API call and API call sequence represented
by two API calls that are occurred subsequently.

2) FEATURES REPRESENTATION TECHNIQUE

As the features extracted from binary files are in a tex-
tual form which are the names of the API call functions,
the textual data must be converted to numerical values to
be ready for pattern extraction and classification. Therefore,
the Term Frequency - the Inverse Document Frequency tech-
nique (TF-IDF) is used to convert the textual data to numer-
ical representation. TF-IDF is the statistical measure used
to calculate the cross-entropy of the features between the
malware sample and the population. Term frequency is the
number of times that an API-based feature occurs in a mal-
ware trace file (or benign trace file). Meanwhile, the inverse
documents frequency is the inverse number of times an API
call function occurs across the entire dataset samples. IDF
measures the importance of the features in the dataset by
increasing the weights of the rare API call in the datasets
and diminishing the API call that frequently occurred in the
dataset. Accordingly, each API sequence was used as the
features while their corresponding TF-IDFs values were used
as numerical representations.

N
w (apis) = if (apis) -logm (1

VOLUME 9, 2021

where w (apiy) is the TF-IDF value of the API sequence api;,
tf (apiy) is the term frequency, N is the number of samples in
the dataset, and df (api;) is the document frequency.

3) FEATURES SELECTION TECHNIQUE

The purpose of the feature selection is to reduce the dimen-
sionality of the feature space. Although deep learning models
can extract the hidden malware features, online learning can
tend to consume the resources of the host machine leading
to undesirable effects on the performance such as power and
memory consumption problems. Therefore, it is crucial to
remove redundant and irrelevant features and select only the
most significant features. In this study, the eXtreme Gradient
Boosting (XGBoost) algorithm [32] has been used to score
the features according to their importance in a given clas-
sification task. XGBoost is a tree-based ensemble learning
algorithm that uses Gini importance to measure the reduction
of node impurity. Gini importance, also known as the Mean
Decrease in Impurity (MDI) evaluates the feature based on
the sum of the number of splits that include the feature
across all trees. The optimal features were selected by the
trade-off of the classification performance and the number
of the selected features. Both high performance and fewer
features are desirable. When the classification performance
decreases, more features are included until the performance
becomes stable.

97185

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

4) IMBALANCED DATA RESAMPLING METHOD

One of the important issues of malware classification is the
class imbalance problem [12]. Most of the available datasets
are biased to malware samples due to the availability of huge
malware datasets samples and the lack of existence of the gold
standard benign dataset [2]. In this study, the minor class is
identified in the offline and online dataset, and accordingly,
the minor class (the benign samples) is resampled using the
synthetic minority oversampling technique SMOTE [33].
The artificial instances created by the oversampling lead to
improve classification accuracy. According to Fitkov-Norris
and Folorunso [34], SMOTE synthetic oversampling expands
the problem space and accordingly offers better performance
than the original data.

5) CONSTRUCTION OF THE BASE CLASSIFIER

(OFFLINE OPERATIONS)

The base classifier has been constructed offline using the deep
sequential model. A sequential model was used to capture
the ever-evolving nature of the malware variants. Sequential
deep learning was selected as the base classifier because
it can effectively learn to recognize the behavioral patterns
of the malware samples. It also can effectively extract the
representative hidden features automatically according to a
given malware variant API’s sequence. The date when the
malware sample occurred is firstly identified and included in
the training set, as the malware file timestamp that is available
in the header of the binary file (PE header) may not be
accurate or obfuscated by the malware author. The date when
the malware was first seen is obtained from the virustotal web
portal (https://www.virustotal.com/). The malware sample is
submitted to the virustotal web portal and the first seen is
extracted and included in the dataset. Then, the malware files
were sorted according to their occurrence date in the dataset.
Then, the dataset is divided into two subsets. The first subset
was used to construct the base classifier while the second
subset was used for online operation (for the incremental
learning). The first subset contains the malware that occurred
within six months of the first year in the dataset. This subset
(the oldest subset) was further divided into two sets training
and testing sets. The training set was used to build the base
classifier and the testing set was used to evaluate the classifier
accuracy. The learning state is frozen to continue learning the
model if the new malware samples cause concept drift. The
base classifier is then trained based on the data collected from
the oldest subset.

Dran = {(x?3@) lic ..} @
ho = train (Dyqain) 3)
The trained model hy, its training state {¢, w}(, and testing

error summary {{., 0.} is kept to be used for the online
classification and monitoring phase.

B. CLASSIFICATION AND MONITORING PHASE

(ONLINE OPERATIONS)

After training the base classifier kg, the test is conducted to
create a baseline to be used in the concept drift detection

97186

phase. Let Dy be the test data as follows.
Dot = {(x@y?) lie (1..... 1})
The predicted class 3 can be obtained as the following.
Vx D € Dy - 59 = hy (x(i)) 5)
The testing error e can be calculated as the following.
Viefl,...,k}e® =350 —y® .y 0,1} (6)

The baseline concept characteristics of the model %y can
be created by calculating the (), and oy which are the
average and standard deviation of testing classification error
e respectively as follows.

k i k 2
poy = 2=t [T
k k—1

C. CONSTRUCTION OF THE INCREMENTAL MODEL
(ONLINE LEARNING)

In the absence of concept drift, the distribution p(y|x) learned
in the offline operation remains stationary. Thus, the learned
relationship mapping between input x and class output y
is fixed and the classifier that is trained on an old dataset
continues relevant for new samples. However, with the con-
cept drift occurring in the malware due to the malware vari-
ants, the performance of the base classifier degrades as new
malware variants are introduced. The base classifier must
learn how to classify the emerged malware variants. Nei-
ther batch learning nor instance-based incremental learning
can address the problem in the malware variants domain.
Malware variants can be a mutex of older ones. With such
recurrent behavior of Malware variants, both old and new
malware characteristics can present due to the mutation,
and parents’ genes can reoccur. Unfortunately, the fixed
batch-based incremental learning [26] may need a long time
to be collected, which depends on the size of the batch,
and the model must be constructed from scratch which is
an inefficient updating approach. In contrast, instance-based
incremental learning [29] can be timely updated. However,
incremental learning suffers from the catastrophic forgetting
problem. The learned mapping between the input feature
and class label drifts and the model becomes biased to new
malware trends. Therefore, in this study, incremental learning
without forgetting strategy is developed to address such an
issue. The learning is conducted online based on the proposed
concept drift detection techniques described in the following
sections.

1) CONCEPT DRIFT DETECTION

The concept drift is defined as the phenomenon when the
statistical properties of the dependent variable change over
time [35]. This is the case in malware instances, where
the representative features of the malware samples change
with time due to the use of code obfuscations techniques by
malware authors. Therefore, the Statistical Process Control

VOLUME 9, 2021

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

IEEE Access

(SPC) technique is used to detect the concept of drift and
activate incremental learning. The actual class label in binary
classification is either zero or one. However, the output of the
classification is a value between zero and one. When the value
is approaching zero, then the predicted sample is assumed
benign. In contrast, when the prediction value approaches
one, the predicted sample is considered malware. In the case
of an incorrect prediction, the error is calculated based on the
difference between the actual class label and the predicted
one.

Three states can be defined based on the distribution of
the classification error: in-control state (or control level),
warning level state, and out of control state. In the in-control
state, the average error rate should remain within the known
error distribution. When the mean of the prediction error
strays outside the known distribution, then this state is called
the warning level. In the warning level state, the malware
samples that occur in this period are collected and stored
in a small buffer size and used for incremental learning.
The incremental learning is continuous with small window
sizes and small batches until the error decreases as it was
at the control level. Once the mean of the error rate devi-
ates much from the reference error that is obtained before
the warning level then this state is called out of control.
In this case, a larger batch size is used for batch incremental
modeling. The batch contains the misclassified samples that
arose during the warning level until the current instance
when the out-of-control error occurs. The model is incre-
mented using a large batch, in this case, to avoid the bias
that may occur due to small size incremental batch learning.
If the out-of-control alarm occurred, an old sample collected
from previously seen malware is mixed with the new batch
to avoid the catastrophic forgetting problem of incremental
learning.

To detect the concept drift, let ¢/ be a variable that con-
tains the classification error of instance i and ., and o, is
its incremental average and the standard deviation is taken
within sliding window w. Two types of change are consid-
ered: light deviation (warning level) and heavy deviation (out
of control level). The warning level is detected according to
the following equations.

First, the incremental average () for each time epoch, k
is computed as follows.

i) _
e Me(k—1) 0)
<«~— Ht+t— e 8
He(k) < Me(k—1) . E (®)

Then, the incremental variance S) for each time epoch,
k is computed as follows.

Setry < Sete—1)H(€? — pew—1)€? — tege—1) 9)

Next, the standard deviation o) is calculated for each
time epoch k as follows.

Oek) < 4/ — (10)
n

VOLUME 9, 2021

Thus, the warning level §,, and out of control level
8oc thresholds are calculated as the following equations,
respectively.

By < e X XOek)s Boc < Me©) + B X Oery (11)

where o« is set to two and B is set to three. The warning
level mode is raised if 8oc > ek) + Oery > &y While
the out-of-control level is raised if ek) + Tek) > Ooc 1S
satisfied or the buffer Dy, 4ping specified for warning level is
full. The case where fiek) + Tek) < 8y is called in control
level. The incremental batching learning in both warning and
out-of-control levels is explained in the following section.

2) INCREMENTAL BATCH LEARNING

Let Dyqming be a dataset that contains the features collected
during the warning level of malware detection online oper-
ation, L is the set of the layers in the model hg and x® g
the features vector of sample i and y?is the class label of
that sample as it is assigned after manual analysis. Let @
be the predicted class of the new samples as predicted by
the last trained/incremented model hg. Let 0y is a vector
that contains the weights of the neurons in each layer (/) and
learning rate (o). Then, in the warning level (minor update),
the weights 0y is updated according to the following for-
mula.

vx® Dyarning and | € L do
Oy < Ok—1 — a(e(i)).x(i) (12)

Similarly, in the out-of-control level (major update),
the weights 6, is updated is calculated using the same
approach. The only difference is that the batch D, is used
instead of Dyaning. Doc contains all the samples collected
during the warning level Dyyqming as well as samples selected
from old seen data D,;4. The reason for using the old data is
to reduce the impact of the forgetting behavior of incremental
learning. Algorithm 1 in Figure 2 shows the pseudocode of
the proposed concept detection and incremental batch learn-
ing techniques.

IV. PERFORMANCE EVALUATION

In this section, the process of evaluation of the proposed
model is described. We describe the experimental environ-
ment setup, the dataset used, and the performance metrics.

A. EXPERIMENTAL SETUP

Malware behavior in terms of API calls and sequences are
extracted in runtime from a dynamic analysis environment.
Because running the malware can bring danger to the analyst
operating system and network, an isolated and controlled
virtual environment was constructed for this study. All the
experiments in this study were carried out in a sandbox
environment with host computer CPU Intel (R) Core i7 @
3.20 GH, the RAM is 16.0 GB and the host operating system
is Linux Ubuntu 18.04, and Windows 7 guest operating sys-
tem was used as a victim machine. Sandboxes are tools that

97187

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

Algorithm 1: The proposed Concept Drift-based Incremental
Learning Algorithm

Initialization: h,, last trained classifier, x® Extracted features, He(0)

average of testing classification error, g,;) deviation of testing

classification error, D,;4 old samples

1: While True Do

2:V xD € Dpgeene Classify x@ using hg, 7@ « hy (x®)

3: Get actual class y® and calculate the error e®,e® «y®
— }7(1')

//Concept — Drift Detection Using SCS Technique

4: Calculate the incremental average

D sy .
He(k) < He(k-1) T 7: 2y e®,

5: Calculate the incremental variance
Sety < Seqk-1) + (€9 — poe-1) (€D — poe—1y)
6:Calculate the standar deviation

Setk)
n

Oe(k) <

7:Let 8, < Ue()F X X Op(r)
8:Let 85 « fheqoy + B X Ty

// Warning level
9: if 8oc > Hery T Ter) > O then
append

10: Dwarning D (x(i)v y\(i))

11: VxD €Dyppencand ! € L:x® do
12: Oy < Ox-1 — a(e®). x®
13: Store learning,ysser < Ok

14: Update (hy)

15: He(0) < He(k)y> Se(o) < Sek)

// Out of Control level
16: else if peky + Oeqry > O OT Size(Dwaming) > T then

17: DOut‘Control « Dwurning U Dold)

18: Vv xD € Doyecontrorand I € L : x® do
19: Oy < Ok—1 — a(e®). x®

20: Store learningpyysrer < Oy

21: He(0) < He(k)> Se(0) « Sek)
22: Update (hy)
23: Reset Dwarningv DDutCuntrul

24: endif
25: end

FIGURE 2. The proposed concept drift-based incremental learning
algorithm.

are commonly used by malware analysts and researchers to
conduct dynamic analysis [36], [37]. They provide a means
of detecting windows APIs invoked by a malware instance at
the run time in a process called API hooking and DLL injec-
tion [38]. Cuckoo sandbox tools were used with the virtual
box to create an isolated controlled virtual environment for
Malware analysis.

The sandbox architecture was configured according to the
guidelines presented in [39]. In the virtual machine, the guest
Windows 7 operating system was installed and a configured
and clean slate screenshot was created. In the guest operating
system where the malware samples were run, to make the
guest operating system more realistic to the evasive malware
sample, many applications have been installed and some
dummy files and folders have been created and internet access
has been allowed as well. As shown in Figure 3, malware

97188

Label: Malware

Host Ubuntu OS/ With
@ Cuckoo Sandbox'%
@ — Guest 0S/ With

: Cuckoo Agent

A £¥ Windows
EXE

4

FIGURE 3. Sample files submitted to the sandbox.

and benign instances are submitted to the cuckoo sandbox in
the host machine. The cuckoo agent in the guest operating
system executes the submitted binary files and hooks their
API calls and process. Each sample in the dataset is run one
time. After the API calls and the process are hooked, they are
timely dumbed to XML type trace files. The cuckoo agent
sends the trace file back to the cuckoo instance in the host
machine through the local network between the host and guest
machine. Thus, each binary sample in the dataset has a ded-
icated trace file containing its API calls behavioral patterns.
The API calls are used to examine the potential features of
the malware. For each submitted malware or benign file for
analysis, the virtual machine is restarted and the original
operating system is restored to start the new analysis with
a clean version of the guest operating system (clean slate).
Finally, the API call sequences were extracted from the XML
reports using Python programming packages.

B. DATASET DESCRIPTION

The dataset that was used in this study consists of Windows
binary files belonging to malware and benign portable exe-
cutable programs. The malware binary files were down-
loaded from the public repository Vxheaven (https://www.
vxheaven.org). Vxheaven dataset is a public repository that
is common used by previous malware analysis studies such
as in [14], [36], [37], [40]-[42]. The malware dataset con-
tains different types of malware families such as trojans,
adware, backdoors, ransomware, viruses, and worms among
many others. The Windows benign binary files were collected
from the fresh installed Windows operating system. A total
of 19,076 malware samples were randomly selected from
the Vxheaven dataset. Thus, the used dataset in this study
consists of 23,070 samples, 19,076 are malware samples and
3,994 are benign samples. All malware files were scanned
using VirusTotal service which is a popular malware scanning
web service to confirm its class label and extract information
related to its first occurring. VirusTotal uses 72 antivirus
software and a dynamic sandbox environment to scan the
submitted files [36], [37], [43].

The instances of the dataset were sorted according to their
created times extracted from malware binaries and confirmed
by the VirusTotal web portal. The date when the malware file
was first seen by the VirusTotal was considered. Then, for test
purposes, the dataset was splitinto 11 subsets each containing
the malware that occurred within 6 months of each year.
Table 2 shows the datasets used in the experiment. Because

VOLUME 9, 2021

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

IEEE Access

TABLE 2. Description of the used dataset.

Datasets Year Instances Malware Benign
DS All instances 23070 19076 3994
Ds1 <2009 1864 932 932
DS2 2010-1 3092 1546 1546
DS3 2010-2 4120 2060 2060
DS4 2011-1 6604 3302 3302
DS5 2011-2 5804 2902 2902
DS6 2012-1 7832 3916 3916
DS7 2012-2 4660 2330 2330
DS8 2013-1 2564 1282 1282
DS9 2013-2 1444 722 722
DS10 2014-1 1364 682 682
DS11 2014-2 1364 547 547

the benign instances are lower than the malware instances,
the benign sample has been oversampled using the synthetic
minority oversampling technique SMOTE [33] and a random
subset equivalent to the malware subtle size was used in each
splitter dataset as shown in Table 2.

C. PERFORMANCE METRICS

Four main performance evaluation measures were used to
evaluate the effectiveness of the proposed model. The detec-
tion accuracy (ACC), the false positive rate (FPR), detection
rate (or recall) (DR), and F-measures (F1). The detection
accuracy (ACC) is the percentage of the benign samples
correctly classified to all the classified samples. The detec-
tion rate (DR) is the fraction of the malware samples that
are correctly classified. The false-positive rate (FPR), is the
percentage of the instances that are incorrectly classified as
malware samples. F-measures (F1) is the harmonic mean and
calculated as in Equation (13) where the TP is the number of
malware samples that are correctly classified, FP number of
benign samples that are wrongly classified, and FN number
of malware samples that are wrongly classified. The perfor-
mance of the proposed model was also evaluated using three
additional measures, namely the average classification error,
updating frequency, and the average update time. The average
classification error is the root mean square error where the
error is the difference between the class label and the score
calculated by the activation value of the NEURON in the
output layer of the proposed model. The updating frequency
is the number of times the concept of drift detection invoked
incremental learning. Finally, the average update time is the
mean of the elapsed time during updating the model.

2xTP

Fi =
2 x TP+ FN + FP

13)

V. EXPERIMENTAL RESULTS

We carried out several experiments to evaluate and vali-
date the components of the proposed model including the
feature selection, base classifier selection, and incremental
learning. The API calls sequences that were extracted from
the dynamic analysis and enriched by the n-gram model,
were introduced to the feature extraction method to reduce

VOLUME 9, 2021

the complexity of the detection model concerning the time
and resources. The selected feature technique XGboost [32]
which uses the Gini index to select the important features for
the classification is compared with two widely used feature
selection techniques for malware analysis (mutual informa-
tion and chi-square feature selection methods). Figure (4)
presents the results of the comparison. Several sets of fea-
tures were experimented ranging from 10 best features to
200 features. The XGboost-based feature selection technique
produces the best accuracy with the smallest number of fea-
tures. Thus, the 100 best features suggested by XGboost were
selected to train the base classifier.

Features Selection

-5 R

0 20 40 60 80 100 120 140 160 180 200

Top Best Selected Features

—8—XGBOOST Chi2 =—d—Mutual Information

FIGURE 4. Comparison of feature selection techniques.

Another set of experiments were conducted to select the
base classifier. The commonly used classifiers in the exist-
ing related works were implemented in this study for the
comparison which are Support Vector Machine (SVM) [44],
Naive Bayes (NB) [45], Logistic Regression [46], Random
Forest (RF) [47], XGBoost [9] and Deep Learning (DL).
These classifiers were trained based on the dataset denoted by
DS1 in Table 1. DS1 was divided into two subsets training and
testing set. The classifiers were trained using the top 100 best
features selected in the previous experiments. As shown
in Figure 5, SVM, LR, XGBoost, and SDL achieved
higher classification accuracy than NB and RF algorithms.
Sequential Deep Learning (SDL) achieved the highest

95%
92.7% o175 92.4% 92.9%

90%

85% 83.7%

81.1%
80% I
75%
SVM NB LR RF

Classfication Technique

Accuracy

XGBOOST SDL

FIGURE 5. Base classifier selection.

97189

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

accuracy compared with the other tested classification algo-
rithms. However, these classifiers are vulnerable to the con-
cept drift and their performance degrades when tested with
newer versions of malware variants.

To demonstrate the effect of the concept drifts on the
classification accuracy, the aforementioned classification
algorithms that were trained in the previous experiments
were tested using a newer version of malware namely the
DS2 to DS10. Figure 6 presents the performance of the
tested classifiers which were trained on old data when they
were used to classify new samples. As shown in Figure (6)
the performance of all trained classifiers drops as new
malware data is introduced to the classifier. This because
the classification algorithm assumes a static relationship
between input features and class labels while it is not correct
for the ever-evolving malware variants. However, when the
malware author creates malware variants, the distribution
of the extracted features varies compared to that of the
features extracted from the original malware version causing
performance degradation.

——SVM N8 R RF =#=XGBOOST ==t==SOL

~3

Accuracy
s &
2 ®

=

07
20091 20092 2010-1 20102 201111 20112 201241 20122 20131 20132

Malware Samples Classficatopn Accuracy According to the Date of First Seen

FIGURE 6. Degrade of the performance due to the concept drift problem.

To show the improvement gained by the proposed
AIBL-MVD model, a comparison between different incre-
mental learning strategies was conducted. The results were
compared with the fixed batch incremental learning tech-
nique. Figures (7a), (7b), (7¢), and (7d) illustrate the perfor-
mance of the proposed AIBL-MVD model. The figures also
show the results of the comparison between two types
of incremental learning strategies, the fixed batch size
incremental batch learning model (IBL), and the proposed
adaptive batch size incremental model with concept drift
detection (AIBL-MVD). Different fixed batch sizes have
been experimented with 64, 128, 256, and 512. The
proposed AIBL-MVD experimented with sliding windows
size of 64 and 128 for drift detection, respectively. In the fixed
batch window size, the model is updated using incremental
learning when the number of misclassifications becomes
equal to the fixed batch size. Meanwhile, in the proposed
adaptive batch incremental learning AIBL-MVD, the model
is incrementally learned when the drift is detected and the
classification error rate deviates much from the mean error

97190

rate of the previous time when the model is incrementally
learned.

As shown in Figure (7a), the average accuracy performance
of both adaptive batch sizes with statistical processing Con-
trol based Concept Drift (SPC) with sliding window size SPC
WS=128 and SPC WS=64 outperformed the implemented
fixed batch buffer size IBL (BS=64, BS=128, BS=256,
and BS=512). Similarly, the average error rate using these
windows is lower than that of fixed batch size as shown
in Figure (7b). The average updating time is varies based
on the batch size as shown in Figure (7c). In terms of the
updating frequency, the incremental learning with a fixed
batch size has an inverse relationship with window size as
shown in Figure (7d). Meanwhile, the updating frequency of
the adaptive window size is varies based on the number of
times the concept is drifted and the type of the drift e.g.,
sudden, incremental, etc. Thus, the updating frequency of
the adaptive batch window size less than that of the fixed
size. This is because the model is not incremented regularly
as the classification error rate reaches the batch size, it is
incremented only if the drift is detected.

Table 3 lists the detailed results of the proposed model
AIBL-MVD (SPS WS=128) tested on the datasets that
were listed in Table 2. The performance of the proposed
AIBL-MVD (SPS WS=128) model in terms of the accuracy
(ACCQ), false-positive rate (FPR) and detection rate (DR), and
F measure (F1) is shown in Table 3.

TABLE 3. Detailed results of the proposed model AIBL-MVD
(SPS WS=128).

Dataset ACC FPR DR F1
Dsl 99.37% 0.94% 99.59% 99.33%
Ds2 99.36% 0.92% 99.55% 99.32%
DS3 99.35% 0.92% 99.54% 99.31%
Ds4 99.35% 0.91% 99.54% 99.32%
DS5 99.37% 0.90% 99.58% 99.34%
DS6 99.38% 0.89% 99.59% 99.35%
Ds7 99.37% 0.89% 99.59% 99.35%
Ds8 99.37% 0.90% 99.58% 99.34%
Ds9 99.36% 0.89% 99.56% 99.33%

Ds10 99.39% 0.89% 99.63% 99.40%
DSI1 99.43% 0.84% 99.62% 99.44%
Average gg 379 0.90% 99.58% 99.35%

As shown from Table 3, the overall performance in terms
of F1 is stable higher than 99% with all tested datasets.
Meanwhile, the false positive rate is under 1% and getting
decreased when the number of updates increases. The reason
for the gained improvement in the detection performance is
that the proposed adaptive batch incremental learning model
is based on the concept drift detection while the fixed batch
blindly increments the model learning when the batch buffer
is full. This makes the model biased to the new malware
variants and forgets the older versions. Thus, the accuracy of

VOLUME 9, 2021

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

IEEE Access

0.995

0.99

0.985

Accuracy
=}
o
®

0.975
0.97
0.965
0.96
IBL IBL IBL IBL AIBL-MVD AIBL-MVD
(BS=64) (B5=128) (BS=256) (BS=512) (SPCWS=64) (SPC
WS=128)
(a) Comparison in terms of Detection Accuracy
30
25
=
g 20
£
="
£
815
Qo
=
[
g
£10
g
<
5
0
IBL IBL IBL IBL AIBL-MVD AIBL-MVD
(BS=64) (BS=128) (BS=256) (BS=512) (SPCWS=64) (SPC
W5=128)

(c) Comparison in terms of Average Updating Time

0.03

0.025

0.02

Error rate
o
o
=1
w

0.01
0.005
0
IBL IBL IBL AIBL-MVD AIBL-MVD
(BS=128) (BS=256) (BS=512) (SPCWS=64) (SPC
WS=128)
(b) Comparison in terms of Classfication Error Rate
300
250

g

g

Average Updat Frequency
-
o
=]

50

0 [
IBL IBL IBL 1BL AIBL-MVD AIBL-MVD
(BS=64) (BS=128) (BS=256) (BS=512) (SPCWS=64) (SPC

WS=128)
(d) Comparison in terms of Average Updateing Frequencey

FIGURE 7. Results of comparison between the proposed adaptive batch size (AIBL-MVD) with the fixed batch size (IBL).

the model degrades with time (see Figure 6). In the case of the
concept drift, the proposed model maintains the accuracy at
its highest level. More particularly, the accuracy of the model
will be slightly degraded during the warning level and will
be boosted after updated when the batch window is full or the
out-of-control state occurs. Figure (8) and Figure (9) show the
detailed results of the performance of both fixed batch win-
dow size and adaptive batch window size in terms of detection
accuracy in Figure (8) and classification error in Figure (9).
As can be observed, in both figures the proposed concept-
drift-based adaptive incremental batch performs better than
the other fixed batch size incremental learning strategies.

As shown in Figure (8), the proposed ABIL-MVD with
both sliding window sizes of 46 and 128 samples outper-
forms the fixed incremental batch with all tested incremen-
tal batch. It can also be noted from Figure (8) that as the
batch size decreases the accuracy is improved while the

VOLUME 9, 2021

corresponding error rate decreases as shown in Figure (9).
Although this property is desirable, it is noted that the small
fixed-size incremental batch increases the update frequency
and disrupts the normal operation of malware detection.
Compared with the adaptive batch size, the number of updates
depends on the number of times concept drift is detected.
That is if concept drift is detected, the model is incremen-
tally updated otherwise no update is performed. Accordingly,
the proposed ABIL-MVD is more efficient and more practical
than the fixed batch size. Table 4 shows the computational
complexity in terms of the times the model spends for learn-
ing (the average time needed to complete the online incre-
mental learning). It also shows the average monthly update
frequency of the model in terms of the number of updates
(learning time) per month.

As shown in Table 4, the proposed AIBL-MVD, (SPC
WS=128) model needs around 12.9 seconds for each

97191

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

——IBL (BS=128)

IBL (BS=512) IBL [B5=256)

IBL{BS=84) ———AIBL (W5=64] ———AIEL [W5=128)

AH AN S S R A A MM e M e MM e Mmoo M mmomom o

FIGURE 8. Detailed accuracy results of comparison between the proposed adaptive batch size (AIBL-MVD) with the fixed batch size (IBL).

——IBL (BS=128) IBL (BS=512) IBL |BS=256)

0.0%

008

0.07

IBL{BS=64] = AIBL (WS=64) === AL (WS=128)

FIGURE 9. Detailed error rate results of comparison between the proposed adaptive batch size (AIBL-MVD) with the fixed batch size (IBL).

TABLE 4. Average learning time and frequency.

Learning Updating An update
Time Frequency (Per Every (x
On Average (Second) Month) Day/s)
IBL (BS=64) 6.68 3.89 771
IBL (BS=128) 12.90 1.94 15.43
IBL (BS=256) 24.98 0.97 30.86
IBL (BS=512) 27.64 0.49 61.71
AIBL-MVD
(SPC WS=64) 6.68 2.29 13.09
AIBL-MVD
(SPCWS=128) 12.90 1.35 22.27

update. Compared with the other tested incremental mod-
els AIBL-MVD (SPC WS=64) achieved the lowest updat-
ing time. However, AIBL-MVD (SPC WS=64) needs
2.29 updates every month (one update every 13.09 days).
That is, on average, dynamic analysis by malware analysis
experts needed to be conducted every 13.09 days approxi-
mately. Meanwhile, in the case of the proposed AIBL-MVD

97192

(SPC WS=128) model, on average it needs only a single
update every 22.27 days. Although the fixed batch size with
a small buffer size e.g., IBL (BS=64) and IBL (BS=128)
achieve similar update time with the proposed AIBL-MVD
(SPC WS=64) and AIBL-MVD (SPC WS=128), the updat-
ing frequency strongly depends on the size of the batch in case
of fixed batch size and the size of concept drift detection win-
dow (WS) for the proposed model. For example, on average
IBL (BS=64) and IBL (BS=128) need to be updated every
7.71 days (approximately every week) and 15.43 days (every
two weeks), respectively.

To demonstrate the dynamic features change due to mal-
ware variants, Figure 10 illustrates the problem of feature fad-
ing over time due to the evolved malware variants. It contains
the most important features in terms of API calls sequence
that were selected using the information gain feature selection
technique. An API calls sequence contains the names of
the API functions that have been called during the malware
run time. The figures show how the weights of some features
fade over time and some have fluctuant behavior.

VOLUME 9, 2021

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

IEEE Access

== regqueryvalueexw setunhandledexceptionfilter
i startservicew
regdeletevaluew ntopenkey
ntprotectvirtualmemory setsockopt
=== regqueryvalueexw setunhandledexceptionfilter
== getvolumepathnamew regclosekey
0.25
02
0.15
0.1
0.05

DsS1 DSs2 Ds3 Ds4 D;B Dse DS7 DSs8& Ds9

FIGURE 10. Feature fading problem due to the use of obfuscations
techniques by malware’s authors.

It can be seen from Figure 10 that the most important
feature in the dataset DS1 is “GetVolumePathNameW Reg-
CloseKey™ (f55 in DS1). DS1 contains malware samples that
are first seen in 2009. Meanwhile, in the dataset DS8 which
contains malware shambles that was firstly shown in 2014,
this feature is no longer the most important in the database.
We observed that most of the top important features selected
were extracted using the n-gram technique with n = 2.
We have noticed that the long sequences feature which is
extracted using n-gram with n > 2 is less effective than when
the n = 2. This may imply that the malware authors tend
to heavily change the follow of API calls to obfuscate the
malware. However, a deep investigation should be carried on
to study how the API call sequence change over time based on
each malware family. Such a study will be the subject of our
next publications. As shown in Figure 10, the feature weights
are changing continuously with time. Some features have
fluctuant behavior which requires that the learning model
should remember the old malware patterns because they may
occur again. However, traditional incremental learning grad-
ually evades the patterns of old malware and replaces them
with the new malware patterns which cause the degradation
of the model detection accuracy. To avoid such a problem,
the proposed model mixes the new malware samples with
older ones to evade this issue.

Figures 11, 12, and 13 show the most important features
which are selected using the XGboost feature selection tech-
nique. As shown in Figures 11 and 12, which use samples
created in 2009 and 2010 respectively, the most important
features are the feature denoted by f55 and {29 respectively,
while in Figure 13 which contains samples created in 2013,
the most important features were f29 and f55. The sets of
features extracted in each dataset vary based on the time when
the malware was first shown. This variation in the features
that represent the malware cause degradation of the detection
performance. This implies the importance of the proposed
adaptive incremental batch model to monitor the performance
and continuously adapt to this change.

VOLUME 9, 2021

Feature importance

25 T
29 &4
147 35

f158 35

62 = 7

Features

L e
=22

19

19

a3 =
fliz
2062

] 10 20 30 40 50 B0 70 80
F score

FIGURE 11. Features extracted from DS1 (2009).

Feature importance

a5 82
258 70

147 35
623 4
155 p—
152
20
18

Features

120 4
f20682
267 = 1f

20 40 60]
F score

[=]

FIGURE 12. Features extracted from DS2 (2010).

Feature importa nce

25 70

623 34
462 £l
fl47 P 26
2052 (s
32—
fl20 7]

267 1

Features

50 60 70 80

=
=
=
=1
&

F score

FIGURE 13. Features extracted from DS8 (2013).

VI. LIMITATIONS AND FUTURE WORK

This study focused on malware detection and not analysis.
That is the study assumes availability of the representative
malware variants feature of malware in the detection stage.
Moreover, the study focusses on the malware variants that
resulted from obfuscation against static analysis and does

97193

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

not have evasive behavior in which malware do not execute
their malicious payload due to the presence of controlled
environments (such as virtual machine and sandbox) or time
delay (time-based evasive) or the need of user inputs. More
particularly, it focuses on detecting malware variants that
their behaviors do not deviate much from the original mal-
ware. Evasive malware may not execute its malicious payload
if some conditions are satisfied. For instance, if an evasive
malware detects any indication that it is under analysis, then
it does not execute its malicious payload. Thus, the extracted
API sequence for the sample will not be representative. This
problem affects the detection of a zero-day attack and may
have less effect on the detection of malware variants. The
idea behind that the behavior of malware variant has sim-
ilarities with the behavior of its origin. In addition, as the
executable malware cannot hide its malicious behavior once
it is in the attack mode, a malware variant can be detected
using real-time malware detection such that proposed
in [43], [48], [49].

Although the study tried to minimize the impact of the
evasive behavior by naturalizing the operating system and
make it looks like a real user machine and shade the vir-
tual environment, such detection evasive malware behavior
needs extensive research study. To analyze the evasive mal-
ware behavior and time-based malware, in future research,
researchers may need to extract new features related to the
malware interactions with the analysis environment. Another
limitation of the proposed model is that labeled malware
samples must be available right before the model incremental
learning. One potential solution is to use real-time detection
with unsupervised predictive analysis techniques such as the
deep incremental and deep clustering algorithm [50], [51] to
improve the effectiveness and the efficiency of the malware
detection model.

VIl. CONCLUSION

In this study, the concept drift problem case by malware
variants is addressed by presenting an adaptive batch incre-
mental deep learning model for improving the accuracy of
malware variants detection. The one batch training approach
used by the existing work has been replaced by an adap-
tive batch for online learning. The API calls were extracted
through behavioral analysis and the n-gram model was used
to extract the short API sequence. These extracted features
were represented using the term frequency/ inverse term fre-
quency technique. The most important features then were
selected for classification to reduce the training time and
model complexity. The base classifier was trained based on
sequential deep learning using API call sequences extracted
from an old set of malware files. Then, an adaptive batch size
incremental learning technique was developed using statis-
tical process control to detect the concept drift and trigger
incremental learning. The catastrophic forgetting problem
was solved by mixing the older malware samples with the new
emerging versions to prevent the model from underestimating
the previous knowledge learned from older malware samples.

97194

Extensive experiments were conducted to evaluate and
validate the proposed model including procedures such as
features selection, base model classifier selection, and incre-
mental strategy investigation. The results showed that the
adaptive batch size incremental learning using the statistical
process control method achieved the best tradeoff between
accuracy and efficiency in terms of updating time and fre-
quency. The proposed adaptive batch window size-based
incremental model could be applied in different domains.
One limitation of the proposed model is that labeled malware
samples must be available right before updating the model.
Because the focus of the study was to detect malware vari-
ants due to obfuscations against static analysis, the model
does not distinguish between benign software and the evasive
malware behavior in which the malware stops executing its
malicious payload. However, once the malicious payload is
executed, the proposed model can then detect it. Currently,
we are studying addressing such issues and the use of real-
time unsupervised predictive analysis such as deep learn-
ing and incremental clustering algorithms to further improve
the effectiveness and the efficiency of the malware variant
detection model.

REFERENCES

[1] G. Xiao, J. Li, Y. Chen, and K. Li, “MalFCS: An effective malware

classification framework with automated feature extraction based on deep

convolutional neural networks,” J. Parallel Distrib. Comput., vol. 141,

pp. 49-58, Jul. 2020, doi: 10.1016/j.jpdc.2020.03.012.

D. Gibert, C. Mateu, and J. Planes, ‘“The rise of machine learning for detec-

tion and classification of malware: Research developments, trends and

challenges,” J. Netw. Comput. Appl., vol. 153, Mar. 2020, Art. no. 102526,

doi: 10.1016/j.jnca.2019.102526.

[3] X.Liu, Y.Lin, H. Li, and J. Zhang, ““A novel method for malware detection
on ML-based visualization technique,” Comput. Secur., vol. 89, Feb. 2020,
Art. no. 101682, doi: 10.1016/j.cose.2019.101682.

[4] B. A. S. Al-Rimy, M. A. Maarof, and S. Z. M. Shaid, “Ransomware
threat success factors, taxonomy, and countermeasures: A survey and
research directions,” Comput. Secur., vol. 74, pp. 144—166, May 2018, doi:
10.1016/j.cose.2018.01.001.

[5] J. Jang-Jaccard and S. Nepal, “A survey of emerging threats in cyberse-

curity,” J. Comput. Syst. Sci., vol. 80, no. 5, pp. 973-993, Aug. 2014, doi:

10.1016/j.jcss.2014.02.005.

S. S. Chakkaravarthy, D. Sangeetha, and V. Vaidehi, “A survey on malware

analysis and mitigation techniques,” Comput. Sci. Rev., vol. 32, pp. 1-23,

May 2019, doi: 10.1016/j.cosrev.2019.01.002.

AV-TEST. (2020). Malware Statistics and Trends Report. The

Independent IT-Security Institute. Accessed: Dec. 27, 2020. [Online].

Available: https://www.av-test.org/en/statistics/malware/#:~:text=Every%

20day%2C%20the%20AV %2DTEST,potentially %20unwanted %

20applications%20(PUA)

X. Liu, X. Du, Q. Lei, and K. Liu, “Multifamily classification of Android

malware with a fuzzy strategy to resist polymorphic familial variants,”

IEEE Access, vol. 8, pp. 156900-156914, 2020.

[9]1 N. Kumar, S. Mukhopadhyay, M. Gupta, A. Handa, and S. K. Shukla,
“Malware classification using early stage behavioral analysis,” in Proc.
14th Asia Joint Conf. Inf. Secur. (AsiaJCIS), Aug. 2019, pp. 16-23, doi:
10.1109/AsiaJCIS.2019.00-10.

[10] D. Du, Y. Sun, Y. Ma, and F. Xiao, “A novel approach to detect
malware variants based on classified behaviors,” IEEE Access, vol. 7,
pp. 81770-81782, 2019.

[11] Z. Cui, F. Xue, X. Cai, Y. Cao, G.-G. Wang, and J. Chen, “Detection
of malicious code variants based on deep learning,” IEEE Trans. Ind.
Informat., vol. 14, no. 7, pp. 3187-3196, Jul. 2018.

[12] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine learning tech-
niques for malware analysis,” Comput. Secur, vol. 81, pp. 123-147,
Mar. 2019, doi: 10.1016/j.cose.2018.11.001.

2

—

[6

—

[7

—

8

—

VOLUME 9, 2021

http://dx.doi.org/10.1016/j.jpdc.2020.03.012
http://dx.doi.org/10.1016/j.jnca.2019.102526
http://dx.doi.org/10.1016/j.cose.2019.101682
http://dx.doi.org/10.1016/j.cose.2018.01.001
http://dx.doi.org/10.1016/j.jcss.2014.02.005
http://dx.doi.org/10.1016/j.cosrev.2019.01.002
http://dx.doi.org/10.1109/AsiaJCIS.2019.00-10
http://dx.doi.org/10.1016/j.cose.2018.11.001

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

[13] M. Sun, X. Li, J. C. S. Lui, R. T. B. Ma, and Z. Liang, “Monet: A user- [36] B. A.S. Al-Rimy, M. A. Maarof, M. Alazab, S. Z. M. Shaid, F. A. Ghaleb,
oriented behavior-based malware variants detection system for Android,” A. Almalawi, A. M. Ali, and T. Al-Hadhrami, “Redundancy coefficient
IEEE Trans. Inf. Forensics Security, vol. 12, no. 5, pp. 1103-1112, gradual up-weighting-based mutual information feature selection tech-
May 2017. nique for crypto-ransomware early detection,” Future Gener. Comput.

[14] J.Zhang, Z. Qin, H. Yin, L. Ou, and K. Zhang, “A feature-hybrid malware Syst., vol. 115, pp. 641-658, Feb. 2021, doi: 10.1016/j.future.2020.10.002.
variants detection using CNN based opcode embedding and BPNN based [37]1 B. A.S. Al-Rimy, M. A. Maarof, M. Alazab, F. Alsolami, S. Z. M. Shaid,
API embedding,” Comput. Secur., vol. 84, pp. 376-392, Jul. 2019, doi: F. A. Ghaleb, T. Al-Hadhrami, and A. M. Ali, “A pseudo feedback-
10.1016/j.c0se.2019.04.005. based annotated TF-IDF technique for dynamic crypto-ransomware pre-

[15] Y. A. Ahmed, B. Koger, S. Huda, B. A. S. Al-Rimy, and M. M. Hassan, encryption boundary delineation and features extraction,” IEEE Access,
“A system call refinement-based enhanced minimum redundancy vol. 8, pp. 140586-140598, 2020, doi: 10.1109/ACCESS.2020.3012674.
maximum relevance method for ransomware early detection,” [38] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on malware
J. Netw. Comput. Appl., vol. 167, Oct. 2020, Art.no. 102753, doi: detection using data mining techniques,” ACM Comput. Surv., vol. 50,
10.1016/j.jnca.2020.102753. no. 3, pp. 1-40, Oct. 2017, doi: 10.1145/3073559.

[16] Z. Salehi, A. Sami, and M. Ghiasi, “MAAR: Robust features to detect [39] C. Rossow, C. J. Dietrich, C. Grier, C. Kreibich, V. Paxson, N. Pohlmann,
malicious activity based on API calls, their arguments and return val- H. Bos, and M. V. Steen, ‘““Prudent practices for designing malware exper-
ues,” Eng. Appl. Artif. Intell., vol. 59, pp.93-102, Mar. 2017, doi: iments: Status quo and outlook,” in Proc. IEEE Symp. Secur. Privacy,
10.1016/j.engappai.2016.12.016. May 2012, pp. 65-79, doi: 10.1109/SP.2012.14.

[17] D. Konopisky, ‘“Malware detection in applications based on presence of [40] A.Sami, B. Yadegari, N. Peiravian, S. Hashemi, and A. Hamze, “Malware
computer generated strings,” U.S. Patent 0285 565 Al, Oct. 4, 2018. detection based on mining API calls,” in Proc. ACM Symp. Appl. Comput.

[18] M. H. Nguyen, D. L. Nguyen, X. M. Nguyen, and T. T. Quan, “Auto- (SAC), 2010, pp. 1020-1025.
detection of sophisticated malware using lazy-binding control flow graph [41] M. Sikorski and A. Honig, Practical Malware Analysis: The Hands-On
and deep learning,” Comput. Secur., vol. 76, pp. 128—155, Jul. 2018. Guide to Dissecting Malicious Software. San Francisco, CA, USA: No

[19] M. Tang and Q. Qian, “Dynamic API call sequence visualisation for mal- Starch Press, 2012.
ware classification,” IET Inf. Secur., vol. 13, no. 4, pp. 367-377, Jul. 2019. [42] A. G. Kakisim, M. Nar, and I. Sogukpinar, ‘““Metamorphic malware iden-

[20] T. Shibahara, T. Yagi, M. Akiyama, D. Chiba, and T. Yada, “Efficient tification using engine-specific patterns based on co-opcode graphs,”
dynamic malware analysis based on network behavior using deep learn- Comput. Standards Interfaces, vol. 71, Aug. 2020, Art. no. 103443, doi:
ing,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016, 10.1016/j.¢s1.2020.103443.
pp. 1-7. [43] J. Chen, C. Wang, Z. Zhao, K. Chen, R. Du, and G.-J. Ahn, “Uncovering

[21] Z. Chen, Q. Yan, H. Han, S. Wang, L. Peng, L. Wang, and B. Yang, the face of Android ransomware: Characterization and real-time detec-
“Machine learning based mobile malware detection using highly imbal- tion,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5, pp. 1286-1300,
anced network traffic,” Inf. Sci., vols. 433-434, pp. 346-364, Apr. 2018, May 2018, doi: 10.1109/TTFS.2017.2787905.
doi: 10.1016/j.ins.2017.04.044. [44] M. Wadkar, F. D. Troia, and M. Stamp, “Detecting malware evolution

[22] S. Parkinson, “Use of access control to minimise ransomware impact,” using support vector machines,” Expert Syst. Appl., vol. 143, Apr. 2020,
Netw. Secur., vol. 2017, no. 7, pp. 5-8, Jul. 2017. Art. no. 113022, doi: 10.1016/j.eswa.2019.113022.

[23] R. Sihwail, K. Omar, and K. A. Z. Ariffin, ““A survey on malware analysis [45] S. Jain and Y. K. Meena, “Byte level n-gram analysis for malware detec-
techniques: Static, dynamic, hybrid and memory analysis,” Int. J. Adv. Sci., tion,” in Computer Networks and Intelligent Computing. Berlin, Germany:
Eng. Inf. Technol., vol. 8, nos. 4-2, p. 1662, Sep. 2018. Springer, 2011, pp. 51-59.

[24] M. Ghiasi, A. Sami, and Z. Salehi, “‘Dynamic malware detection using reg- [46] A. Khalilian, A. Nourazar, M. Vahidi-Asl, and H. Haghighi, “G3MD:
isters values set analysis,” in Proc. 9th Int. ISC Conf. Inf. Secur. Cryptol., Mining frequent opcode sub-graphs for metamorphic malware detection
Sep. 2012, pp. 54-59. of existing families,” Expert Syst. Appl., vol. 112, pp. 15-33, Dec. 2018,

[25] A. Tajoddin and M. Abadi, “RAMD: Registry-based anomaly malware doi: 10.1016/j.eswa.2018.06.012.
detection using one-class ensemble classifiers,” Int. J. Speech Technol., [47] M. Rhode, L. Tuson, P. Burnap, and K. Jones, “LAB to SOC: Robust
vol. 49, no. 7, pp. 2641-2658, Jul. 2019. features for dynamic malware detection,” in Proc. 49th Annu. IEEE/IFIP

[26] I. Lee, H. Roh, and W. Lee, “Poster abstract: Encrypted malware traffic Int. Conf. Dependable Syst. Netw.-Ind. Track, Jun. 2019, pp. 13-16, doi:
detection using incremental learning,” in Proc. IEEE Conf. Comput. Com- 10.1109/DSN-Industry.2019.00010.
mun. Workshops (INFOCOM WKSHPS), Jul. 2020, pp. 1348-1349, doi: [48] S. Yang, S. Li, W. Chen, and Y. Liu, “A real-time and adaptive-learning
10.1109/INFOCOMWKSHPS50562.2020.9162971. malware detection method based on API-pair graph,” IEEE Access, vol. 8,

[27] A. Singh, A. Walenstein, and A. Lakhotia, “Tracking concept drift in pp. 208120-208135, 2020, doi: 10.1109/ACCESS.2020.3038453.
malware families,” in Proc. 5th ACM Workshop Secur. Artif. Intell., 2012, [49] S. Das, Y. Liu, W. Zhang, and M. Chandramohan, ‘Semantics-based
pp. 81-92. online malware detection: Towards efficient real-time protection against

[28] Z. Wang, M. Tian, J. Wang, and C. Jia, “An ensemble learning system to malware,” IEEE Trans. Inf. Forensics Security, vol. 11, no. 2, pp. 289-302,
mitigate malware concept drift attacks (Short Paper),” in Proc. Int. Conf. Feb. 2016, doi: 10.1109/TIFS.2015.2491300.

Inf. Secur. Pract. Exper. Cham, Switzerland: Springer, 2017, pp. 747-758. [50] M. Jabi, M. Pedersoli, A. Mitiche, and I. B. Ayed, “Deep clustering:

[29] A. Yan, Z. Chen, R. Spolaor, S. Tan, C. Zhao, L. Peng, and B. Yang, On the link between discriminative models and K-Means,” IEEE Trans.
“Network-based malware detection with a two-tier architecture for online Pattern Anal. Mach. Intell., vol. 43, no. 6, pp. 1887-1896, Jun. 2021, doi:
incremental update,” in Proc. IEEE/ACM 28th Int. Symp. Qual. Service 10.1109/TPAMI.2019.2962683.

(IWQoS), Jun. 2020, pp. 1-10. [51] X. Zhan, J. Xie, Z. Liu, Y.-S. Ong, and C. C. Loy, “Online deep cluster-

[30] Y. Dai, H. Li, Y. Qian, R. Yang, and M. Zheng, “SMASH: A malware ing for unsupervised representation learning,” in Proc. IEEE/CVF Conf.
detection method based on multi-feature ensemble learning,” IEEE Access, Comput. Vis. Pattern Recognit. (CVPR), Jun. 2020, pp. 6688—-6697.
vol. 7, pp. 112588-112597, 2019.

[31] D. Hu et al, “The concept drift problem in Android malware
detection and its solution,” Secur. Commun. Netw., vol. 2017, doi:
10.1155/2017/4956386.

[32] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, " . ABDULBASIT A. DAREM (Member, IEEE)
Aug. 2016, pp. 785-794. . cma received the Ph.D. degree in computer science

[33] N.V. C}}awl?, K: 'W. Bowyer, L 0. Hall,.and,\’?»f.RKégelmeyer, SMOTE: i-«a-) from the University of Mysore, India, in 2014.
Synthetic minority over-sampling technique,” J. Artif. Intell. Res., vol. 16, s~ He is currently an Assistant Professor with
pp. 321-357, Jun. 2002. .

[34] E. Fitkov-Norris and S. O. Folorunso, “Impact of sampling on neural net- the Dep art.men.t of Comp ute{ Science, Northern
work classification performance in the context of repeat movie viewing,” in Border Umversny, Saufll Arabia. He has more' than
Engineering Applications of Neural Networks. Berlin, Germany: Springer, 20 years of experience in the IT filed. He published
2013, pp. 213-222. more than 19 research articles in reputed inter-

[35] J. DemsSar and Z. Bosni¢, “Detecting concept drift in data streams using national journals and conferences. His research

model explanation,” Expert Syst. Appl., vol. 92, pp. 546559, Feb. 2018,
doi: 10.1016/j.eswa.2017.10.003.

VOLUME 9, 2021

interests include cybersecurity, web engineering,

HCI, usability, e-government, and cloud computing.

97195

http://dx.doi.org/10.1016/j.cose.2019.04.005
http://dx.doi.org/10.1016/j.jnca.2020.102753
http://dx.doi.org/10.1016/j.engappai.2016.12.016
http://dx.doi.org/10.1016/j.ins.2017.04.044
http://dx.doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162971
http://dx.doi.org/10.1155/2017/4956386
http://dx.doi.org/10.1016/j.eswa.2017.10.003
http://dx.doi.org/10.1016/j.future.2020.10.002
http://dx.doi.org/10.1109/ACCESS.2020.3012674
http://dx.doi.org/10.1145/3073559
http://dx.doi.org/10.1109/SP.2012.14
http://dx.doi.org/10.1016/j.csi.2020.103443
http://dx.doi.org/10.1109/TIFS.2017.2787905
http://dx.doi.org/10.1016/j.eswa.2019.113022
http://dx.doi.org/10.1016/j.eswa.2018.06.012
http://dx.doi.org/10.1109/DSN-Industry.2019.00010
http://dx.doi.org/10.1109/ACCESS.2020.3038453
http://dx.doi.org/10.1109/TIFS.2015.2491300
http://dx.doi.org/10.1109/TPAMI.2019.2962683

IEEE Access

A. A. Darem et al.: Adaptive Behavioral-Based Incremental Batch Learning Malware Variants Detection Model

FUAD A. GHALEB received the B.Sc. degree
in computer engineering from the Faculty of
Engineering, Sana’a University, Yemen, in 2003,
and the M.Sc. and Ph.D. degrees in computer
science (information security) from the Faculty
of Engineering, School of Computing, Univer-
siti Teknologi Malaysia (UTM), Johor, Malaysia,
in 2014 and 2018, respectively. He is currently
an Assistant Professor with the Faculty of Engi-
neering, School of Computing, UTM. His research
interests include vehicular network security, cyber security, intrusion detec-
tion, data science, data mining, and artificial intelligence. He was a recip-
ient of many awards and recognitions, such as the Postdoctoral Fellowship
Award, the Best Postgraduate Student Award, the Excellence Awards, and the
Best Presenter Award from the School of Computing, Faculty of Engineer-
ing, UTM, as well as best paper awards from many international conferences.

ASMA A. AL-HASHMI received the Ph.D. degree in computer science
from the University of Mysore, India, in 2015. She is currently an Assis-
tant Professor with the Department of Computer Science, Northern Border
University, Saudi Arabia. She has more than ten years of experience in the
IT filed. She published more than 17 research articles in reputed interna-
tional journals and conferences. Her research interests include, cybersecurity,
software engineering, e-government, and cloud computing.

JEMAL H. ABAWAJY (Senior Member, IEEE)
received the B.S.E., M.Sc., Ph.D., and D.Sc.
degrees. He is currently a Full Professor with the
Faculty of Science, Engineering and Built Envi-
ronment, Deakin University, Australia. His lead-
ership is extensive spanning industrial, academic
and professional areas, such as the IEEE Techni-
cal Committee on Scalable Computing, Academic
Board, Faculty Board, and Research Integrity
Advisory Group. He has delivered numerous
keynote addresses, invited seminars, and media briefings, such as Voice
of America’s English Radio. He is a Senior Member of the IEEE Society,
the IEEE Technical Committee on Scalable Computing (TCSC), the IEEE
Technical Committee on Dependable Computing and Fault Tolerance, and
the IEEE Communication Society. He has been actively involved in the
organization of more than 400 national and international conferences in
various capacity, including chair, general co-chair, vice-chair, best paper
award chair, publication chair, session chair, and program committee. He has
served on the editorial-board of numerous international journals. He is
also serving as an Associate Editor for the IEEE Transactions oN CLoUD
CoMPUTING, International Journal of Big Data Intelligence, and Interna-
tional Journal of Parallel, Emergent and Distributed Systems. He has also
guest edited many special issue journals. More details can be found at:
http://www.deakin.edu.au/~jemal.

97196

SULTAN M. ALANAZI received the master’s
degree in IT and the Ph.D. degree in computer
science from the University of Nottingham, U.K.
He worked as a Teaching Assistant with the Uni-
versity of Nottingham. He is currently an Assistant
Professor with the Department of Computer Sci-
ence, Northern Border University, Saudi Arabia.
He has more than ten years of experience in the
IT field. He published several research articles
in reputed international journals and conferences.
His research interests include cybersecurity, machine learning, NLP, social
network analysis (mining), user-modeling, and recommender systems.

AFRAH Y. AL-REZAMI received the Ph.D. degree in statistics from
Al-Mustansiriya University, Iraq, in 2004. She is currently an Assistant
Professor with the Mathematics Department, Prince Sattam Bin Abdu-
laziz University, Saudi Arabia. She focuses mainly on studying behavioral
aspects. She published many research articles in reputed international jour-
nals and conferences. Her research interests include applied statistics and
data analysis.

VOLUME 9, 2021

