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Wireless mesh networks (WMNs) have emerged as a scalable, reliable, and agile wireless network that supports many types of
innovative technologies such as the Internet of /ings (IoT), Wireless Sensor Networks (WSN), and Internet of Vehicles (IoV).
Due to the limited number of orthogonal channels, interference between channels adversely affects the fair distribution of
bandwidth among mesh clients, causing node starvation in terms of insufficient bandwidth distribution, which impedes the
adoption of WMN as an efficient access technology. /erefore, a fair channel assignment is crucial for the mesh clients to utilize
the available resources. However, the node starvation problem due to unfair channel distribution has been vastly overlooked
during channel assignment by the extant research. Instead, existing channel assignment algorithms equally distribute the in-
terference reduction on the links to achieve fairness which neither guarantees a fair distribution of the network bandwidth nor
eliminates node starvation. In addition, the metaheuristic-based solutions such as genetic algorithm, which is commonly used for
WMN, use randomness in creating initial population and selecting the new generation usually leading the search to local minima.
To this end, this study proposes a Fairness-Oriented Semichaotic Genetic Algorithm-Based Channel Assignment Technique (FA-
SCGA-CAA) to solve node starvation problem in wireless mesh networks. FA-SCGA-CAA maximizes link fairness while
minimizing link interference using a genetic algorithm (GA) with a novel nonlinear fairness-oriented fitness function. /e
primary chromosome with powerful genes is created based on multicriterion links ranking channel assignment algorithm. Such a
chromosome was used with a proposed semichaotic technique to create a strong population that directs the search towards the
global minima effectively and efficiently. /e proposed semichaotic technique was also used during the mutation and parent
selection of the new genes. Extensive experiments were conducted to evaluate the proposed algorithm. A comparison with related
work shows that the proposed FA-SCGA-CAA reduced the potential node starvation by 22% and improved network capacity
utilization by 23%. It can be concluded that the proposed FA-SCGA-CAA is reliable to maintain high node-level fairness while
maximizing the utilization of the network resources, which is the ultimate goal of many wireless networks.

1. Introduction

Wireless mesh networks (WMNs) enable flexible, robust
connectivity and are a means to various applications, such as
healthcare, smart grids, Internet of /ings (IoT), Internet of

Vehicles (IoV), and intelligent transportation systems [1, 2].
/e ability to use different radio technologies, including
IEEE 802.11 (a/b/g/n) and 802.16, makes WMN flexible
enough to support many manufacturing standards for
wireless networks [3–6]. Client meshing is one of the
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important characteristics that distinguish WMNs from
conventional wireless ad hoc networks [7–12]. WMNs
improve the development of many fields such as routing
protocols [8, 13–16], media access control [17, 18], and
energy conception [19], among many others [3, 7, 20].
WMN nodes are characterized as dual-functioning, such
that they play both client and router roles by automatically
establishing and maintaining connectivity among them-
selves [4]. As opposed to Point-to-Point (PTP) communi-
cation that is used by traditional ad-hoc networks, WMNs
use multipoint to multipoint (MTM) communication to
increase network scalability, reliability, and capacity by
enabling a mesh node to communicate with more than one
other mesh node simultaneously [21]. Such property con-
tributes to achieving reliable, low-maintenance, low-cost,
and robust mesh networks. A WMN consists of three main
components, namely mesh routers, gateways, and clients [4].
Mesh routers work as a backbone that connects mesh clients
and gateways. Gateways are mesh nodes that interconnect
the WMN with other networks and services such as the
Internet, data centers, and servers. Mesh clients are nodes
that end-users use to connect to theWMN./ese nodes may
be laptops, mobiles, vehicles, health care appliances, and any
other IoT devices [22–27]. A mesh client reaches the re-
sources or services by connecting toWMN via mesh routers,
which, in turn, redirects the traffic from/to the gateway.
Mesh routers utilize multiple radio interfaces with multiple
channels by using multiple radios to decrease the interfer-
ence between colocated communication links and improve
the throughput, connectivity, and capacity of the network.
To decrease such interference, the colocated links need to use
nonoverlapping (orthogonal) channels. However, the lim-
ited number of orthogonal channels allocated in the wireless
standards makes the interference between adjacent links
inevitable. /erefore, effective channel assignment is key to
ensure high network throughput, connectivity, and capacity
[3, 7, 28].

Channel assignment algorithms play an important role in
improving the connectivity, throughput, and capacity of
WMNs. /ese algorithms aim at finding an optimal distri-
bution of the channels among the colocated links to maximize
the utilization of network resources and reduce interference,
that is, a channel assignment algorithm that tries to improve
the bandwidth utilization by reducing the interference and
efficiently utilizing the frequency spectrum [3, 4]. /e
problem of channel assignment is usually formulated as a
graph coloring problem, which is naturally an NP-hard (a
nondeterministic polynomial-time) problem whose optimal
solutionmight not exist [29]./is is because, inmost practical
situations, there may be insufficient orthogonal channels to
ensure interference-free channel assignments. A large num-
ber of mesh devices may share a single common channel to
reduce network interference [30, 31]. However, increasing the
number of adjacent devices that use the same channel in-
creases the collisions and adversely affects the network per-
formance. A large collision wireless domain leads to collisions
that affect the connectivity, bandwidth, and capacity of
WMNs. In addition, unfair channel distribution among mesh
links causes node starvation problems.

/e node starvation problem occurs when the sur-
rounding links are unable to support the required bandwidth
of the adjacent clients due to link interference. Figure 1
illustrates an example where the node starvation problem
occurs. As shown in Figure 1(a), the capacity in terms of the
total supported bandwidth of mesh router A is 16Mbps
while the required bandwidth is at 6Mbps. In the ideal
situation, the available bandwidth can satisfy the require-
ments of mesh clients. However, Figure 1(b) shows that
mesh router A is unable to support more than 3Mbps
bandwidth after channel assignment due to interference
among adjacent links. /is results in the node starvation
problem. /us, a fair channel assignment algorithm should
guarantee the equitable distribution of the bandwidth
among the links such that all clients are served fairly.
/erefore, a fair channel assignment should aim at ensuring
that all links in the network can achieve a data rate that is
suitable for all relevant nodes. Hence, the data rate of each
link after the channel assignment should be consistent with
the designated data rate of the link.

Over the last decade, many solutions have been sug-
gested to address various channel assignment problems
[3, 13, 21, 32–40]. However, there is no feasible deterministic
solution to find the optimal solutions in a finite amount of
time due to the NP-Hard nature of the channel assignment
problem. Existing solutions used heuristics algorithms to
approach the channel assignment problem. Unfortunately,
heuristic algorithms may lead to inefficiencies, whereby the
appropriate solutions may not be found within a reasonable
period due to being trapped in local minima causing the
unfair distribution of the channels in the network. Meta-
heuristic algorithms such as genetic algorithms and Tabu
search address this shortcoming by approaching the global
minima using the concept of natural selection and also the
evolutionary theory [3, 37, 39–42]. /at is, a new solution is
resulting from combining two good solutions. However, the
existing genetic algorithm- (GA-) based channel assignment
algorithms [37, 39–42] have overlooked the fairness issue.
Most of those algorithms try to minimize the total sum of the
link interferences, which, unfortunately, does not guarantee
fair channel distribution and cannot prevent node starvation
problems. Although fair channel assignment was the subject
of several studies in recent years [2, 32, 33, 43–46], most of
those solutions use heuristic approaches. In addition, many
of those approaches focus on flow fairness, whereby the
channel assignment algorithm distributes the available
nonoverlapping channels in such a way that flows (paths) in
the networks have equal data rates. On the other hand, node
fairness, which can significantly improve fairness, has re-
ceived low research attention [1, 3]. Node fairness can be
achieved by equitable distribution of bandwidth over the
nodes. Consequently, equitable distribution of the channels
should make each node end up with the desired bandwidth.
In Figure 1(b), for example, node A requires a minimum
bandwidth of 6Mbps, but it is given only a total of 3Mbps.
Ignoring node fairness leads to node starvation, which
adversely affects the capacity and throughput of WMNs.

To this end, this paper proposes a Fairness-Oriented
Semichaotic Genetic Algorithm-Based Channel Assignment
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Technique (FA-SCGA-CAA) that addresses the issue of
node starvation through fair (equitable) channel distribution
among mesh nodes in the WMN. /e channel assignment
problem has been formulated as an optimization problem
with two objectives, minimizing the interference and
maximizing node fairness. Because interference and fairness
are not linearly correlated, this study introduces a new
nonlinear fitness function that aims at minimizing the in-
terference while maximizing the bandwidth utilization to
ensure fair distribution of the nonoverlapping channels and
guarantee the required bandwidth for each mesh client. FA-
SCGA-CAA optimizes fairness based on multiple criterion
using a modified version of the genetic algorithm (GA). /e
modification includes proposing a semichaotic technique for
creating the primary chromosome with powerful genes.
Such a chromosome was used to create a strong population
that directs the search towards the global minima effectively
and efficiently. /e outcome is a nonlinear fairness-oriented
fitness function that aims at maximizing the link fairness
while minimizing the link interference. /e contribution of
this paper is four-fold:

(1) /e Fairness-Oriented Semichaotic Genetic Algo-
rithm-Based Channel Assignment Algorithm (FA-
SCGA-CAA) is proposed to maximize link fairness
while minimizing link interference.

(2) A semichaotic genetic-based technique is proposed
to create a diverse population with informative
features that converge at the best solution and avoid
being trapped in the local minima. /e semichaotic
technique is proposed to address two main issues of
genetic algorithms, which are to speed up the con-
vergence process of the algorithm and to increase the
diversity of the searched solutions to find the best
feasible solution.

(3) /e problem of fair channel assignment is formu-
lated as an optimization problem that entails a fitness
function that combines several factors representing
the network topology, link capacity, and required
bandwidth/throughput tominimize link interference
while maximizing link fairness.

(4) A new nonlinear fitness function is proposed to
integrate both interference and fairness in one fitness

function for minimizing link interference while
maximizing link fairness that is directly reflected in
improving client fairness.

2. Related Work

/e channel assignment problem in a multiradio wireless
mesh network has been the subject of many recent studies
[3, 13,21, 33–38, 47]. Many methods were used in those
solutions such as graph-based [48, 49], optimization-based
[37, 45, 50], and artificial intelligence-based [37, 39, 40, 51]
techniques. A detailed review of those methods can be found
in the following surveys [3, 7, 52]. Most of those studies
aimed at minimizing global network interference. /e link
interferences were estimated using either protocol [21, 34] or
physical interference [53] models. /e hypothesis behind
those solutions was to reduce global network interference
leading to improving the utilization of network capacity,
throughput, goodput, and delay, among other desired
characteristics [3, 7, 52]. Although many of these solutions
minimized global interference and accordingly improved the
performance of the network, such solutions suffer from both
links and node starvation problems due to the unfair dis-
tribution of the channels among the links. Nodes’ starvation
problem occurs when a node tries to use a link with high
interference. To solve this issue, a fair distribution of the
nonoverlapped channels is required. Fair channel distri-
bution has been the focus of several recent studies
[2, 32, 33, 36, 43–46, 54–57].

Fairness is defined by many researchers as the equal
distribution of the resources among equal nodes [2, 43]. /is
broad definition of fairness has led to many open challenges
in channel assignment algorithms that need to be addressed
such as fair bandwidth [56], fair throughput [58], fair access
to the channel [56, 59, 60], load balancing, and energy
balancing [61]. However, the interference among commu-
nication channels is a major challenge that impedes the fair
utilization of WMN resources and causes node starvation
problems. Fairness in wireless networks can be categorized
based on several criteria such as granularity, time, resource
type, and access mode. From the granularity perspective,
fairness can be categorized into system-wide fairness
[36, 62], per-flow fairness [43, 55], per-link-fairness [33, 46],
and per-node-fairness [36, 43]. Such categorization
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Figure 1: Node starvation problem. (a) Nominated capacity (ideal scenario). (b) Capacity after channel assignment (node starvation
problem).
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determines the level at which fairness is achieved. System
fairness is viewed from the perspective of the whole system,
which is achieved when all mesh nodes attain individual
fairness [36]. Per-flow fairness refers to equal bandwidth for
all traffic flows arriving at the gateway [55], which is achieved
by assigning nonoverlapping channels to the links before
allocating those links to flows based on the interference
model [43]. Per-link fairness-based solutions aim at en-
suring equal distribution of the bandwidth among links. /e
per-link fair channel allocation tries to prevent node star-
vation phenomena that could happen due to the interfer-
ence. /erefore, the solutions that try to achieve per-link
fairness aimed at minimizing the interference among links.
Per-node fairness-based solutions aim at ensuring that all
nodes in the network have obtained equal access opportu-
nity to the network. /is can be achieved if the channel
assignment algorithm takes the traffic demands of each
individual link as a requirement during channel assignment
to achieve fairness and prevent node starvation problems.
/is paper focuses on per-link fairness in order to achieve
the per-node fairness. To the best of our knowledge, such
granularity of fairness has not received enough investigation
yet.

In their study, Qu et al. [36] proposed a channel as-
signment algorithm to prevent the flow starvation problem.
An interference model was embedded into the channel
assignment algorithm to better estimate interference on the
links to eliminate border effect and flow starvation. How-
ever, the algorithm was designed for single radio mesh
networks. Moreover, such a solution does not consider node
starvation as it aims only to achieve per-flow fairness.

Bakhshi and Khorsandi [46] used integer linear pro-
gramming (ILP) to develop a dynamic channel assignment
algorithm to achieve flow fairness. However, the solution
defines fairness as a function of the number of accepted
demands with source-destination pairs over the specific
threshold. Hence, fairness is achieved only when the number
of transmission demands approaches a particular number.
/is approach can improve network capacity if the number
of transmission demands is known before channel assign-
ment. However, this approach is scenario-specific and dy-
namic, and it cannot be defined in advance. Beheshtifard and
Meybodi [34] devised an adaptive scheme based on learning
automata to maintain channel assignment when network
traffic demands dynamically change. However, the scheme
lacks a mechanism that ensures fair allocation of the
channels among links.

Ghaleb et al. [33] proposed a channel assignment al-
gorithm based on weighted link ranking to achieve an eq-
uitable distribution of the orthogonal channels. /e
equitability (fairness) was achieved by employing multiple
criteria like proximity from the gateway, expected traffic, and
link capacity, to rank the mesh links. /en, the nonover-
lapping channels were assigned accordingly. However, such
an approach lacks proper fairness measures that can ef-
fectively evaluate the node fairness achieved. Al-Rimy et al.
[32] proposed a channel assignment scheme that considers
user mobility and fairness. /e scheme adaptively adjusts to
channels assignments according to the dynamic change in

the network due to user mobility. /e scheme uses the
multirotational channel assignment algorithm that was
proposed by Ghaleb et al. [33] to achieve fairness which lacks
proper fairness measures.

In their study, Liu et al. [44] proposed a genetic-algo-
rithm-based routing algorithm combined with a channel
assignment technique that aims at maximizing the mini-
mum flow rate to improve flow fairness. However, maxi-
mizing the number of flows does not guarantee that node
starvation will be prevented due to the inconsideration of
per-link interference during channel assignment. /e ge-
netic algorithm was used to search for the chromosome with
the highest number of flows. In their solutions, the chro-
mosomes were represented and evaluated based on the
power level of the channels. However, power level has
spatiotemporal characteristics that lead to unstable and
short-term channel assignment and, thus, such solution
neither prevents link starvation nor flow starvation.

To sum up, many recent studies investigated fair channel
assignment solutions. However, there are two main draw-
backs of the extant research, which can be described as fol-
lows. First, most of those studies simply minimize the total
interference in the network to achieve effective utilization of
network resources. Such solutions lead to fair starvation of
nodes and links which is not the goal of fairness in channel
assignment. /e common hypothesis among these solutions
states is that reducing the total interference can improve
network performance, which directly achieves fairness among
mesh nodes. /is hypothesis is inaccurate because reducing
the total interference does not necessarily ensure equal dis-
tribution of channels in the network. In addition, fairness was
represented in terms of total power level, total interference, or
total throughput of the network. Moreover, the extant studies
aimed at equal distribution of network resources (such as the
bandwidth) among nodes, which does not necessarily lead to
fairness and thus does not prevent node starvation problem.
/e equitable distribution of the resources among all nodes is
the ultimate goal of a fair channel assignment algorithm to
resolve the node starvation problem./at is, equal nodes only
should receive equal resources. /e resources should be
distributed based on the requirements, which are not nec-
essarily equal. /e second drawback of the existing solutions
is the use of heuristic methods to assign the channels. Un-
fortunately, heuristic techniques are not appropriate solutions
as they are scenario-dependent and thus cannot be gener-
alized. Metaheuristics techniques on the other hand such as
genetic algorithms seem to be promising to approach channel
assignment algorithm in WMN due to the smaller search
scope as it searches in a controlled population sample.
However, randomly generating the population samples may
lead to a premature solution since the search can be directed
to local minima./is study addresses this issue by proposing a
fair channel assignment algorithm with more granularity.
Links and nodes fairness have been represented based on the
impact of interference on their expected bandwidth. /us, a
fairness-oriented fitness function was proposed and inte-
grated into the genetic algorithm-based channel assignment,
which aims at maximizing node and link fairness, while
minimizing interference.
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3. Materials and Methods

In this study, the problem of channel assignment is for-
mulated as an optimization task that maximizes link fairness
to avoid node starvation problems./us, we have proposed a
semichaotic genetic algorithm to solve such a problem. /e
proposed algorithm aims at finding the most effective so-
lution that achieves node fairness and addresses the link
starvation problem. /e genetic algorithm (GA) is a met-
aheuristic algorithm inspired by the evolution theory and
natural selection. GAs are adaptive search techniques that
can find the optimal global solution by manipulating and
recursively generating a new population of solutions from an
initial population space [42]. GA is used for combinatorial
optimization problems, namely the NP-optimization
problems (NPO) since they search from one population of
points in search space to another and tend to focus in-
creasingly on areas with deeper minima [31, 32, 42, 63]. /e
proposed algorithm comprises five steps as follows: network
representation, semichaotic-based initial population crea-
tion, fairness-aware individual evaluation, parent selection,
and children generation or offspring. /e channels are
represented by genes. Hence, the number of genes is equal to
the number of nonoverlapping channels. /erefore, the
chromosome represents a solution, which is a series of
channels (genes) assigned to the radios in the network.
Figure 2 shows the flowchart of the proposed algorithm.

As shown in Figure 2, there are four main stages in the
algorithm. /e first stage is network representation. /e
WMN is represented as a graph to represent the interference
between the links as elaborated in Section 3.1. /en, the
initial population has been created by developing a new
semichaotic method, in which the genes of the primary
chromosome are created using amulticriterion link ranking-
based channel assignment algorithm [11]. In doing so, the
initial population inherits powerful features from the father
(the primary chromosome). /e multicriterion links rank-
ing-based channel assignment algorithm is described in
Section 3.2. To create diversity in the population and prevent
the convergence to a local minimum, a chaotic-based al-
gorithm is used to create the initial population. Next, the
individuals in the population are evaluated using a novel
nonlinear fitness function. /e optimization objectives are
fuzzed into one representative nonlinear function and the
so-called fairness-aware interference minimization function.
/is function correlates the interference to fairness by
formulating the link fairness as a function of interference
and the data rate. /us, individuals or chromosomes are
evaluated according to fairness conditions. /at is, if an
individual is found to have an acceptable fairness index, the
objective is achieved, and the algorithm is stopped. Oth-
erwise, the algorithm continues to the next step. A detailed
description of this function is found in Section 3.3. /e next
stage is the selection of the parents for the new generation.
/e best individuals with high values of fairness are selected
for the offspring. /en, the semichaotic process is followed
to create a new generation from the selected parents’
chromosomes. For creating the children of the new gen-
eration, a semichaotic mutation approach is developed in

which the genes (channels) with high fairness values are
chosen for crossover, while the genes with low fairness are
replaced using the semichaotic process. Finally, to maintain
the diversity among the new generation, the genes with high
fairness values are fixed while the genes with low fairness
values are mutated. /is stage is iterated until the conver-
gence in the global minima is obtained, or the maximum
number of iterations is reached. Section 3.4 elaborates this
stage in more detail.

3.1. Network Representation. /e wireless mesh network
(WMN) is represented by a graph that can represent the
interconnection of all nodes connected in the network (see
Figure 3). /e graph consists of two main components,
namely vertices and edges (Figure 3(b)). A vertex can be a
mesh router, mesh client, or mesh gateway. Meanwhile, the
edges represent the links between the vertices (e.g., the link
AG in Figure 3(b)). A wireless link can be defined as a
dedicated connection between two radio interfaces on two
different nodes./e radio interfaces that form the links share
the same radio characteristics, such as channel frequency,
bandwidth, speed, and encoding. A link length is the Eu-
clidian distance between the positions of the radio interfaces
that form that link. Two links are considered conflicted (and
can also be partially overlapped) if they use the same channel
and the distance between them is less than the channel
interference range (see Link BA and CA Figure 3(b)). /e
data rate of the links is affected by two factors: the amount of
interference and the link length. A good channel assignment
algorithm can result in low interference (internal
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Figure 2: Flow chart of the suggested approach.
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interference) and high fairness. /at is, the interference
should be reduced and distributed fairly on the network so
that nodes do not starve to obtain equitable bandwidth.

3.2. Semichaotic Initial Population Formation. Forming the
initial population is an important step in genetic algorithms
directly affecting the quality of the results. /ere are two
approaches for the initialization, namely heuristic and
random. /e heuristic approach may direct the genetic al-
gorithm to fast convergence to a local optimum, while the
random-based approach may slow down the convergence.
/erefore, in this study, a semichaotic-based population
formation technique is proposed. In this technique, first, the
primary chromosome which constructs the entire pop-
ulation has been created using a multicriterion channel
assignment algorithm. /e primary chromosome was cre-
ated using strong genes so that the entire population inherits
those powerful genes. Figure 4 shows the flow chart of the
designed primary chromosome generation technique. /e
multicriterion channel assignment algorithm [11] was used
to create the primary chromosome of the initial population.

/e multicriterion channel assignment algorithm is a
heuristic algorithm that uses multiple criteria derived from
network topology and the expected traffic patterns used in
the proposed channel assignment algorithm. As shown in
Figure 4 and the pseudocode 1 in Algorithm 1, the algorithm
is composed of three main steps, namely link ranking, link
scheduling, and channel assignment. In the link ranking
step, five criteria are used to rank the nodes as follows: the
number of hops to the gateway, proximity from the gateway,
usage frequency, and capacity. /e node rank is normalized,
and a score for each node is given. /e link rank is obtained
by summating the scores of the nodes that form the links.
/e next step is link scheduling, in which the links are sorted
in descending order. /us, the channel assignment algo-
rithm starts distributing the nonoverlapping channels over
the links that have high ranks. Finally, the channel as-
signment is performed to obtain the primary chromosome
to create the initial population. /e process of obtaining the

primary chromosome is as follows (see Figure 4 and Al-
gorithm 1). First, for each link in the graph, the list of all
interfered channels is obtained. /en, the list of all non-
overlapping channels that can be used for the link is ob-
tained. If there is any such channel, it is assigned to the link.
/e algorithm then moves to the next important link. If the
nonoverlapping channels are not available for the current
link, the least interfering channel is assigned.

/e least interfering channel is calculated in every it-
eration of the channel assignment. To estimate the expected
interference fchl, the mesh network is represented as a
conflicting graph where the vertices are the links, and the
edge is the shortest distance between any two nodes from
adjacent links. /e link graph represents the mesh network,
which is used for computing the nodes and links ranking.
/e interference graph is used to obtain the interfered radios
which are used to form the conflicting graph./e conflicting
graph is used to obtain the list of the interfered links during
channel assignment. It is also used to calculate the expected
bandwidth that the link can support after channel assign-
ment. /us, the conflicting graph is used to evaluate the
effectiveness of the generated solutions. It is worth noting
that the channel assignment algorithm in this stage uses a
threshold for the acceptable interference for assigning a
channel to a link. If the resulting interference is not accepted,
the algorithm assigns a common channel as there is no other
option in this case. /at is, the resulting bandwidth of the
link after channel assignment should not be less than the
bandwidth if a common channel was used. /e channel
assignment algorithm continues to assign the channels until
all links in the network obtain appropriate channels. Upon
the completion of this stage, the primary chromosome is
obtained and the initial population can be created.

/e semichaotic technique is used to create the initial
population from the primary chromosome. /e weak genes
(the link after the channel is assigned) with high interfer-
ences are replaced randomly from the available channels.
Meanwhile, the strong genes (the links with nonoverlapping
channels) are fixed. In doing so, two main advantages are
obtained improving the metaheuristic approaches, namely
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(4) lr⟵

set
ir + jr: i and j are nodes ranking′ ∈ G

(5) L⟵sort Sort links based on their ranks
//Assign the channels to form the primary chromosome
(6) ∀link l ∈ L do
(7) chj ⟵least interfer channel for link l

using algorithm in [11].

(8) pc ⟵
append geneg

g(li, chj)

(9) ∀geneg ∈ pc do //Calculate the link interferences
(10) li �  Cov(l,m),∀m ∈ l overlapped neighboring channels
//average interference of all links
(11) Threshold � (1/n) 

n
l li

//create the initial population (n chromosomes)
(12) while N< population size
(13) ∀ geneg ∈ pc do //copy the primary chromosome

(14) pg(n)⟵
update

pc, N ⟵increment
N + 1

(15) if li <Threshold //randomly select ch from channel list
(16) ch←rand(C)

(17) pg←ch //replace the weak gene by ch

ALGORITHM 1: Continued.
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the genetic algorithms for approaching the NP-Hard
problems: the speed of the convergence and the effective
solutions that are obtained. Because the semichaotic tech-
nique randomizes a portion of gene space in the chromo-
some, the search scope is small, and thus fast convergence is
obtained as well as the good quality of the obtained solution.

3.3. Fairness-Aware Fitness Function. After preparing the
initial population using the semichaotic technique, the set of
chromosomes in the initial population is evaluated. /is
required a fitness (objective) function in the genetic algo-
rithm. /e fitness function is used to evaluate the solution
domain. As stated previously, the channel assignment aims
to maximize the link fairness while minimizing the link
interference to maintain a suitable link data rate for themesh
clients to address node starvation problems. /e objective
function of the optimization is written as follows:

Maximize(Fairness index), (1)

where Fairness index can be expressed according to Jain’s
index as follows:

Fairness index �


n
i�1 lfi 

2

n 
n
i�1 lf

2
i

, (2)

where lfi is the fairness of the link i. Link fairness lf can be
defined as a function of the link data rate as follows:

lf �
Actual Link Data Rate
Require LinData Rate

. (3)

/e data rate needs to be maximized to achieve higher
fairness. /e Actual Link Data Rate is the expected data
rate of the link after channel assignment while the
Require LinDat Rate is the minimum accepted data rate of
the link. In other words, the following condition should be
satisfied:

Actual Link Data Rate≥Required Link Data Rate. (4)

/e Required Link Data Rate can be calculated based
on the sum of the required data rate of expected mesh clients
or routers. /e Required Link Data Rate of each link in the
network is assumed to be known. /is is a reasonable as-
sumption as the number of clients that will be connected to
the mesh routers can be controlled according to the available
resources. /e data rate is indirectly correlated with the
interference; i.e. if the interference is high, the data rate is
low and vice versa. /e actual data rate of a link can be
calculated using Shannon–Hartley theoremwhich states that
the data rate depends on the channel bandwidth and the
signal-to-noise ratio, as in the following:

Actual Link Data Rate � BW∗ log2 (1 + SNR). (5)

Here, BW is the bandwidth of the channel, SNR is the
signal-to-noise ratio, and capacity is the capacity of the
channel in bits per second. To calculate the SNR, we first
calculate the noise as the difference between the power of the
transmitted signals and the power of the received signal.

/us, the signal-to-noise ratio (SNR) can be calculated as
follows:

SNR �
(power of signal)
(power of noise)

. (6)

SNR is usually expressed in decibels (dB) as follows:

SNR(db) � 10∗ log10
power of signal
power of noise

 . (7)

As the bandwidth can be known from the channel
characteristics and SNR can be calculated as in the above
equation, the data rate can be calculated. Practically the
strength of the received signal is measured using a hardware
sensor, given that the transmission power is known; thus, the
expected or the actual data rate after channel assignment can

(18) pg(n)⟵
update

pg

(19) While iteration<max i and Fairness index< (1 − τ) do://Evaluation Process
(20) ∀chromosomePg(n) ∈ P do
(21) ∀ geneg ∈ pg(n) do
(22) li �  Cov(l,m),∀m ∈ l neighboring channels
(23) SNR � (TSS/10∗ n∗ li ∗ log10(ll)) (9)
(24) Actual LinkData Rate � BW∗ log2 (1 + SNR) (5)
(25) lf � (Actual LinkData Rate/Require LinkData Rate ) (3)
(26) Fairness index � ([

n
i�1 lfi]

2/n 
n
i�1 lf2

i ) (2)
(27) if Fairness index> (1 − τ)

(28) P⟵
append

pg(n)

(29) P←Sort(P) //Sort the chromosomes according to their Fairness index
(30) Select top best chromosomes Pt from P according to (13)
(31) Pt←Crossover(Pt)

(32) Pt←Mutation(Pt)

(33) iteration←iteration + 1
(34) pg(n)←max fairness index(Pt)

(35) return pg(n) the best evaluated chromosome

ALGORITHM 1: /e proposed FA-SCGA-CAA algorithm and the pseudocode of the proposed channel assignment algorithm FA-SCGA-
CAA.
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be estimated. However, for the sake of this study, the link
data rate has been estimated using a formula that is derived
from the Shannon-Hartley theorem and the path loss as-
suming free-space path loss. Let ll be the link length, and
TSS is the transmission signal strength in dBm. /e received
signal strength RSSin dBm can be derived as follows:
RSS � TSS – 10∗ n∗ log10(ll),

RSS − TSS � – 10∗n∗ log10 ll( ,

TSS − RSS � 10∗ n∗ log10 ll( ,

noise � 10∗ n∗ log10 ll( ,

TSS
noise

�
TSS

10∗ n∗ log10 ll( 
, thus,

SNR �
TSS

10∗ n∗ log10 ll( 
.

(8)

As the interference influences the data rate, the inter-
ference on each length is the total overlapping of the link
interference index. /us, (8) can be rewritten in terms of
link interferencence (denoted by li):

SNR �
TSS

10∗ n∗ li ∗ log10 ll( 
. (9)

Consequently, using this formula, the data rate can be
estimated numerically. By minimizing the link interference
index, the SNR will be higher, which increases the data rate
as well. /e link interference index (li) can be estimated in
terms of channel overlabing ratio (denoted by Cov(l,m)) as
follows:

li �  Cov(l,m), ∀m ∈ l overlapped neighboring channels.

(10)

/e channel overlabing ratio can be estimated based on
the conflicting graph utilizing the interference matrix that
was proposed in [33]. To granularly evaluate the fairness of
each link in the network, the formula in (3) was used. /en,
by substitution, the link fairness(li) in the Jain’s index
equation which was presented in (2), the following formula
can be used to compute the overall fairness. Hence, the
objective function can then be written as follows:

Fairness index �


n
i�1 BW∗ log2 (1 + SNR)/Required Link Data Rate( i 

2

n 
n
i�1 BW∗ log2 (1 + SNR)/Required Link Data Rate( 

2
i

, (11)

where the BW channel bandwidth and SNR is the signal-to-
noise ratio, which can be estimated using (8). /e genetic
algorithm aims to maximize the fairness index, as presented
in (11).

Max
Fairness

index
 . (12)

3.4. Semichaotic-Based New Generation. /is stage consists
of three steps as follows:

(1) Fairness-Aware Parent Selection. Based on the fitness
function presented in (11), the individuals with the
best fairness index are selected for the next pop-
ulation. /e following formula is used to select the
parents:

Selection rule: if
Fairness index≥ |μ + σ|, selected,

otherwise, not selected,


(13)

where μ is the mean of the fairness of the population
and σ is the standard deviation of the population
fairness. Although the number of selected parents is
not necessarily fixed, the number of children
(population size) is fixed in every generation.

(2) Crossover. In the crossover process, the children are
created from two parental chromosomes that were
randomly selected from the previous step. /e genes

of the new child are mixed with the genes of the
parents. /e crossover process tends to pull the
population towards the local maxima (the highest
fairness in the population). For every two pairs, the
powerful genes (high fairness link) are fixed, and the
weak genes (low fairness link) are removed.

(3) Mutation. In the mutation step, the genes with low
fairness are replaced randomly while the genes with
high fairness are fixed. /e mutation process aims at
increasing the diversity and preventing the algorithm
from being trapped in local minima.

Algorithm 1 presents the pseudocode of the proposed
Fairness-Oriented Semichaotic Genetic Based Channel
Assignment (FA-SCGA-CAA), and Table 1 illustrates the
description of the symbol. In Algorithm 1, the algorithm
takes the Network Topology G with Nodes Positions,
Available Channels ch, Fairness Tolerance Rate τ, and the
maximum iteration max i as input. /en, it returns the best
solutions in the chromosome pg(n) which contains the links
and the associated channels with the highest fairness index
and lowest interference channels. As discussed in Section
3.1, the mesh network is represented by a graph to facilitate
the numerical analysis of the performance of the network.
/e primary chromosome formation (in lines 1–8 in the
pseudocode presented in Algorithm 1) and the semichaotic-
based initial population creation (in lines in the pseudocode
lines 12–18) are elaborated in Section 3.2. /e fairness
evaluation phase (see lines 20–28) was conducted using a
novel fitness function (see (11) and line 26 Algorithm 1) to

Computational Intelligence and Neuroscience 9



minimize link interference while maximizing the fairness.
/e fairness evaluation phase is presented in detail in Section
3.3. Natural selection was used to select the parents for the
next generation (see lines 30–32 in the pseudocode). /at is,
the parents that have high fairness were selected. Meanwhile,
parents with low fairness were neglected. /e creation of the
new generation phase is discussed in Section 3.4. As can be
observed from Algorithm 1 and the earlier discussion in this
section, the original genetic algorithm has been improved in
many ways. Firstly, the primary chromosome was created
using strong genes so that the entire population inherits
those powerful genes. /e multicriterion link ranking al-
gorithm was used to create the strong genes of the primary
chromosome (see Figure 4 and explanation in Section 3.2).
/en, a semichaotic technique was proposed to create the
initial population. In doing so, the initial population consists
of powerful genes inherited from the primary chromosome.
Accordingly, the algorithm converges fast to the best so-
lution. /en, as shown in Algorithm 1, the pseudocode, a
new fitness function, has been formulated to maximize the
fairness among individuals and prevent node starvation
problem. /e fairness equation has been defined based on
link interference and the required bandwidth to guarantee
equitable distribution of network resources among mesh
routers and mesh clients. To guarantee the convergence to
best global minima, the new generations are generated using
the proposed semichaotic techniques with fairness-aware
parent selection strategy. /e subsequent sections evaluate
and validate the proposed fair channel assignment solution.

4. Performance Evaluation

In this section, the performance of the proposed channel
assignment algorithm is evaluated and compared with re-
lated work. /e baseline algorithm starts assigning channels
to nodes arranged in descending order based on the number
of hops to the gateway [17, 21]. /is algorithm may not
provide a fair allocation of channels in the most sensible area
of a WMN, such as nodes far from the gateway. Since the
direction of the traffic is towards the gateway, bottleneck
problems may occur anywhere in that path, thereby causing
network fragmentation, capacity degradation, and the node
starvation problem. Python’s network library was utilized to
implement the simulation of the algorithms presented in this
paper.

To illustrate the performance of the proposed algorithm,
five performance measures were used, namely, network
capacity (NC), the fractional network interference (FNI),
per-link capacity, per-link fairness index, and per-link

interference index. NC is the total concurrent transmission
in the network after the channel assignment algorithm takes
place, while FNI is the ratio between network interference
and the total conflicting links in the network. FNI is also
defined as the number of conflicts that remain after channel
assignment relative to the number of conflicts in a single
channel network. It is the remaining ratio of interference
after applying the channel assignment algorithm. Jain’s
index [57] has been used to compute the fairness index.
Jain’s index is independent of the population size, scale, and
metric. It is bounded between zero and one where one
indicates maximum fairness and zero indicates no fairness.
Jain’s index is calculated as follows:

f(X) �


n
i�1 xi 

2

n 
n
i�1 x

2
i

, (14)

where n denotes the number of links and xi is the link
fairness assigned to the ith link as calculated in (2). It can be
noticed from (14) that the fairness f(X) can be 1 when xi

value is equal for all./is indicates that every link has got fair
channel allocation. /e network throughput is the sum of
the capacity of all links in the network [45, 55, 58]. Link
capacity indicator can be calculated from the interference
according to the following:

link capacityl(i,j) �
1

1 + interferencel(i,j)

,

networkcapacity(NC) � 
∀ l(i,j)∈L

capacityl(i,j),

(15)

where l(i, j) is the link between nodes i and j,
interferencel(i,j) is the interference on the link l(i,j) after the
channel, the assignment has taken place, and L is the number
of available links in the network.

5. Experimental Setup

To analyse the impact of interference between the links,
different scenarios were simulated, each of which has a
different number of links, namely 5, 16, 36, 46, 58, 78, 119,
and 126. With each scenario, many random topologies were
generated and tested. All parameters used in this experiment
were chosen according to the common practice in the field of
channel assignment algorithms. Table 2 shows the param-
eters used in the simulation.

/e interference model was used to estimate the inter-
ference between the links as follows. Two links interfere with
each other if they have been set to the same channel and the

Table 1: Symbols description.

Symbol Description
P, Pt P, parents (old generation) and Pt children (new generation)
pc, pg(n) pcis the primary chromosome and pg(n) is the selected chromosome
SNR Signal-to-noise ratio
ir, jr /e ranks of nodes i and j

τ Tolerance rate
li /e interference on the link i
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distance between any two nodes that form the links is
smaller than the interference range (514m). /e number of
links was created autonomously to preserve network con-
nectivity./at is, the links are created if the distance between
the nodes is smaller than the communication range (252m).
For the generalization, in the simulation, the number of
nodes, links, and their position have been randomly selected
considering the connectivity in mind during node creation.
Two versions of the proposed algorithm were evaluated,
namely the FA-SCGA-CAA and SCGA CAA. FA-SCGA-
CAA is the semichaotic genetic algorithm with a fairness-
oriented fitness function which is the main contribution of
this paper. Meanwhile, SCGA-CAA is the semichaotic ge-
netic algorithm without a fairness-oriented fitness function.
/e fitness function used is the interference-based fitness
function. In other words, FA-SCGA-CAA aims at maxi-
mizing the fairness among nodes while minimizing the link
interference, and SCGA-CAA aims at minimizing the sum
of link interference.

/e proposed FA-SCGA-CAA and SCGA-CAA algo-
rithms have been evaluated by comparing them with
Multicriterion Link Ranking CAA (MCLR-CAA) [33] and
the Genetic Algorithm Based CAA (GA-CAA) solutions that
have been used for channel assignment in several related
works [37, 39, 41]. Because solutions in [37, 39, 41] used the
original GA algorithm to search for a minimum network
interference, this study called this algorithm as IA-GA-CAA
interference-aware genetic algorithm-based channel as-
signment algorithm.

6. Results

Extensive simulations were conducted to evaluate the per-
formance of the proposed algorithms and techniques (FA-
SCGA-CAA and SCGA-CAA). /e results of the proposed
algorithm were compared to the multicriterion link ranking-
based channel assignment algorithm MCLR-CAA [33] and
the interference-aware genetic algorithm-based channel
assignment algorithm IA-GA-CAA that was frequently re-
ported in the literature [37, 39, 41]. Figure 5 illustrates the
average capacity achieved by the studied channel assignment
algorithms. /e x-axis represents the average number of
links in the studied network scenarios, while the y-axis
represents the corresponding average network capacity. /e

network capacity is represented by the ratio of the con-
current connection in the network.

As shown in Figure 5, the fairness-oriented semichaotic
algorithm FA-SCGA-CAA has the highest network capacity
in all simulated scenarios compared with the other studied
algorithms. It stays stable at more than 0.65 in most sim-
ulated scenarios. /e proposed semichaotic algorithm
SCGA-CAA achieves higher network capacity than the re-
lated metaheuristic genetic algorithm-based CAA (IA-GA-
CAA) and the heuristic-based approach MCLR-CAA.
MCLR-CAA, however, achieves better network utilization
than the metaheuristic algorithm (IA-GA-CAA). /is is
because the MCLR-CAA considers both interference and
link fairness during channel assignment while the IA-GA-
CAA tends to minimize the overall network interference
without considering the fair distribution of the channels.
/is explains the improvement gained by the semichaotic
approach SCGA-CAA when the MCLR-CAA was utilized to
speed up the convergence towards better solutions. /e
proposed algorithm FA-SCGA-CAA outperforms the other
studied algorithms in terms of network utilization. Con-
sidering node fairness during channel assignment allows it
to improve network performance. Unlike the multicriterion
algorithm (MCLR-CAA), the proposed FA-SCGA-CAA
algorithm neither biases to specific links based on their
criterion nor randomly picks a population that causes the
algorithm trapping in local minima. FA-SCGA-CAA starts
with a population containing a list of good solutions. Hence,
it converges faster, and the results are more effective. It can
be concluded that considering the link fairness during
channel assignment not only prevents the node starvation
problem but also improves the utilization of the available
network capacity.

Figure 6 shows the achievements of the studied algo-
rithms in terms of average link capacity. Per-link capacity
was calculated using (14) which expresses the capacity
degradation due to the interference. /e x-axis represents
the average number of links in 9 scenarios, while the y-axis
represents the corresponding average link capacity.

From Figure 6, the proposed FA-SCGA-CAA achieves
the highest average link capacity in most of the studied
scenarios. /e average link capacity slightly increases as the
number of links increases in the network. It can be seen that
the FA-SCGA-CAA outperforms the other studied algo-
rithms under all studied scenarios. /e proposed semi-
chaotic-based algorithm (SCGA-CAA) achieves better
average link capacity than the multicriterion link ranking
algorithm (MCLR-CAA) and the interference-aware genetic
algorithm (IA-GA-CAA). Although the FA-SCGA-CAA
and SCGA-CAA show close achievements in terms of the
average link capacity, they have different achievements in
terms of network capacity (see Figure 5). /e network ca-
pacity of SCGA-CAA drops rapidly as the number of links
increases while the network capacity of FA-SCGA-CAA
slightly decreases. It can be noticed that in all studied al-
gorithms, the average link capacity increases with increasing
the number of links in the network. /is can be interpreted
as follows. As the network grows bigger, the coverage dis-
tance becomes wider which makes the interference smaller.

Table 2: Simulation parameters.

Parameter Configuration
Propagation model Free space/two ray ground
Antenna Omnidirection
MAC type 802.11a/b
Orthogonal channels 12/3
Communication range 252m
Interference distance 514m
Number of nodes Varies from 50 to 200
Number of links Varies from 10 to 130
Number of radios 3 for each mesh router
Connectivity degree 3
Simulation area 1000m× 1000m
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It increases the number of links with nonoverlapping
channels, and so does the average link capacity.

Figure 7 illustrates the achievements of the studied al-
gorithms in terms of the average interference index per link.
/e link interference index is represented by the number of
overlapping neighbouring links. /e x-axis in Figure 7
represents the average number of links of the 9 studied
scenarios, while the y-axis represents the corresponding
average link interference.

As shown in Figure 7, the proposed FA-SCGA-CAA
achieved the lowest average link interference among the
studied algorithms. It can be noted that in all the studied
scenarios, the average link interference decreases as the size
of the network increases due to the sparse nature of large
networks where the number of links with nonoverlapping
channels increases.

Figure 8 presents the fractional network interference
(FNI). FNI measures the potential number of nodes that are

exposed to the starvation problem and calculated based on
the number of conflicted channels in the network. In Fig-
ure 8, the x-axis represents the average number of links in
the 9 studied scenarios, while the y-axis represents the
fractional network interference (FNI).

From Figure 8, it can be seen that the FNI of the pro-
posed FA-SCGA-CAA remains stable below 35% with all
studied scenarios. It slightly fluctuates between 30% and
35%, which implies that the ratio of the potential node
starvation will be as low as 35% in the worst cases./e FNI of
the semichaotic genetic algorithm (SCGA-CAA) and the
multicriterion link ranking algorithm (MCLR-CAA) in-
creases as the amount of links increases. Meanwhile, the FNI
of the interference-aware genetic algorithm (IA-GA-CAA)
remains stable at above 50% in all studied scenarios. /is is
because IA-GA-CAA does not consider the fair distribution
of the channels among available links while it is partially
considered in both SCGA-CAA and MCLR-CAA. It can be
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concluded that the multicriterion-based algorithm (MCLR-
CAA) and the semichaotic genetic-based algorithm (SCGA-
CAA) can reduce the link interference and thus node
starvation.

Figure 9 illustrates the achievements in terms of average
link fairness./e link fairness is calculated according to (10).
Fairness is the ratio between the link data rate after channel
assignment and the link capacity before the channel as-
signment. /e fairness index ranges between one (for the
highest fair distribution) and zero (for the lowest unfair
distribution). /e x-axis in Figure 8 represents the average
number of links in the 9 studied scenarios while the y-axis
represents average link fairness.

From Figure 9, the proposed FA-SCGA-CAA achieves
the highest average fairness index among all studied algo-
rithms and in all the simulated scenarios. /e fairness index
slightly drops as the number of links increases. Although the

fairness index of the semichaotic genetic algorithm (SCGA-
CAA) is high when the number of links is low, it rapidly
drops from 0.85 to 0.1 when the number of links increases.
Meanwhile, the fairness indexes of the MCLR-CAA and IA-
GA-CAA are low and drop lower than 0.2 when the network
grows bigger.

From Figures 5–9, it can be concluded that the developed
fairness fitness functions that maximize fairness and min-
imize the interference not only prevent node starvation
problem but also improve the utilization of network ca-
pacity. Figure 10 presents a comparative summary of the
performance of the proposed FA-SCGA-CAA and the
SCGA-CAA, and the related works MCLR-CAA and IA-
GA-CAA. /e x-axis represents the performance measures,
namely, the average of the network capacity in terms of
concurrent connection, the average of potential starvation
nodes in terms of the ratio of the conflicting channels or the
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fractional network interference (FNI), the average link
fairness index, and network interference index. /e y-axis
represents the average value of the corresponding perfor-
mance measures.

As shown in Figure 10, the proposed FA-SCGA-CAA
outperforms the other studied algorithms for every analysed
performance measure. In terms of network capacity, the FA-
SCGA-CAA algorithm improves the utilization of the net-
work capacity by 23% compared to IA-GA-CAA. Similarly,
the per-link capacity was improved by 16.9% compared to
IA-GA-CAA. In terms of per-link interference, the proposed
FA-SCGA reduces the interference by 46.4%. Likewise, FA-
SCGA-CAA also reduces the fractional network interference
by 22% as compared to IA-GA-CAA./e fractional network
interference has a direct relationship with the potential
nodes’ starvation. In terms of average link fairness, the
proposed FA-SCGA-CAA algorithm improves the fairness
by 44% compared to the fairness unaware approach IA-GA-
CAA. In terms of interference, 46% reduction is achieved by
the FA-SCGA-CAA as compared to the IA-GA-CAA.

7. Discussion

/is section presents the discussion of the results presented
in the previous section. /e study aims at designing and
developing a Fairness-Oriented Semichaotic Genetic Algo-
rithm-Based Channel Assignment Technique (FA-SCGA-
CAA) that addresses the node starvation problems, through
fair (equitable) channel distribution among mesh nodes in
the WMN. A fair distribution of channel assignment should
not end up with a node starvation problem. However,
existing channel assignment schemes suffer two main
drawbacks as follows. Firstly, existing solutions focus on
minimizing the total interference to achieve effective utili-
zation of network resources. However, such a solution leads
to a node starvation problem where the throughput of some
links drops lower than the minimum required throughput.
/at is, reducing the total interference does not necessarily
ensure equal distribution of channels in the network. As
shown in Figure 5, reducing total network interference leads
to unfair distribution of the available network bandwidth
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and thus lower network capacity. /e proposed FA-SCGA-
CAA algorithm distributes the channel interference based
on the required bandwidth by each link. /at is, links that
require higher bandwidth are given the channel with lower
interference. /us, nodes do not suffer from the starvation
problem due to the consideration of the minimum required
bandwidth for each link. Accordingly, the total of concur-
rent links has been increased which interprets the results
obtained by the proposed FA-SCGA-CAA algorithm (see
Figure 5)./e results in terms of per-link capacity in Figure 6
support the study hypothesis regarding how the total net-
work capacity is improved by achieving link-level fairness
based on the minimum required bandwidth. Consequently,
the results in terms of per-link interference in Figure 7 and
the fractional network interference interpret the improve-
ment gained in both per-link capacity and the overall net-
work capacity. /e proposed fairness-oriented algorithm
guarantees the minimum required capacity for each link
which contributes to avoiding node starvation problems.
/e per-link fairness that is depicted in Figure 9 suggests that
as the individual link fairness index increases, the fairness of
the nodes using that link increases as well which interprets
how the proposed algorithm approached the node starvation
problem. Comparing with the related studied algorithms,
IA-GA-CAA [37, 39, 41] and MCLR-CAA [33] in which the
fairness was represented in terms of total interference, the
equitable distribution of the resources among all nodes is the
ultimate goal of the proposed algorithm FA-SCGA-CAA to
resolve the node starvation problem. /e proposed algo-
rithm FA-SCGA-CAA distributes the resources based on the
minimum required bandwidth for each node, which is not
necessarily equal as was considered by the extant studies.
Comparison with IA-GA-CAA shows that the proposed FA-
SCGA-CAA reduced the potential node starvation by 22%
and improved network capacity utilization by 23% (see
Figure 10).

/e second drawback of the existing GA-based solutions
[37, 39, 41] such as the IA-GA-CAA algorithm is that the
population samples are randomly generated which leads to

the premature solution since the search is usually directed to
local minima. /e proposed FA-SCGA-CAA algorithm
avoids such problems by introducing the concepts of a
semichaotic approach for creating a population. /e pro-
posed semichaotic GA-based technique creates the primary
chromosome with powerful genes based on multicriterion
links ranking channel assignment algorithm. Such a chro-
mosome was used with a proposed semichaotic technique to
create a strong population that directs the search towards the
global minima. /e proposed semichaotic was also used
during the mutation and parent selection of the new genes.
To show the impact of the proposed semichaotic techniques
in the performance of the proposed algorithm, the SCGA-
CAA algorithm is implemented. /e difference between the
FA-SCGA-CAA and SCGA-CAA is that FA-SCGA-CAA
includes the fitness function in (11). /is fitness function is
to calculate the link fairness based on the achieved band-
width considering the interference resulted from the channel
assignment. As shown in Figures 6–10, the proposed SCGA-
CAA algorithm improves capacity while reducing the in-
terference as well as achieving a better fairness index and
lower interface index compared with the IA-GA-CAA./ese
results prove that the semichaotic technique succeeds in
selecting strong populations and directs the search towards
the global minima effectively./e proposed fitness functions
in the proposed FA-SCGA-CAA algorithm help in selecting
the best solution among the available solutions generated by
the GA which interprets why the proposed FA-SCGA-CAA
outperforms the SCGA-CAA.

Besides improving the effectiveness of the network, the
proposed FA-SCGA-CAA and SCGA-CAA algorithms
improve the efficiency of the channel assignments in terms
of fast convergence to find the best solution. Furthermore,
the cost in terms of time complexity of the studied meta-
heuristic algorithms [37, 39, 41] including the proposed FA-
SCGA-CAA and SCGA-CAA can be represented in terms of
big-O notations. /e time complexity metaheuristic algo-
rithms, FA-SCGA-CAA, SCGA-CAA, and IA-GA-CAA, are
O(gnm), where g is the number of generations (number of
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the iterations needed until convergence), n is the number of
links (number of genes), and m is the population size. /e
time complexity of the MCLR-CAA isO(n), where n is the
number of links in the network. Although theMCLR-CAA is
more efficient in terms of time complexity than the meta-
heuristic algorithms, it has lower performance compared
with the proposed model in terms of network capacity,
interference, and fairness which are essential for WMNs.
/at is, in WMN the effectiveness of the channel assignment
algorithms in terms of improving network capacity by re-
ducing the interference among the channels while achieving
fairness is more important. However, the efficiency of the
proposed FA-SCGA-CAA and SCGA-CAA algorithms
evaluated in terms of the number of iterations is needed until
finding the best solution. Figure 11 illustrates the perfor-
mance gained by applying the semichaotic approach in
speeding up the convergence rate of the genetic algorithm.
/e x-axis represents the average number of links in the 9
studied scenarios while the y-axis represents the average
iterations until convergence.

From Figure 11, the proposed semichaotic method has
improved the speed rate of the convergence as compared to
the original genetic algorithms. /is is because the semi-
chaotic method characterized the selected search space by
more powerful genes. Hence, selecting a powerful primary
chromosome leads to create a population with powerful
genes that speeds up the convergence. Furthermore, the
multicriterion method that is used to create the primary
chromosome considers both the fairness and the interfer-
ence during link ranking. /us, it directs the convergence
towards the global optima. /is explains the improvements
gained by the proposed FA-SCGA-CAA which employs
both the fairness-based fitness function and the semichaotic
approach to create the primary chromosome and search for
the most effective solution.

8. Conclusions

In this paper, the Fairness-Oriented Semichaotic Genetic
Algorithm-Based Channel Assignment Technique (FA-
SCGA-CAA) for wireless mesh network was proposed. /e
node starvation problem that was overlooked by the extant
studies due to unfair channel assignment has been addressed
in this study. /e unfair distribution of the network re-
sources of the existing solution has been attributed to two
main drawbacks. Firstly, the equal distribution of the in-
terference on the network does not lead to a fair distribution
of network resources. Second, randomly generating the
population samples in the genetic algorithm-based solutions
leads to a premature solution where the search is usually
directed to local minima. /ese two limitations have caused
unfair distribution of the channels and thus node starvation
problem in WMN. To achieve node fairness, a semichaotic
genetic algorithm-based technique was proposed to create a
diverse population with informative features that converge
to the best solution and avoid being trapped in the local
minima./e channel assignment problemwas formulated as
an optimization problem with a fairness-aware fitness
function. /e fairness-oriented fitness function combines

several factors that represent the network topology, load
status, and required bandwidth/throughput in one function.
/e fairness was defined on node level to address the node
starvation problem. Extensive experimental evaluations
were conducted to measure the performance of the proposed
technique and compare it with existing solutions./e results
showed that the proposed algorithm outperformed existing
solutions in terms of improving the link fairness and uti-
lization of network capacity while reducing the interference
and the potential number of node starvations. It can be
concluded that the proposed FA-SCGA-CAA is reliable to
maintain high node-level fairness while maximizing the
utilization of the network resources, which is the ultimate
goal of many wireless networks. Similar to any genetic-based
algorithm, the proposed algorithm has two main drawbacks
as follows. /e first issue is that setting up the number of
iterations is scenario specific./erefore, it is difficult to select
a fixed number of iterations for generalization. /e second
issue is on the selection of the convergence threshold. /ese
issues contributed to the overall link fairness. We are cur-
rently working on addressing those two issues and the new
findings will be the subject of our next publication.
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